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abstract: In this study, we derive a general finite integral that incorporates the generalized Hurwitz-
Lerch Zeta function of two variables, the incomplete Gamma function, elliptic integrals of the first kind, and
incomplete Aleph-functions. The paper concludes with a discussion of several corollaries and observations.
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1. Introduction and Preliminaries

The development of incomplete special functions is closely tied to the evolution of special functions,
which play a crucial role in various fields such as mathematics, physics, and engineering. These functions
often arise as solutions to differential or integral equations, as well as in the analysis of probability and
statistics. Incomplete special functions extend classical functions by truncating or limiting the domain
of integration or summation.

The incomplete Gamma function and incomplete hypergeometric function were analyzed by Srivastava
et al. [32], focusing on their specific characteristics. Recently, Srivastava et al. [33] introduced and
analyzed the incomplete H-function and incomplete H̄-function. Further contributions to the study of
the incomplete ℵ-function, incomplete I-function, and integrals involving the incomplete H-function have
been made by several researchers, including Bansal et al. [5], Bansal and Kumar [3], and Bansal et al.
[4]. In more recent studies, Kumar et al. [13] examined improper integrals related to the incomplete
Aleph-functions, while Kumar et al. [18] studied the Boros integral involving a class of polynomials
and incomplete ℵ-functions. Additionally, Kumar et al. [14] investigated the Boros integral with the
generalized multi-index Mittag-Leffler function and incomplete I-functions.

In the present study, we investigate a generalized finite integral that involves the generalized Hurwitz-
Lerch Zeta function of two variables, the incomplete Gamma function, elliptic integrals of the first kind,
and incomplete Aleph-functions.
The Gamma function, first introduced by Leonhard Euler in 1729 as an extension of the factorial function
[10], is represented by Euler’s integral formula, given as

Γ (α) =

∫ ∞

0

uα−1eu du (ℜ(α) > 0) , (1.1)
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this was subsequently generalized to the incomplete Gamma function, defined as

γ (α, x) =

∫ x

0

uα−1e−u du (ℜ(α) > 0; x ⩾ 0) , (1.2)

and

Γ (α, x) =

∫ ∞

x

uα−1 e−u du (x ⩾ 0; ℜ(α) > 0 when x = 0) . (1.3)

We have the following relation:

γ (α, x) + Γ (α, x) = Γ (α) (Re (α) > 0) . (1.4)

Now, we give the expression of the incomplete Aleph-functions (Γ)ℵm,n
pi,qi,τi;r(z, x) and (γ)ℵm,n

pi,qi,τi;r(z, x)
defined by Bansal et al. [5] (see also, [16]).

(Γ)ℵm,n
pi,qi,τi;r (z, x) =

(Γ)ℵm,n
pi,qi,τi;r

z

∣∣∣∣∣∣
(a1, A1, x) , (aj , Aj)2,n , [τi (aji, Aji)]n+1,pi;r

(gj , Gj)1,m , [τi (gji, Gji)]m+1,qi;r


=

1

2πω

∫
L

Γ (1− a1 −A1s, x)
∏n

j=2 Γ (1− aj −Ajs)
∏m

j=1 Γ (gj +Gjs)∑r
i=1 τi

[∏qi
j=m+1 Γ (1− gji −Gjis)

∏pi

j=n+1 Γ (aji +Ajis)
] z−sds, (1.5)

and

(γ)ℵm,n
pi,qi,τi;r (z, x) =

(γ) ℵm,n
pi,qi,τi;r

z

∣∣∣∣∣∣
(a1, A1, x) , (aj , Aj)2,n , [τi (aji, Aji)]n+1,pi;r

(gj , Gj)1,m , [τi (gji, Gji)]m+1,qi;r


=

1

2πω

∫
L

γ (1− a1 −A1s, x)
∏n

j=2 Γ (1− aj −Ajs)
∏m

j=1 Γ (gj +Gjs)∑r
i=1 τi

[∏qi
j=m+1 Γ (1− gji −Gjis)

∏pi

j=n+1 Γ (aji +Ajis)
] z−sds. (1.6)

The incomplete ℵ-functions (Γ)ℵm,n
pi,qi,τi;r(z, x) and (γ)ℵm,n

pi,qi,τi;r(z, x), as defined above, exist for x ≥ 0
under the following validity conditions:

The contour L lies in the s-plane and extends from σ − i∞ to σ + i∞ where σ is a real number. A
loop may be introduced, if necessary, to ensure that the poles of Γ(1 − aj − Ajs) for j = 2, · · · , n lie to
the right of the contour L, and the poles of Γ(gj +Gjs), j = 1, · · · ,m lie to the left of it. The parameters
τi,m, n, pi and qi are positive numbers that satisfy the conditions 0 ≤ n ≤ pi, 0 ≤ m ≤ qi. The values
of aj , gj and aji, gji are complex numbers. It is assumed that the poles of the integrand are simple. The
following conditions apply:

Ωi > 0, |arg(z)| < π

2
Ωi (i = 1, · · · , r) , (1.7)

Ωj ≥ 0, |arg(z)| < π

2
Ωi and ℜ(ζi) + 1 < 0, (1.8)

where

Ωi =

n∑
j=1

Aj +

m∑
j=1

Gj − τi max
1≤i≤r

 pi∑
j=n+1

Aji +

qi∑
j=m+1

Gji

 (1.9)

and

ζi =

m∑
j=1

bj −
n∑

j=1

aj + τi

 qi∑
j=m+1

bji −
pi∑

j=n+1

aji

+
pi − qi

2
(i = 1, · · · , r) . (1.10)

We can easily derive the following relation:

(Γ)ℵm,n
pi,qi,τi;r(z, x) +

(γ)ℵm,n
pi,qi,τi;r(z, x) = ℵm,n

pi,qi,τi;r(z), (1.11)
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where ℵm,n
pi,qi,τi;r(z) is the Aleph-function [2,12,17,19,22,23,27] (see also, [15,20,34]).

Taking τi → 1, then the incomplete Aleph-functions (Γ)ℵm,n
pi,qi,τi;r(z, x) and

(γ)ℵm,n
pi,qi,τi;r(z, x) reduce respectively to incomplete I-functions (Γ)Im,n

pi,qi;r(z, x) and
(γ)Im,n

pi,qi;r(z, x), defined
by

(Γ)Im,n
pi,qi;r(z, x) =

(Γ) Im,n
pi,qi;r

z

∣∣∣∣∣∣
(a1, A1, x) , (aj , Aj)2,n , (aji, Aji)n+1,pi;r

(gj , Gj)1,m , (gji, Gji)m+1,qi;r


=

1

2πω

∫
L

Γ (1− a1 −A1s, x)
∏n

j=2 Γ (1− aj −Ajs)
∏m

j=1 Γ (gj +Gjs)∑r
i=1

[∏qi
j=m+1 Γ (1− gji −Gjis)

∏pi

j=n+1 Γ (aji +Ajis)
] z−sds, (1.12)

and

(γ)Im,n
pi,qi;r(z, x) =

(γ)Im,n
pi,qi;r

z

∣∣∣∣∣∣
(a1, A1, x) , (aj , Aj)2,n , (aji, Aji)n+1,pi;r

(gj , Gj)1,m , (gji, Gji)m+1,qi;r


=

1

2πω

∫
L

γ (1− a1 −A1s, x)
∏n

j=2 Γ (1− aj −Ajs)
∏m

j=1 Γ (gj +Gjs)∑r
i=1

[∏qi
j=m+1 Γ (1− gji −Gjis)

∏pi

j=n+1 Γ (aji +Ajis)
] z−sds, (1.13)

under the same conditions as stated earlier, with τi → 1, we now consider r = 1. In this case, the
incomplete I-functions (Γ)Im,n

pi,qi;r(z, x) and (γ)Im,n
pi,qi;r(z, x) simplify to incomplete H-functions, namely

(Γ)Hm,n
p,q (z, x) and (γ)Hm,n

p,q (z, x), respectively. Given as

(Γ)Hm,n
p,q (z, x) = (Γ)Hm,n

p,q

z

∣∣∣∣∣∣
(a1, A1, x) , (aj , Aj)2,p

(gj , Gj)1,q


=

1

2πω

∫
L

Γ (1− a1 −A1s, x)
∏n

j=2 Γ (1− aj −Ajs)
∏m

j=1 Γ (gj +Gjs)∏q
j=m+1 Γ (1− gj −Gjs)

∏p
j=n+1 Γ (aj +Ajs)

z−sds (1.14)

and

(γ)Hm,n
p,q (z, x) = (γ)Hm,n

p,q

z

∣∣∣∣∣∣
(a1, A1, x) , (aj , Aj)2,p

(gj , Gj)1,q


=

1

2πω

∫
L

γ (1− a1 −A1s, x)
∏n

j=2 Γ (1− aj −Ajs)
∏m

j=1 Γ (gj +Gjs)∏q
j=m+1 Γ (1− gj −Gjs)

∏p
j=n+1 Γ (aj +Ajs)

z−sds, (1.15)

under the same conditions confirmed by the incomplete I-functions when r = 1.
By using the formula (1.11), we have the following relations:

(Γ)Im,n
pi,qi;r(z, x) +

(γ)Im,n
pi,qi;r(z, x) = Im,n

pi,qi;r(z), (1.16)

the function Im,n
pi,qi,r(z) being the function defined by Saxena [28], and

(Γ)Hm,n
p,q (z, x) + (γ)Hm,n

p,q (z, x) = Hm,n
p,q (z). (1.17)

Using the incomplete Gamma function as defined in equation 1.2, we express it in terms of the hyperge-
ometric function [8, p.656, Eq. 20]:

γ (µ, z) =
zυ

υ
1F1 [1; υ + 1 : z] . (1.18)
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The complete elliptic integrals of first kind is defined by (see, Whittaker and Watson [35, p. 515])

K(k) =

∫ π
2

0

dθ√
1− k2sin2θ

=

∫ 1

0

dt√
(1− t2) (1− k2t2)

. (1.19)

Apostol [1, p. 89] studied a generalization of the Riemann Zeta function, defined as follows:

Z (s, a) =

∞∑
k=0

1

(a+ s)
k

(ℜ(s) > −1, a /∈ {0,−1,−2, · · · }) . (1.20)

A new generalization of the Zeta function was introduced by Erdélyi et al. [9, p. 27, Eq. 1.11(1)]. This
function is referred to as the generalized Hurwitz-Lerch Zeta function of one variable. The expression for
this function is:

ϕ (x, s, a) =

∞∑
k=0

zk

(a+ s)
k

(|z| < 1, s ∈ C, a /∈ {0,−1,−2, · · · }) . (1.21)

Goyal and Ladha [11, p. 100, Eq. (15)] presented another generalization of the Hurwitz-Lerch Zeta
function of one variable, defined by:

ϕ∗
µ (x, s, a) =

∞∑
k=0

(µ)k z
k

(a+m)
s
k!
, (1.22)

where a /∈ {0,−1,−2, · · · } , µ ≥ 1 and either |z| < 1, ℜ(s) > 0 and ℜ(s) > µ.
We will note

A∗
µ (k, s, a) =

(µ)k
(a+m)

s
k!
. (1.23)

Recently Parmar et al. [26, p. 179, Eq.(2,1)] gave an extension of the Hurwitz’s-Lerch Zeta function of
one variable, defined as follows:

ϕ
(ρ,σ)
λ,µ,υ (z, s, a,m) =

∞∑
k=0

(λ)k B
(ρ,σ)
p (µ+ k, υ − µ)

B (υ, υ − µ)

zk

(a+ s)
k
, (1.24)

provided that p,ℜ(ρ),ℜ(σ) ≥ 0, λ, µ ∈ C, υ, a \ Z−
0 , s ∈ C when |z| < 1; ℜ (s+ υ − λ− µ) > 1 for z = 1.

We have

A
(ρ,σ)
λ,µ,υ (k, s, a,m) =

(λ)k B
(ρ,σ)
p (µ+ k, υ − µ)

B (υ, υ − µ)

1

(a+ s)
k
, (1.25)

where the extended Beta function Bp(.) is defined by Özergin et al. [25], defines as:

B(ρ,σ)
p (x, y) =

∫ 1

0

tx−1 (1− t)
y−1

1F1

[
ρ;σ;− p

t (1− t)

]
dt, (1.26)

and ℜ(p),min {ℜ(x),ℜ(y)} > 0.

Batra and Rai [6, p. 1551, Eq.(5)] introduced a novel extension of the Hurwitz-Lerch Zeta function
for two variables, defined as follows:

Φα,β,β′,γ,γ′ (z, t, s, a) =

∞∑
i,j=0

(α)i+j (β)i (β
′)j

(γ)i (γ
′)j i!j!

zitj

(a+ i+ j)
s , (1.27)

provided that α, β, β′ ∈ C, and γ, a /∈ {0,−1,−2, · · · }, with s, z, t ∈ C, and ℜ(s) > 0 when |z| , |t| < 1, or
alternatively, we have ℜ (γ − s− α− β − β′) > 1 when |z| = |t| = 1.
We will denote

Aα,β,β′,γ,γ′ (z, t, s, a) =
(α)i+j (β)i (β

′)j
(γ)i (γ

′)j i!j!

1

(a+ i+ j)
s . (1.28)
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Recently, Batra and Rai [7] provided a generalization of the extended Hurwitz-Lerch zeta function for
two variables, defined as follows:

Φ∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r (z, t, s, a)

=

∞∑
i,j=0

(α)i+j B
(ρ,σ,r)
p (β + i, γ − β) B

(ρ′,σ′,r)
p (β′ + j, γ′ − β′)

B (β, γ − β) B (β′, γ′ − β′) i!j!

zitj

(a+ i+ j)
s , (1.29)

assuming that p ≥ 0, ℜ(ρ),ℜ(σ),ℜ(ρ′),ℜ(σ′) > 0, α, β, β′ ∈ C, γ, γ′, aC \Z−
0 , and s, z,∈ C with ℜ(s) > 0

when |z| , |t| < 1, and ℜ (s+ γ + γ′ − β − β′ − α) > 1 when |z| = |t| = 1.
Let us denote

A∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r (i, j, s, a)

=
(α)i+j B

(ρ,σ,r)
p (β + i, γ − β) B

(ρ′,σ′,r)
p (β′ + j, γ′ − β′)

B (β, γ − β)B (β′, γ′ − β′) i!j!

1

(a+ i+ j)
s , (1.30)

where, the generalized Beta function, as outlined in [24, p. 189, Eq. (1.13)], is given by

B(α,β,m)
p (x, y) =

∫ 1

0

tx−1 (1− t)
y−1

1F1

[
α;β;− p

tm (1− t)
m

]
dt, (1.31)

where, ℜ(p) ≥ 0,min {ℜ(x),ℜ(y),ℜ(α),ℜ(β)} > 0.

1.1. Required integral

We present a generalized finite integral, as seen in Brychkov [8, 4.1.1 Eq. 2, p. 276]. The result is as
follows:

Lemma 1.1 ∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)
dx

=
πaυΓ2 (s+ υ)

2υΓ2
(
s+ υ + 1

2

) 3F3

a

∣∣∣∣∣∣
1, s+ υ, s+ υ

υ + 1, s+ υ + 1
2 , s+ υ + 1

2

 , (1.32)

provided that ℜ (s+ υ) > 0.

2. Main Integral

In the following section, we give a general formula with x′ > 0.

Theorem 2.1∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(Γ)ℵm,n
pi,qi,τi;r′

(
zxA, x′) Φ∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx

=
πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
ZiY jA∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r (i, j, s, a)

× (Γ)ℵm,n+2
pi+2,qi+2,τi;r′

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− Cj − n′;A) ,

(gj , Gj)1,m , [τi (gji, Gji)]m+1,qi;r′
,

(1− s− υ −Bi− Cj − n′;A) , (aj , Aj)2,n , [τi (aji, Aji)]n+1,pi;r′(
1
2 − s− υ −Bi− Cj − n′;A

)
,
(
1
2 − s− υ −Bi− Cj − n′;A

)
 , (2.1)
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provided that ℜ (s+ υ′) > 0, A,B,C > 0, x′ > 0,

ℜ (s+ υ +Bi+ Cj)−A min
1⩽j⩽m

ℜ
(

gj
Gj

)
> −1,

and Ωi > 0, with |arg(z)| < π
2Ωi for i = 1, · · · , r′ or Ωi ≥ 0 and |arg(z)| < π

2Ωi, while also satisfying
ℜ (ζi) + 1 < 0, where Ωi and ζi are defined by (1.9) and (1.10), and also satisfy the conditions in (1.29)
and (1.31).

Proof: To prove the theorem, we begin by expressing an extension of the generalized Hurwitz’s-Lerch
Zeta function for two variables, as defined by Batra and Rai [7]. Using the series representation from
(1.29) and the modified incomplete Gamma Aleph-function in the Mellin-Barnes contour integral, as
described in (1.5), we interchange the order of integration and summation. This step is justified by the
absolute convergence of the integrals involved in the process. Finally, by collecting the powers of x, we
obtain I, as expressed by

I =

∫ 1

0

xseaxγ (υ, ax) K(
√

(1− x) (Γ)ℵm,n
pi,qi,τi;r′

(
zxA, x′)

× Φ∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx

=
πaυ

(2)

∞∑
i,j=0

1

2πω

∫
L

Γ (1− a1 −A1t, x
′)
∏n

j=2 Γ (1− aj −Ajt)
∏m

j=1 Γ (gj +Gjt)∑r′

i=1 τi

[∏qi
j=m+1 Γ (1− gji −Gjit)

∏pi

j=n+1 Γ (aji +Ajit)
] z−t

× A∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r (i, j, s

′, a′)

∫ 1

0

xs−At+Bi+Cj eaxγ (υ, ax) K
(√

1− x
)
dt. (2.2)

With the lemma 1.1, this leads to

I =

∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(Γ)ℵm,n
pi,qi,τi;r′

(
zxA, x′)

× Φ∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx

=
πaυ

2

∞∑
i,j=0

1

2πω

∫
L

Γ (1− a1 −A1t, x
′)
∏n

j=2 Γ (1− aj −Ajt)
∏m

j=1 Γ (gj +Gjt)∑r′

i=1 τi

[∏qi
j=m+1 Γ (1− gji −Gjit)

∏pi

j=n+1 Γ (aji +Ajit)
] z−t

× A∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r (i, j, s, a)

Γ2 (s+Bl + Cj −At)

Γ2
(
s+ 1

2 +Bl + Cj −At
)

× 3F3

a

∣∣∣∣∣∣
1, s+ υ +Bi+ Cj −At, s+ υ +Bi+ Cj −At

υ + 1, s+ υ +Bi+ Cj −At+ 1
2 , s+Bi+ Cj −At+ υ + 1

2

 dt. (2.3)

We substitute the Gauss hypergeometric function with the series
∑∞

n=0 (see, Slater [31]).Under the
assumption that we can interchange the series and the t-integrals, we obtain

I =

∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(Γ)ℵm,n
pi,qi,τi;r′

(
zxA, x′)

× Φ∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx =

πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
ZiY j

× 1

2πω

∫
L

Γ (1− a1 −A1t, x
′)
∏n

j=2 Γ (1− aj −Ajt)
∏m

j=1 Γ (gj +Gjt)∑r′

i=1 τi

[∏qi
j=m+1 Γ (1− gji −Gjit)

∏pi

j=n+1 Γ (aji +Ajit)
] z−t

× A∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r (i, j, s

′, a′)
Γ2 (s+Bl + Cj −At)

Γ2
(
s+ 1

2 +Bl + Cj −At
) [(s+Bl + Cj −At)n′ ]

2[(
s+ 1

2 +Bl + Cj −At
)
n′

]2 dt. (2.4)
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By applying the formula Γ (a) (a)n = Γ (a+ n), this gives

I =

∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(Γ)ℵm,n
pi,qi,τi;r′

(
zxA, x′)

× Φ∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx =

πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
Zi Y j

× 1

2πω

∫
L

Γ (1− a1 −A1t, x
′)
∏n

j=2 Γ (1− aj −Ajt)
∏m

j=1 Γ (gj +Gjt)∑r′

i=1 τi

[∏qi
j=m+1 Γ (1− gji −Gjit)

∏pi

j=n+1 Γ (aji +Ajit)
] z−t

× A∗,ρ,σ,ρ′,σ′,r
α,β,β′,γ,γ′;r (i, j, s

′, a′)
Γ2 (s+Bl + Cj + n′ −At)

Γ2
(
s+ 1

2 +Bl + Cj + n′ −At
) dt, (2.5)

by interpreting the contour integral (2.5) with the help of the definition of the Incomplete Aleph-function
(1.5), we arrive at the desired formula. 2

Theorem 2.2∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(γ)ℵm,n
pi,qi,τi;r′

(
zxA, x′)Φ∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx

=
πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
ZiY jA∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r (i, j, s
′, a′)

× (γ)ℵm,n+2
pi+2,qi+2,τi;r′

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− Cj − n′;A) ,

(gj , Gj)1,m , [τi (gji, Gji)]m+1,qi;r′
,

(1− s− υ −Bi− Cj − n′;A) , (aj , Aj)2,n , [τi (aji, Aji)]n+1,pi;r′(
1
2 − s− υ −Bi− Cj − n′;A

)
,
(
1
2 − s− υ −Bi− Cj − n′;A

)
 , (2.6)

under the same notation and conditions as in Theorem 2.1, the proof follows similarly to that of (2.1).

3. Special Cases

In this section, we present several specific cases. Initially, we discuss the particular incomplete I- and
H-functions. Subsequently, we reference the special cases of the Hurwitz-Lerch Zeta function, both for
two variables and for one variable, as considered in this paper.

Corollary 3.1∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(Γ)Im,n
pi,qi,τi;r′

(
zxA, x′) Φ∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx

=
πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
Zi Y j A∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r (i, j, s
′, a′)

× (Γ)Im,n+2
pi+2,qi+2;r′

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− Cj − n′;A) ,

(gj , Gj)1,m , (gji, Gji)m+1,qi;r′
,

(1− s− υ −Bi− Cj − n′;A) , (aj , Aj)2,n , (aji, Aji)n+1,pi;r′(
1
2 − s− υ −Bi− Cj − n′;A

)
,
(
1
2 − s− υ −Bi− Cj − n′;A

)
 , (3.1)

provided that A,B,C > 0, and

ℜ (s+ υ′) > 0ℜ (s+ υ +Bi+ Cj)−A min
1⩽j⩽m

ℜ
(

gj
Gj

)
> −1.
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Also verified the conditions given in (1.29) and (1.31), and Ωi > 0, |arg(z)| < π
2Ωi for i = 1, · · · , r′ or

Ωi ≥ 0, |arg(z)| < π
2Ωi and ℜ(ζi) + 1 < 0, where Ωi and ζi are given by (1.9) and (1.10) respectively.

Corollary 3.2∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(γ)Im,n
pi,qi;r′

(
zxA, x′) Φ∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx

=
πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
Zi Y j A∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r (i, j, s
′, a′)

× (γ)Im,n+2
pi+2,qi+2;r′

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− Cj − n′;A) ,

(gj , Gj)1,m , (gji, Gji)m+1,qi;r′
,

(1− s− υ −Bi− Cj − n′;A) , (aj , Aj)2,n , (aji, Aji)n+1,pi;r′(
1
2 − s− υ −Bi− Cj − n′;A

)
,
(
1
2 − s− υ −Bi− Cj − n′;A

)
 , (3.2)

under the same conditions and notations as in Corollary 3.1.

Corollary 3.3∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(Γ)Hm,n
p,q

(
zxA, x′) Φ∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx

=
πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
Zi Y j A∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r (i, j, s
′, a′)

× (Γ)Hm,n+2
p+2,q+2

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− Cj − n′;A) ,

(gj , Gj)1,q ,
(
1
2 − s− υ −Bi− Cj − n′;A

)
,

(1− s− υ −Bi− Cj − n′;A) , (aj , Aj)2,p(
1
2 − s− υ −Bi− Cj − n′;A

)
 , (3.3)

provided that

ℜ (s+ υ′) > 0, ℜ (s+ υ +Bi+ Cj)−A min
1⩽j⩽m

ℜ
(

gj
Gj

)
> −1, A,B,C > 0.

The conditions specified in (1.29) and (1.31) are satisfied. Additionally, either Ω > 0 and | arg(z)| < π
2Ω,

or Ω ≥ 0, | arg(z)| < π
2Ω, and ℜ(ζ) + 1 < 0, where

Ω =

n∑
j=1

Aj +

m∑
j=1

Gj −

 p∑
j=n+1

Aj +

q∑
j=m+1

Gj

 , (3.4)

and

ζ =

m∑
j=1

Gj −
n∑

j=1

Aj +

 q∑
j=m+1

gj −
p∑

j=n+1

aj

+
p− q

2
. (3.5)
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Corollary 3.4∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(γ)Hm,n
p,q

(
zxA, x′) Φ∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r

(
ZXB , Y xC , s′, a′

)
dx

=
πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
Zi Y j A∗,ρ,σ,ρ′,σ′,r

α,β,β′,γ,γ′;r (i, j, s
′, a′)

(γ)Hm,n+2
p+2,q+2

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− Cj − n′;A) ,

(gj , Gj)1,q ,
(
1
2 − s− υ −Bi− Cj − n′;A

)
,

(1− s− υ −Bi− Cj − n′;A) , (aj , Aj)2,p(
1
2 − s− υ −Bi− Cj − n′;A

)
 , (3.6)

Next, We refer to the Hurwitz-Lerch Zeta function with two variables, as introduced by Batra and Rai
[6, p. 1551, Eq.(5)]. Then, we arrive at the following result:

Corollary 3.5∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)

(Γ)ℵm,n
pi,qi,τi;r′

(
zxA, x′) Φα,β,β′,γ,γ′

(
ZxB , Y xC , s′, a′

)
dx

=
πaυ

2

∞∑
i,j,n′=0

1

(υ)n′
(a)

n′
Zi Y j Aα,β,β′,γ,γ′ (i, j, s′, a′)

× (Γ)ℵm,n+2
pi+2,qi+2,τi;r′

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− Cj − n′;A) ,

(gj , Gj)1,m , [τi(gji, Gji)]m+1,qi;r′
,

(1− s− υ −Bi− Cj − n′;A) , (aj , Aj)2,n , [τi(aji, Aji)]n+1,pi;r′(
1
2 − s− υ −Bi− Cj − n′;A

)
,
(
1
2 − s− υ −Bi− Cj − n′;A

)
 , (3.7)

under the conditions confirmed by Theorem 2.1, and when the conditions in (1.26) and (1.27) are met
instead of those in (1.29) and (1.31).

Next, we consider an extension of the Hurwitz-Lerch Zeta function with one variable, as defined by
Parmar et al. [26, p. 179, Eq.(2.1)]. This leads to

Corollary 3.6∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)
ϕ
(ρ,σ)
λ,µ,υ

(
SxB , s, a,m

)
(Γ)ℵm,n

pi,qi,τi;r′

(
zxA, x′)

=
πaυ

2

∞∑
i,n′=0

1

(υ)n′
(a)

n′
Zi A

(ρ,σ)
λ,µ,υ (i, s

′, a,m)

× (Γ)ℵm,n+2
pi+2,qi+2,τi;r′

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− n′;A) , (1− s− υ −Bi− n′;A) ,

(gj , Gj)1,m , [τi (gji, Gji)]m+1,qi;r′
,
(
1
2 − s− υ −Bi− n′;A

)
,

(aj , Aj)2,n , [τi (aji, Aji)]n+1,pi;r′(
1
2 − s− υ −Bi− n′;A

)
 , (3.8)

under the conditions confirmed by Theorem 2.1, and when the conditions in (1.24) and (1.26) are met
instead of those in (1.29) and (1.31).
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Now, we examine an extension of the Hurwitz-Lerch Zeta function with one variable, as defined by Goyal
and Ladha [11, p. 100, Eq. (15)]. Then, we obtain the following result:

Corollary 3.7∫ 1

0

xseaxγ (υ, ax) K
(√

1− x
)
ϕ∗
µ

(
ZxB , s′, a′

)
(Γ)ℵm,n

pi,qi,τi;r′

(
zxA, x′)

=
πaυ

2

∞∑
i,n′=0

1

(υ)n′
(a)

n′
Zi A∗

µ (i, s
′, a′)

× (Γ)ℵm,n+2
pi+2,qi+2,τi;r′

z

∣∣∣∣∣∣
(a1, A1, x

′) , (1− s− υ −Bi− n′;A) ,

(gj , Gj)1,m , [τi (gji, Gji)]m+1,qi;r′
,

(1− s− υ −Bi− n′;A) , (aj , Aj)2,n , [τi (aji, Aji)]n+1,pi;r′(
1
2 − s− υ −Bi− n′;A

)
,
(
1
2 − s− υ −Bi− n′;A

)
 , (3.9)

assuming that

ℜ (s+ υ′) > 0, ℜ (s+ υ +Bi)−A min
1⩽j⩽m

ℜ
(

gj
Gj

)
> −1, A,B > 0,

and that for i = 1, · · · , r′, either Ωi > 0 and |arg(z)| < π
2Ωi, or Ωi ≥ 0, |arg(z)| < π

2Ωi and ℜ(ζi)+1 < 0,
with Ωi and ζi defined by (1.9) and (1.10), while a′ /∈ {0,−1,−2, . . . }, µ ≥ 1, and either |z| < 1, ℜ(s) > 0,
and ℜ(s) > µ.

Remark 3.1 For the three preceding corollaries, we obtain identical formulas involving the incom-
plete gamma Aleph function (γ)ℵm,n

pi,qi,τi;r′
(z, x′), the incomplete Gamma I-function (Γ)Im,n

pi,qi;r′
(.),

the incomplete gamma I-function (γ)Im,n
pi,qi,r′

(.), along with the incomplete H-functions (Γ)Hm,n
p,q (.)

and (γ)Hm,n
p,q (.). These are the same generalized finite integrals that involve the extension of the

generalized Hurwitz-Lerch Zeta function of two and one variables, along with the Aleph function
[29,30], the I-function defined by Saxena [28], and Fox’s H-function [21].

4. Concluding Remarks

The significance of all our results stems from their broad generality. Firstly, by specializing the various
parameters and variables in the incomplete Aleph-functions (Γ)ℵm,n

pi,qi,τi;r′
(z) and (γ)ℵm,n

pi,qi,τi;r′
(z), we derive

numerous results that encompass a wide range of useful special functions (or products of such functions),
which can be expressed in terms of the I-function defined by Saxena [28], the H-function, Meijer’s G-
function, the E-function, and the hypergeometric function of one variable. Secondly, by specializing the
parameters in the integrals of several variables involving the incomplete gamma function, we can obtain
a variety of integrals involving the incomplete Aleph-functions. Thirdly, by adjusting the parameters or
variables of the extended Hurwitz-Lerch Zeta function of one or two variables discussed in this paper, we
generate a substantial number of new integrals.
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