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Growth of solutions to the coupled nonlinear Klein-Gordon equations with distributed
delay, strong damping and source terms *
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ABSTRACT: In this work, we are concerned for a coupled nonlinear Klein-Gordon equations with distributed
delay and strong damping and source terms, under suitable assumptions we will show the exponential growth
of solutions.
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1. Introduction

In this paper, we consider the following system

t
lug|" uge + m3u — Au — wi Auy + / g(t — s)Au(s)ds
0

+piue —|—/ |2 (o) |ue(x, t — 0)do = fi(u,v), (x,t) € Q xRy,

1

t
|ve|" Vg + m3v — Av — wo Ay + / h(t — s)Av(s)ds
0

+mw+/\Mgmxt—mwzﬁwm,wweax&ﬂ

u(z,t) =0, v(,):O x € 01,

(7 ) fO( ) )7 ( 7)_k0(x7t) (x7t)€QX(O7TQ)7
U(l’, )*uo(m)vut( ):Ul(iﬂ),xEQ,

v(x,0) =wvg(x), v (x,0) =v1 (z), x € Q,

where

Do HO AR O B (1.2

fa(u,v) = ar|u + v?PTD (u + v) + by [v|P.v.[u|P2,

2
and m1, mo, w1, wa, i1, 43,a1,b1 >0, n>0for N =1,2 and N _9 >n>0for N >3, and 7, 7 are the

time delay with 0 < 71 < 79, and us9, pt4 are a L functions, and g, h are a differentiable functions.

It is well known that viscous materials are the opposite of elastic materials which have the capacity to
store and dissipate mechanical energy. As the mechanical properties of these viscous substances are of
great importance when they appear in many applications of other applied sciences.

Physically, the relationship between the stress and strain history in the beam inspired by Boltzmann
theory called viscoelastic damping term, where the kernel of the term memory is the function h see [10].
Numerous results appeared on the existence and long time behavior of solutions. In this direction, see
[10,11,14,13,15,12] and the references therein.
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If n > 0, this type of problem has been studied by many authors. For more depth, here are some
papers that focused on the study of this damping. See for example [6]
In many works on this field, under assumptions of the kernel g. For the problem (1.1), n = 0 and with
w1 # 0, for example in [5] Kafini et al. proved a blow up result for the following problem

o0

Ugp — Au—i—/ g(t — s)Au(s)ds +u; = |[ulP "2, (z,t) € R™ x (0, 00),

o (1.3)
u (JJ,O) = Uo (Z‘) ; Ut (.13,0) =u (Jf) )

where g satisfies fooo g(s)ds < (2p—4)/(2p — 3), initial data was supported with negative energy like that

[ wourdz > 0.

If (w > 0). In [14], Song et al. considered with the following problem

o0

Upt — AU+/ g(t — 8)Au(s)ds — Auy = |[ulP~2u, (x,t) € Q x (0,00),

) (1.4)
w(z,0) =ug (), us (x,0) =u (x).
Under suitable assumptions on g, that there were solutions of (1.4) with initial energy, they showed the
blow up in a finite time. For the same problem (1.4), in [15], Song et al proved that there were solutions
of (1.4) with positive initial energy that blow up in finite time. In [6] the authors considered the following
problem
Uy — Au + fo (s)Au(t — s)ds — e1 Auy + eoug|ug| ™2 = ezululP~2,
u(z,t) =0, zE@Q,t>O (1.5)
u(ac,()) =ug (x), ut (2,0) =uy (), z€Q,

they showed a blow up result if p > m, and established the global existence. For more details see [2,7].

In the case of coupled of equations, in [1], the authors are studied the following system of equations:
Upp — AU+Ut|Ut|m72 fl(u ’U) (1 6)
Vit — Av + ’Ut"l}tr 2 = fQ(U ’U) ’

with nonlinear functions f; and fs satisfying appropriate conditions. Under certain restrictions imposed
on the parameters and the initial data, they obtained numerous results on the existence of weak solutions.
They also showed that any weak solution with negative initial energy blows up for a finite period of time
by using the same techniques as in [4]. And in [3], the authors considered the system:
uge — Au+ (alul® + blv|)ugu ™72 = f1(u,v), (1.7)
v — Av + (a|u]? + bjv[)vs|vd|" 72 = falu,v), '

they stated and proved the blows up in finite time of solution, under some restrictions on the initial data
and (with positive initial energy) for some conditions on the functions f; and fs.

A complement the work of [9], we are working to prove under appropriate assumptions the solution of
problem (1.1) grows exponentially,

2(1)+2)+||V ||2(P+2) 00 (1.8)

hm ||u,5H2pJr2 2(p+2)

In the following, let c,¢; > 0,7 = 1,2, 3, and we prove the exponential growth result under the following

suitable assumptions.
(A1) g,h: Ry — R are a differentiable and decreasing functions such that

oo
g(t) >0 , 1—/ g(s)ds=1>0,
0

h(t) >0 1—/Ooh(s)ds:lg>0. (1.9)
0
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(A2) There exists a constants &1,&2 > 0 such that

Gig(t) , t=0,

g (t) g
Eh(t) , t>0.

h'(t)

IN A

(A3) pa, pig : [11, 2] = R are a L™ functions so that

26 —1
2

26 —1 2
A [ tolde<ps 5>

(

)

>/|m@ww<m S

DN = DN =

2. Main results

In this section, we prove the blow up result of solution of problem (1.1).
First, as in [8], we introduce the new variables

y(x,P» Qat) = ut(x,t - :Qp)v
Z(x7p7 0, t) = Ut(x’t - Qp)v

then, we obtain

{ Qyt(mapa 0, t) +yp(xapa 0, t) = 07
y(x,O, Qat) = ut(xat)7

and

ta(m7p7 0, t) + Zp(x7p7 0, t) = 07
z(z,0,0,t) = ve(x, t).

Let us denote by
¢
gou = / / g(t — 8)|u(t) — u(s)|*dsdzx.
aJo

Therefore, problem (1.1) takes the form:

t
[ue| T wge + m3u — Au — wy Auy + / g(t — s)Au(s)ds
0

T2
U +/ |/J’2(Q)|y(x7 1a 0, t)dQ = fl(uvv)a T e Qat > 07

1
t
[ve] " ves + m3v — Av — wa Ay —|—/ h(t — s)Av(s)ds
T2 0
bavit [ la(@)le(e 1 o) = foluv), wERtzo0,

Qyt(xapv 0, t) + yp(xvpy Q)t) = Oa
QZt(vav 0, t) + Zp(‘r7p7 Qat) = Oa

with initial and boundary conditions

u(z,t) =0, v(z,t) =0 =z €09,

y(@,p,0,0) = fo(z,0p), 2(z,p,0,0)=ko(z,0p),
u(z,0) =up (z), w (x,0) =u (x),
v(x,0) =wvo (x), v (z,0) = vy (),

where
(xapa Q,t) € Qx (071) X (7_177—2) X (0,00)

(1.10)

(1.11)

(2.5)
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Theorem 2.1 Assume (1.9),(1.10), and (1.11) holds. Let

n—2 = (2.6)

4—n
-1l<p<——, n=>3;
p>—1, n=1,02.

Then for any initial data
(an u1, v, V1, f07 kO) S Ha

where
H = HHQ) x L*(Q) x Hy(Q) x L*(Q) x L*(2 x (0,1) x (11, 72))
x L2(Q x (0,1) x (11, 72)),
the problem (2.4) has a unique solution
ue C([0,T]; H),
for some T > 0.

In the next theorem we give the global existence result, its proof based on the potential well depth
method in which the concept of so-called stable set appears, where we show that if we restrict our initial
data in the stable set, then our local solution obtained is global in time, we will make use of arguments
in [13].

Theorem 2.2 Suppose that (1.9),(1.10),(1.11), and (2.6) holds. If ug,vo € W, uy,v1 € H(Q) and
y,2 € L2(Q x (0,1) x (11,72))
bCf 2p p—2
E o<1 2.
(G EO)E <1, (2.7

where C, is the best Poincare’s constant. Then the local solution (u,v,y, z) is global in time.

To achieve our goal, we need the following lemmas.

Lemma 2.1 There ezists a function F(u,v) such that

F(u,v) = m [ufi(u,v) + vfo(u,v)]

1 2(p+2 2
—— ag|u+ v[?®+2 4 2p, luw|PT?| > 0,

where OF OF
% = fl(uﬂv)v % = fg(’dﬂ)),

we take a; = by = 1 for convenience.

Lemma 2.2 [9] There exist two positive constants ¢y and ¢1 such that

o ( 2(p+2) 2(p+2)) “ ( 2(p+2) 2(p+2))
U + |v < F(u,v) < u + |v . 2.8

We define the energy functional

Lemma 2.3 Assume (1.9),(1.10),(1.11), and (2.6) hold, let (u,v,y, z) be a solution of (2.4), then E(t)
18 non-increasing, that is

1 +2 +2) , Miyo M3

B = oy (el + IwllEE) + 5 Il + 5 ol
1 , 1 , 1 1

+SUIVullf + L2l Vol + 5 (g0Vu) + 5 (hoVo)

PR (@) - /Q F(u,v)dr, (2.9)
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satisfies
B < —es{luall7E2 + Nool 72+ ull3 + loll? + / /f|m<g>|y2<x,1,g,t>dgdx
+f [ (@1 00dpsy <o, (2.10)
8
where —
K(y,7) = / / / ol (@ p. 0. 1) + ua(@)] 2 (@ p. 0. 1)} dodpd. (2.11)

Proof: By multiplying (2.4);, (2.4)2 by u;, v¢ and integrating over Q, we get

d 1 +2 b2\, miy oo m3 o L 2
dt Uoys (el 22 + Nl 12) + 5Nl + 20015 + 5l Vul

1 1 1
—|—7l2||Vv||§ + =(goVu) + =(hoVv) — / F(u,v)dz},
2 2 2 o
T2
= el — m3 /Q " / 12(0)ly(z, 1, 0, t)dode
T1

T2
palluell2 — m2 ]2 — /1 o / (@) |=(z. 1, 0, t)dode
¢ T1
1

N —

+5(9'0Vu) = Sg(®)[Vul3 — wi[[ Va3
1 1
+3(HoVe) — Sh(D)|T0l3 — wal| o3 (212)
We obtain (2.10). O

Now we define the functional

1 +2 1 w2 mi o m3 o 1 2
H(t) = -E(t) = *m”utﬂzn - ?H’Utnzw - 7”““2 - 7”””2 - §l1||Vu||2

1 5 1 1 1
*512“V”H2 - i(goVu) - §(h0V’U) - §K(y,z)

2(p+2 2
gyl +ollgis + 2wl
(2.13)
Theorem 2.3 Assume (1.9)-(1.11), and (2.6) hold. Assume further that E(0) <0, and
n+2
2(p+2) = L2 2.14
w+2) - (214)
then the solution of problem (2.4) growth exponentially.
Proof: From (2.9), we have
E(t) < E(0) < 0. (2.15)

Therefore

T2
H'(t) = -E'(t) > C3(|IUtIIZI§+\IvtIIZi§+|IUI\§+/Q/ lu2(0)|y* (2,1, 0,t)dodz

T2
ol + [ [ a0l 1,0, )doda). (216
Q T1
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Hence
W) > e [ [ a0l 10 0dods 0
H'(t) > cd// l2(0)|22 (1, 0, t)dodz > 0, (2.17)
and
0<HO) <EO) < gl + 2l
< ool + 15 (2.18)
We set
Kit) = H()-l—m (u |ut\"ut+v|vt|nvt)dm+%/Q(ulu2+u3v2)dx
+§/Q(w1(Vu)2+wQ(Vv)2)dx. (2.19)

Where ¢ > 0 to be assigned later.
By multiplying (2.4)1,(2.4)2 by u,v and with a derivative of (2.19), we get

K'(t) = H()+ ﬁ (Ilutlli’,ﬁ + el + ull3 + lloll3 ) —e(IVull3 + [Vol3)

+€/Vu/ (t—s)Vu(s dsdx—&—s/Vv/ (t — s)Vu(s)dsdx
—8// lp2(0)luy(x, 1, 0,t dgdm—e// lpa(o)vz(z, 1, 0,t)dodz
T1 T1

2
+a[||u+v\|2 +2Huv||§12]. (2.20)

Using Young’s inequality, we get

e /Q / a(luy(e, 1, o, Odode < {6 ( / i2(0)lde) 2
451//71 \2(0) |y (1, 0, t)dodz}.
(2.21)
S [ Inslolvste Lo tideds < <ol [ lnalo)ido)]ol
QJr T
1 T2
i [ @11, 00 dods)
462 Q T1
(2.22)

and, we have
¢ ¢
6/ g(t—s)ds/ Vu.Vu(s)dzds = 5/ g(t—s)ds/ Vu.(Vu(s) — Vu(t))dzds
0 Q 0 Q
t
+ [ ats)as|vul,
0

v

e [t €
5/ g(s)dsHVuH% — g(gOVu). (2.23)
0
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E/Ot h(t — s)dS/QVv.Vv(s)dmds E/Ot h(t — s)ds/QVv.(Vv(s) — Vo(t))dzds

t
+€/ h(s)dsHVng,
0

v

t
%/O h(s)ds|| V|| — %(hon). (2.24)

We obtain, from (2.20),

€ +2 +2
K(t) = H’@Hm(llmlmﬁ||vt||Z+2+IIUH§+Hvllg)

el =5 [ aavuli+ a3 [ navs)
et [ " alo)do)ul} = | ool
—3 goVu ——/ /T1 |2 (0)|y? (z,1, 0, t)dodx
€ =
—5 (hoVv) / /rl lpa(0)|2%(x, 1, 0, t)dodx
telllu+ vniEZiZ% + 2l|uv| 2. (2.25)
Therefore, using (2.17) and by setting d1, 1 so that, 5103 = g,
and 4(5203 = g, substituting in (2.25), we get
0 2 [0+ Sl + Bl + Dl + olB)

—e[(1 - %/o g(s)ds)]||Vul|3 —e[(1 — %/O h(s)ds)]|| V|2
2;3'%(/:2 |2 (0)|do)||ull3 — %(goVu)

1

—&

1 T2 , e
_5203K(/T1 lua(o)ldo)lv]z — §(h0Vv)

2(p+2 2
tellu+ o503 + 2luvlP13]. (2.26)
For 0 < a < 1, from (2.13)
2(p+2 2 2(p+2 2
ellu+vloE ) + 2uv|Bt3] = eallu+ vl5E15) + 2fluvli3)

+e2(p + 2)(1 — a)H(t)
+e(p+2)(1 — a)(Jluell3 + [lvell3)

e(p+2)(1—a)(1— / o(5)ds)||Vul 2

te(p+2)(1— a)(1 - / h(s)ds) Vo2
0
—e(p+2)(1 - a)(goVu)
—e(p+2)(1 - a)(hoVv)
+e(p+2)(1 —a)K(y, 2) (2.27)
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Substituting in (2.26), we get

K'(t) = [1—enH'(t) +ellp+2)(1—a) + Wllluelly s + oell s + lull3 + [lo]3)

+elp+2)1 =)= [ g = (=5 [ g vuls

—a — ' s)ds) — —1 t S)as v 2
+ellp+20 =)= [ i - 1= 3 [ nea)ve
e (| (@l ~ =5 ([ Ina(@lde)lol

te(p+2)(1— ) K(y,2) +el(p + 2)(1 —a) — %](goVu + hoVv)

+ealllu + w5t t3) + 2luw]213] + e2(p + 2)(1 — a)H(?).
(2.28)
Using Poincaré’s inequality, we obtain
K'(t) > [1—er]H'(t) +el(p+2)(1 = a) + (lluelyis + lloelnds + lull3 + [[v]13)
t
1
+ello+20 -0 1= ([ s@aslp+2(1-a) - 3]
c, (™
e s IVl
k 1
+ellp+20-0) 1= ([ heds)[+2)0 -0 - 3
c , (™
Sy IR
1
+e(p+2)(1 = a)K(y, 2) +¢[(p + 2)(1 — a) = 5](g0Vu + hoVv)
+ecoallullyrty) + vl Ts)]
+e2(p+2)(1 — a)H(2).
(2.29)
In this stage, we take a > 0 small enough so that
ar=(p+2)1—a)—1>0,
and we assume - - o\(1 ) 5
max{/ g(s)d&/ h(s)ds} < (p+2)(1=a) = - , (2.30)
0 0 ) 1) 201 + 1

((p+2)(1-a) -5

then, we choose k so large that

o2 = Ap+2(1-) =1~ [ g@as(o+201-0) =)

5[ sy > o0,
o = (420 -0 -1~ [ s+ 21— 0) - 5)
; )

5[ iy > o
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We fixed x and a, we appoint € small enough so that
ag=1—¢erk >0,

and, from (2.19)

1 2(p+2) p+2
K@) < W[HU + 0ll5(p12) + 2lluvllyia),
C1 2(p+2) 2(p+2)
< WH|UH2(Z+2) + ||U||2(£+2)]‘

Thus, for some 8 > 0, estimate (2.29) becomes

2 2
K'(t) = B + lluelyis + lloel s + lull3 + oll3 + [1Val3 + [Voll3

+(goVu) + (hOV’U) + K(Z,h Z)

2(p+2 2(p+2
Hlull 305 + ull5E 50},

By (2.8), for some 31 > 0, we obtain

+2 +2
K'(t) > Bu{H() + uellyis + lvellyds + lullz + [[vll3 + [Vull + Vol

+(goVu) + (hoVv) + K (y, 2)

2(p+2 2
Hllu+ vll5E13) + 2wl B3]},

and
K(t) > K(0) >0, t>0.

Next, using Holder’s and Young’s inequalities, we have

Jhul?u+ ot vde < € [l + el

02y + loelliya]

1 1
where — + — = 1.
w0
We take p = (n+ 2), to get

o=t o).

(m+1) —
Subsequently, by using (2.14) and the algebraic inequality

1
B <(B+1)< <1+b) (B+b), VB> 0,0<(=<1,b>0,

we obtain
n+2
Y < K (e + o).
n+2
s < K (RIE2E v H @), vezo.
Therefore

p+2) n+2

’/ﬂ(u|ut|" w vl v)d 2(p+2)

2(p+2 2(p+2 2 2
< exs {503 + I050ES) + el 755 + o753

}

2
2

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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Hence, using Young’s and Poincaré’s inequalities, from (2.19) we have

g
K(t) = (H 4+ ( |Ut|nut+v|vt\nvt)d$+*/(M1u2+ugv2)d$
n+1 2 Ja

+%/(w1Vu2+w2Vv2)dx),
Q

< C{H(t)+I/(uIUtI"UtJrvlvtl"vt)dxl+||uH2+HVUI|2
Q
+lvllz + [[Voll2},

2 2
< CHE) + lluellnia + losllnts + lull3 + lloll3 + 1 Vull3 + IV,

2 2
< C[HE) + lluellnis + loellnts + lul3 + oll3 + [Vul3 + [1Voll3 + (go0Vu)

(p+2 2(p+2
+(hoVv) + [|ul5E ) + [vllo ). (2.39)

For some ¢ > 0. From inequalities (2.32) and (2.39) we obtain the differential inequality

K'(t) > MC(t), (2.40)
where A > 0, depending only on 5 and c.
A simple integration of (2.40), we obtain
K(t) > K(0)e™) vt > 0. (2.41)
From (2.19) and (2.31), we have
C1 2(p+2 2(p+2
K(t) < mwmQM + [[olaEta). (2.42)
By (2.41) and (2.42), we have
2(p+2 2(p+2
505 + wll5015) > CeXD vt > 0.
Therefore, we conclude that the solution is growths exponentially. This completes the proof. O
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