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A New Investgation on Steinberg Groups 3D4(q)

Mohammadreza Darafsheh, Behnam Ebrahimzadeh∗ and Maryam Radmehr

abstract: In this paper, we prove that simple groups 3D4(q), where q4 − q2 + 1 is a prime number can be
uniquely determined by the order of group and the second largest element order, in the group 3D4(q).
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1. Introduction

Throughout this paper G is a finite group, the set of prime divisors of |G| is denoted by π(G) and the
largeset element order and the second largest element order of the set πe(G) of element orders of G is
denoted by k1(G) and k2(G), respectively. The prime graph Γ(G) of group G is a graph whose vertex set
is π(G), and two vertices p and q are adjacent if and only if pq ∈ πe(G). Moreover, assume that Γ(G) has
t(G) connected components πi, for i = 1, 2, . . . , t(G). In the case where |G| is of even order, we assume
that 2 ∈ π1.

Next, we say the group G is characterized by property M , if any group H with property M is
isomorphic to G. However, in some papers by different methods it is proved some of groups can be
characterized by some property M . One of the methods is characterization groups by using the order of
group and the largest element order. In other words, we say the group G is characterizable by using the
order of group and the largest element order or the second largest element order if for any group H, so
that ki(G) = ki(H),i = 1, 2, and |G| = |H| then G ∼= H.

In this direction, the authors in different references proved that some of groups is determined by this
method. For example groups such as, Projective special linear group PSL(3, q) ( [1]), Chevalley group
G2(q), q ≤ 11 ( [2]), sporadic groups( [4]), PSL(2, q), q = pn < 125( [5]), K4-group type PSL(2, p) where
p is a prime but not 2n-1( [6]), Suzuki groups Sz(q)( [7]), the projective special unitary group PSU(3, 3n)
( [8]), symplectics groups PSP (8, q)( [9]), symplectics groups C4(q)( [10]), the simple groups 2D8(2

n)2

( [11]), the symplectics groups PSP (4, 2n), where 22n + 1, PSP (8, q) ( [12]), the simple groups 2Dn(3)
( [13]),the projective special linear groups PSL(5, 2) and PSL(4, 5) ( [14]), On the simple K5-groups
( [16]), the simple 2E6(q) ( [17]), the simple B4(q) group ( [18]), PSL(3, q) (q ≤ 8) and PSU(3, q) (q ≤ 11)
( [20]), PGL(2, q) ( [23]), Alternating group ( [24] can be determined by the largest element order or the
second largest element order.
In this article, motivated by the above references we prove that the steinberg groups 3D4(q), where
q4 − q2 + 1 is a prime number can be characterized by by using the second largest element order and
order of group. In fact, we prove the following main theorem:
Main Theorem. Let G be a group and D = 3D4(q) so that k2(G) = k2(D) and |G| = |D|, then G ∼= D.
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2. Title Material

In this section, we give some useful lemmas which will be used in the proof of the main Theorem.

Lemma 2.1 [19] Let G be a Frobenius group of even order with kernel K and complement H. Then

1. t(G) = 2, π(H) and π(K) are vertex sets of the connected components of Γ(G);

2. |H| divides |K| − 1;

3. K is nilpotent.

Definition 2.1 A group G is called a 2-Frobenius group if there is a normal series 1 � H � K � G
such that G/H and K are Frobenius groups with kernels K/H and H respectively.

Lemma 2.2 [3] Let G be a 2-Frobenius group of even order. Then

1. t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;

2. G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.3 [26] Let G be a finite group with t(G) ≥ 2. Then one of the following statements holds:

1. G is a Frobenius group;

2. G is a 2-Frobenius group;

3. G has a normal series 1�H �K �G such that H and G/K are π1-groups, K/H is a non-abelian
simple group, H is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 2.4 [28] Let q, k, l be natural numbers. Then

[ (a)]

1. (qk − 1, ql − 1) = q(k,l) − 1.

2. (qk + 1, ql + 1) =

{
q(k,l) + 1 if both k

(k,l) and l
(k,l) are odd,

(2, q + 1) otherwise.

3. (qk − 1, ql + 1) =

{
q(k,l) + 1 if k

(k,l) is even and l
(k,l) is odd,

(2, q + 1) otherwise.

In particular, for every q ≥ 2 and k ≥ 1 the inequality (qk − 1, qk + 1) ≤ 2 holds.

Lemma 2.5 [25] Let G be a non-abelian simple group such that (5, |G|) = 1. Then G is isomorphic to
one of the following groups:

1. PSL(n, q), n = 2, 3, q ≡ ±2 (mod 5);

2. G2(q), q ≡ ±2 (mod 5);

3. PSU(3, q), q ≡ ±2 (mod 5);

4. 3D4(q), q ≡ ±2 (mod 5);

5. 2G2(q), q = 32m+1, m ≥ 1.
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3. Figures and Tables

In the following, we list the numbers k1(G) and k2(G) of some groups.( [21])

Table(I)

Group k1(G) k2(G)

PSL(2, q), q > 3 prime q q+1
2

PSL(2, q), q composite q+1
2

q−1
2

PSL(3, q) q2+q+1
(3,q−1)

q2−1
(3,q−1)

PSU(3, q), q prime q2+q
(3,q+1)

q2−1
(3,q+1)

PSU(3, q), q composite q2−1
(3,q+1)

q2−q+1
(3,q+1)

G2(q), q prime q2 + q + 1 q2 + q
G2(q), q composite q2 + q + 1 q2 − 1
3D4(q), q prime (q3 − 1)(q + 1) q(q3 + 1)
3D4(q), q composite (q3 − 1)(q + 1) q4 − q2 + 1
2G2(q),q = 32m+1 q +

√
3q + 1 q − 1

4. Mathematics

In this section, we prove the main theorem. From now on we denote the Steinberg groups 3D4(q)
and prime number q4 − q2 + 1 by D, p, respectively. We recall that G is a group with k2(G) = k2(D)
and |G| = |D|. First, we know that |3D4(q)| = q12(q8+q4+1)(q6−1)(q2−1) and k2(G) = q(q3+1)( [21]).

Lemma 4.1 p is an isolated vertex in Γ(G).

Proof: First we know |G| = q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) and k2(G) = q(q3 + 1). Now we prove
p is an isolated vertex in Γ(G). Otherwise, so there is t ∈ π(G) − p such that tp ∈ πe(G), we have
tp ≥ 2p = 2(q4 − q2 + 1 > q(q3 + 1) = k2(G), that is a contradiction, so p is an isolated vertex, it follows
that t(G) ≥ 2. 2

Lemma 4.2 The group G is neither a Frobenius group nor a 2-Frobenius group.

Proof: First we prove that G is not a Frobenius group. Otherwise, assume G be a Frobenius group with
kernel K and complement H. Then by Lemma 2.1, t(G) = 2 and π(H) and π(K) are vertex sets of the
connected components of Γ(G) and |H| divides |K| − 1. Now by Lemma 4.1, p is an isolated vertex of
Γ(G). Thus we deduce that (i) |H| = p and |K| = |G|/p or (ii) |H| = |G|/p and |K| = p. Since |H|
divides |K| − 1. Next, first assume |H| = p and |K| = |G|/p, hence q4 − q2 +1 | (q4 − q2 +1)(q20 + q18 −
3q14 − 3q12 + 4q8 + 4q6 − 4q2 − 4) + 3. Thus p | 3 which is impossible. Now we assume |H| = |G|/p and
|K| = p, hence since|H| divides |K| − 1 in conclude|G|/p divides p− 1, where is a contradiction.

We now show that G is not a 2-Frobenius group. In contrary, we assume G be a 2-Frobenius group.
Then G has a normal series 1 � H � K � G such that G/H and K are Frobenius groups with kernels
K/H and H, respectively. Now, we set |G/K| = x. Since p is an isolated vertex of Γ(G), so we have
|K/H| = p and |H| = |G|/(xp). By Lemma 2.2, |G/K| divides |Aut(K/H)|. Thus |G/K| | q4 − q2 now
by Lemma 2.4, (q4 − q2, p) = 1, hence p | |H|. Therefore Ht ⋊K/H is a Frobenius group with kernel Ht

and complement K/H, where t is p. So |K/H| divides |Ht| − 1. It implies that q4 − q2 + 1 | q4 − q2, but
this is a contradiction. Hence G is not a 2-Frobenius group. 2

Lemma 4.3 The group G is isomorphic to the group D.

Proof: By Lemma 4.1, p is an isolated vertex of Γ(G). Thus t(G) > 1 and G satisfies one of the cases
of Lemma 2.3. Now Lemma 4.2 implies that G is neither a Frobenius group nor a 2-Frobenius group.
Thus only the case (c) of Lemma 2.3 occures. So G has a normal series 1 � H � K � G such that H
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and G/K are π1-groups, K/H is a non-abelian simple group. Since p is an isolated vertex of Γ(G), we
have p | |K/H|. On the other hand, we know by Lemma 2.5, since that 5 does not divide |K/H|. So, by
classification of finite simple groups and table(I), K/H is isomorphic to one of the following groups. 2

Case(1).K/H ̸∼= PSL(2, q′), where q′ ≡ ±2( mod 5). Suppose that K/H ∼= PSL(2, q′). Now,

by [21], k2(PSL(2, q′)) = q±1
2 . On the other hand, we know |PSL(2, q′)| divided |G| as q′(q′2−1)

(2,q′−1) |
q12(q8 + q4 + 1)(q6 − 1)(q2 − 1). First, assume (2, q′ − 1) = 1 and q′ is prime number so we deduce

q′(q′2−1) | q12(q8+q4+1)(q6−1)(q2−1). Now, we consider k2(PSL(2, q′)) | k2(G) so q(q3+1) = q′+1
2 it

follows that q′ = 2q4+2q−1. Since that |PSL(2, q′)| ∤ |G|, which is a contradiction. Now, if (2, q′−1) = 2,

q′ be composite then we deduce q′(q′2−1)
2 | q12(q8+q4+1)(q6−1)(q2−1). Now, we consider q(q3+1) = q′−1

2
it follows that q′ = 2q4 + 2q + 1. Since that |PSL(2, q′)| ∤ |G|, which is a contradiction
Case(2).K/H ≁= PSL(3, q′), where q′ ≡ ±2( mod 5). Suppose that K/H ∼= PSL(3, q′). Now, by [21],

k2(PSL(3, q′)) = q′2−1
(3,q′−1) . On the other hand, we know |PSL(3, q′)| divided |G| as q′3(q′3−1)(q′2−1)

(3,q′−1) |
q12(q8 + q4 + 1)(q6 − 1)(q2 − 1). First, assume (3, q′ − 1) = 1 so we deduce q′3(q′3 − 1)(q′2 − 1) |
q12(q8 + q4 +1)(q6 − 1)(q2 − 1). Now, we consider k2(PSL(3, q′)) | k2(G) so q(q3 +1) = q′2 − 1 it follows
that (q′ − 1)(q′ +1) = q(q3 +1). Now, we know (q′ +1, q′ − 1) = 1 or 2. First, assume (q′ +1, q′ − 1) = 1
so q′ − 1 = q and q′ + 1 = q3 + 1 it follows that q′ = q + 1 , q′ = q3. Since that |PSL(3, q′)| ∤ |G|,
which is a contradiction. For other case, we have a contradiction, similarily. Now, if (3, q′ − 1) = 3 then
q′3(q′3−1)(q′2−1)

3 | q12(q8+ q4+1)(q6−1)(q2−1) on the other hand, we consider q(q3+1) = q′2−1
3 . Hence,

3q(q3 + 1) = (q′ − 1)(q′ + 1) but we know (q′ + 1, q′ − 1) = 1 or 2. So, assume (q′ + 1, q′ − 1) = 1 so
q′ − 1 = 3q and q′ + 1 = q3 + 1 it follows that q′ = 3q + 1 , q′ = q3. Since that |PSL(3, q′)| ∤ |G|, which
is a contradiction. For the other case we have a contradiction, similarily.
Case(3).K/H ̸∼= PSU(3, q′), where q′ ≡ ±2( mod 5). Suppose that K/H ∼= PSU(3, q′). Now, by [21],

k2(PSU(3, q′)) = q′2−q′+1
(3,q′+1) . On the other hand, we know |PSU(3, q′)| divided |G| as q′3(q′3+1)(q′2−1)

(3,q′+1) |
q12(q8 + q4 + 1)(q6 − 1)(q2 − 1). First, assume (3, q′ + 1) = 1 so we deduce q′3(q′3 + 1)(q′2 − 1) |
q12(q8 + q4 + 1)(q6 − 1)(q2 − 1). Now, we consider k2(PSU(3, q′)) | k2(G) so q(q3 + 1) = q′2 − q′ + 1 it

follows that (q − 1)(q3 + q2 + q + 2) = q′−1−
√
5

2
q′−1+

√
5

2 , which is a contradiction. Now, if (3, q′ + 1) = 3

then q′3(q′3+1)(q′2−1)
3 | q12(q8+ q4+1)(q6−1)(q2−1) on the other hand, we consider q(q3+1) = q′2−q′+1

3 .
Hence, 3q(q3 + 1) = q′2 − q′ + 1 which is a contradiction, similarily.
Case(4).K/H ≁= G2(q

′), where q′ ≡ ±2( mod 5). Suppose that K/H ∼= G2(q
′). Now, by [21],

k2(G2(q
′)) = q′2 + q′, where q′ is prime. On the other hand, we know |G2(q

′)| divided |G| as q′6(q′6 −
1)(q′2− 1) | q12(q8+ q4+1)(q6− 1)(q2− 1). Now, we consider k2(G2(q

′)) | k2(G) so q(q3+1) = q′2+ q′ it
follows that q(q3 + 1) = q′(q′ + 1). Since that (q′, q′ + 1) = 1 so q = q′ and q3 + 1 = q′ + 1 it follows that
q′ = q, q′ = q3. Since |G2(q

′)| ∤ |G|, which is a contradiction. Now, if q′ be composite, then we consider
q(q3 + 1) = q′2 − 1 it follows that (q′ − 1)(q′ + 1) = q(q3 + 1). Now, we know (q′ + 1, q′ − 1) = 1 or 2.
First, assume (q′ + 1, q′ − 1) = 1 so q′ − 1 = q and q′ + 1 = q3 + 1 it follows that q′ = q + 1 , q′ = q3.
Since that |G2(q

′)| ∤ |G|, which is a contradiction.
Case(5).K/H ≁=2 G2(q

′), where q′ = 32m+1,m ≥ 1. Suppose that K/H ∼=2 G2(q
′). Now, by [21],

k2(
2G2(q

′)) = q′ − 1. On the other hand, we know |2G2(q
′)| divided |G| as q′3(q′3 + 1)(q′ − 1) |

q12(q8 + q4 + 1)(q6 − 1)(q2 − 1). Now, we consider k2(
2G2(q

′)) | k2(G) so q(q3 + 1) = q′ − 1 it fol-
lows that q4 + q + 1 = q′. Since |2G2(q

′)| ∤ |G|, which is a contradiction.

Case(6)Hence K/H ∼=3 D4(q
′) it follows that |K/H| = |G|. First, if q′ be composite, then we consider

q(q3 + 1) = q′4 − q′2 + 1 it follows that q4 + q = q′4 − q′2 + 1. Soq4 + q − 2 = q′4 − q′2 − 1. Hence,

(q − 1)(q3 + q2 + q + 2) = q′−1−
√
5

2
q′−1+

√
5

2 , which is a contradiction. It follows that q′ must be prime.
On the other hand k2(K/H) | k2(G) as q′(q′3 + 1) = q(q3 + 1) so q = q′. Next, G has a normal series
1�H �K �G so H = 1, then K = G ∼= D. The proof be completed.
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