(3s.) v. 2025 (43) : 1-11. ISSN-0037-8712 doi:10.5269/bspm.76311

α_i -properties, selection principles and the ideals

Sumit Singh*, Geetanjali Raiya and Manoj Kumar Rana

ABSTRACT: Kočinac [8] introduced several α_i -properties as a selection principles and there were motivated by Arhangel'skii [1] α_i -local properties. In this paper, we identify some classes \mathcal{A} and \mathcal{B} of open covers in topological spaces, topological groups, hyperspaces and abstract boundedness for which the Kočinac $\alpha_i(\mathcal{A}, \mathcal{B})$ -properties are closely related and often equivalent to $S_1(\mathcal{A}, \mathcal{B})$, using the notion of an ideal. Further we introduce the ideal form of Hurewicz-bounded topological group and characterize it using these α_i -properties.

Key Words: Selection principles, α_i -properties, γ -cover, ω -cover, topological group, hyperspace, boundedness, ideal, topological space.

Contents

1	Introduction	1
2	Preliminaries	2
3	Open covers and α_i -properties using ideals	3
4	$\mathcal{I} ext{-Hurewicz}$ bounded topological groups	5
5	Hyperspace and α_i -properties using ideals	7
6	Abstract boundedness and α_i -properties using ideals	8

1. Introduction

In 1972, Arhangel'skii [1] introduced the α_i -properties in the following way. A countable collection \mathbb{A} of convergent sequences of X is said to be a sheaf in X if all members of \mathbb{A} converge to the same point of X, which is said to be the vertex of the sheaf \mathbb{A} . Let \mathbb{A} be a sheaf in X with vertex $x \in X$. Then there exists a sequence B converging to x such that:

- (α_1) : if $A \in \mathbb{A}$, then $|A \setminus B| < \aleph_0$, where, for a set C, |C| denotes the cardinality of C,
- (α_2) : if $A \in \mathbb{A}$, then $A \cap B$ is an infinite subsequence of A and B,
- (α_3) : $|\{A \in \mathbb{A}, A \cap B \text{ is an infinite subsequence of } A \text{ and } B\}| = \aleph_0$,
- (α_4) : $|\{A \in \mathbb{A}, A \cap B \neq \emptyset\}| = \aleph_0$.

Motivated by these α_i -properties, Kočinac [8] introduced following α_i -properties in the form of selection principles.

Let \mathcal{A} and \mathcal{B} be sets of families of subsets of an infinite set X. The symbol $\alpha_i(\mathcal{A}, \mathcal{B})$, i = 1, 2, 3, 4, denotes the following selection principles:

For each sequence $(A_n : n \in \mathbb{N})$ of infinite elements of \mathcal{A} there is an element $B \in \mathcal{B}$ such that:

- 1. $\alpha_1(\mathcal{A}, \mathcal{B})$: for each $n \in \mathbb{N}$ the set $A_n \setminus B$ is finite;
- 2. $\alpha_2(\mathcal{A}, \mathcal{B})$: for each $n \in \mathbb{N}$ the set $A_n \cap B$ is infinite;
- 3. $\alpha_3(\mathcal{A}, \mathcal{B})$: for infinitely many $n \in \mathbb{N}$ the set $A_n \cap B$ is infinite;
- 4. $\alpha_4(\mathcal{A}, \mathcal{B})$: for infinitely many $n \in \mathbb{N}$ the set $A_n \cap B$ is nonempty.

Submitted January 29, 2020. Published April 14, 2025 2010 Mathematics Subject Classification: 54D20, 54B20, 54D55, 54H11.

^{*} Corresponding author

The $S_1(\mathcal{A}, \mathcal{B})$ [18] denotes the following selection principle:

 $S_1(\mathcal{A}, \mathcal{B})$: For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $b_n \in A_n$ and $\{b_n : n \in \mathbb{N}\} \in \mathcal{B}$.

The following implications directly follows from the definitions:

 $\alpha_1(\mathcal{A},\mathcal{B}) \Rightarrow \alpha_2(\mathcal{A},\mathcal{B}) \Rightarrow \alpha_3(\mathcal{A},\mathcal{B}) \Rightarrow \alpha_4(\mathcal{A},\mathcal{B}) \text{ and } S_1(\mathcal{A},\mathcal{B}) \Rightarrow \alpha_4(\mathcal{A},\mathcal{B}).$

Tsaban [29] investigated the Kočinac α_i -properties and made some observations on these properties. Recently, the investigation of relative selection principles was commenced by Kočinac, Konca and Singh ([9,21,22,23,24,25,26,27,28]). Kočinac identified some classes \mathcal{A} and \mathcal{B} for which $\alpha_i(\mathcal{A}, \mathcal{B})$ -properties are equivalent to $S_1(\mathcal{A}, \mathcal{B})$ in topological spaces, topological groups and hyperspaces. The purpose of this paper is to identify some more classes \mathcal{A} and \mathcal{B} for which these $\alpha_i(\mathcal{A}, \mathcal{B})$ -properties are closely related and often equivalent to $S_1(\mathcal{A}, \mathcal{B})$, using the notion of an ideal.

The paper is organized so that introduction is followed by six sections. In Section-2, we familiarize the reader with the basic notions of different types of open covers and their analogues open covers using ideals. In Section-3, we give several characterization of α_i -properties in terms $S_1(\mathcal{A}, \mathcal{B})$ selection principle and the game $G_1(\mathcal{A}, \mathcal{B})$. Briefly we find some classes \mathcal{A} and \mathcal{B} of open covers in topological spaces such that the α_i -properties, $S_1(\mathcal{A}, \mathcal{B})$ and the game $G_1(\mathcal{A}, \mathcal{B})$ becomes equivalent. In Section-4, we define the ideal version of Hurewicz bounded topological group and characterize it these α_i -properties. Further several classes of \mathcal{A} and \mathcal{B} in topological group also find such that α_i -properties and $S_1(\mathcal{A}, \mathcal{B})$ becomes equivalent. In Section-5, it is shown that $(\mathbb{K}(X), \mathsf{V}^+)$ satisfies $\alpha_i(\Omega, \mathcal{I} - \Gamma)$, i = 2, 3, 4 if and only if $(\mathbb{K}(X), \mathsf{V}^+)$ satisfies $S_1(\Omega, \mathcal{I} - \Gamma)$ if and only if X satisfies $S_1(\mathcal{K}, \mathcal{I} - \Gamma_k)$ also the same analogue result is shown for $(\mathbb{F}(X), \mathsf{V}^+)$. In Section-6 we find some classes \mathcal{A} and \mathcal{B} of open covers in abstract boundedness spaces such that the α_i -properties, $S_1(\mathcal{A}, \mathcal{B})$ and the game $G_1(\mathcal{A}, \mathcal{B})$ becomes equivalent.

2. Preliminaries

Throughout the paper X is a Hausdorff topological space, \mathbb{N} denotes the set of all positive integers and by an open cover we mean the countable open cover unless otherwise stated.

There is an infinite long game corresponding to $S_1(\mathcal{A}, \mathcal{B})$ denoted by $G_1(\mathcal{A}, \mathcal{B})$ [18]. Two Players, ONE and TWO, who play a round for each natural number n. In the n-th round ONE chooses a set A_n from \mathcal{A} and TWO responds by choosing an element $b_n \in A_n$. TWO wins the play $(A_1, b_1, ..., A_n, b_n, ...)$ if $(b_n : n \in \mathbb{N}) \in \mathcal{B}$; otherwise ONE wins.

It can easily be seen that if ONE does not have a winning strategy in the game $G_1(\mathcal{A}, \mathcal{B})$, then the corresponding selection hypothesis $S_1(\mathcal{A}, \mathcal{B})$ is true. However the converse implication is not always true (see [8]).

In topological spaces, various special families of open covers have been studied in the literature in relations of selection principles, We refer the interested reader to the survey papers [19,10,30]. We now recall some classes of open covers which we will use through out the paper.

An open cover \mathcal{U} of a space X is called an ω -cover [6] (k-cover) if every finite (compact) subset of X is contained in a member of \mathcal{U} and X is not a member of \mathcal{U} . An open cover \mathcal{U} of a space X is called an γ -cover [6] if \mathcal{U} is infinite and each $x \in X$ belongs to all but finitely many $U \in \mathcal{U}$. An open cover \mathcal{U} of a space X is called an γ_k -cover if \mathcal{U} is infinite and each compact subset of X is contained in all but finitely many $U \in \mathcal{U}$ and X is not a member of \mathcal{U} .

A family \mathcal{I} of subsets of a non-empty set Y is said to be an ideal in Y if (i) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$, $B \subset A$ implies $B \in \mathcal{I}$. An ideal is said to be admissible ideal or free ideal of Y if $\{y\} \in \mathcal{I}$ for each $y \in Y$. If \mathcal{I} is a proper ideal in Y, then the family of sets $\mathcal{F}(\mathcal{I}) = \{M \subset Y : \text{there exists } A \in \mathcal{I} : M = Y \setminus A\}$ is a filter in Y. Throughout the paper \mathcal{I} will stand for proper admissible ideal of \mathbb{N} . We denote the ideal of all finite subsets of \mathbb{N} by \mathcal{I}_{fin} .

Now we consider the following covers defined by Das et. al [4,5] using the ideals of \mathbb{N} . A countable open cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ of a space X is said to be an $\mathcal{I} - \gamma$ -cover [4] if for each $x \in X$ the set $\{n \in \mathbb{N} : x \notin U_n\} \in \mathcal{I}$. A countable open cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ of a space X is said to be an $\mathcal{I} - \gamma_k$ -cover [5] if $X \notin \mathcal{U}$ and for each compact subset C of X, the set $\{n \in \mathbb{N} : C \nsubseteq U_n\} \in \mathcal{I}$. An open cover \mathcal{U} of a X is said to be \mathcal{I} -groupable [4] (\mathcal{I} - ω -groupable, \mathcal{I} -k-groupable) if it can be expressed in the form $\mathcal{U} = \bigcup_{n \in \mathbb{N}} \mathcal{U}_n$, where \mathcal{U}_n 's are finite, pairwise disjoint and for each $x \in X$ (any finite $F \subset X$, any compact $K \subset X$), $\{n \in \mathbb{N} : x \notin \mathcal{U}_n\} \in \mathcal{I}$ ($\{n \in \mathbb{N} : F \nsubseteq \mathcal{U}_n\} \in \mathcal{I}$, $\{n \in \mathbb{N} : K \nsubseteq \mathcal{U}_n\} \in \mathcal{I}$). When \mathcal{I}

is an admissible ideal, every γ -cover of X is $\mathcal{I} - \gamma$ -cover and every γ_k -cover of X is $\mathcal{I} - \gamma_k$ -cover but the converse is not true (see [Example 2.1, [4]]).

A subset \mathcal{V} of a cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ of a space X is \mathcal{I} -dense [4] in \mathcal{U} if the set $M = \{m_1 < m_2 < m_3 < m_{\cdots}\}$ of indices of elements from \mathcal{V} belongs to $F(\mathcal{I})$ and further if $f : \mathbb{N} \to M$ be the bijection given by $f(i) = m_i$, then $f(A) \in \mathcal{I}$ if and only if $A \in \mathcal{I}$.

Throughout the paper each infinite subset of $\mathcal{I} - \gamma$ -cover and $\mathcal{I} - \gamma_k$ -cover are taken to be \mathcal{I} -dense. Since every \mathcal{I} -dense subset of $\mathcal{I} - \gamma$ -cover of X is $\mathcal{I} - \gamma$ -cover of X (see [Lemma 2.2, [4]]) also every \mathcal{I} -dense subset of $\mathcal{I} - \gamma_k$ -cover of X is $\mathcal{I} - \gamma_k$ -cover of X (see Lemma 4.1, [5]). Thus throughout the paper it is clear that each infinite subset of $\mathcal{I} - \gamma$ -cover and $\mathcal{I} - \gamma_k$ -cover are $\mathcal{I} - \gamma$ -cover and $\mathcal{I} - \gamma_k$ -cover respectively.

We use the following notations:

- 1. \mathcal{O} denote the collection of open covers of X;
- 2. Ω denote the collection of ω -covers of X;
- 3. \mathcal{K} denote the collection of k-covers of X:
- 4. Γ denote the collection of γ -covers of X;
- 5. Γ_k denote the collection of γ_k -covers of X;
- 6. $\mathcal{I} \Gamma$ denote the collection of $\mathcal{I} \gamma$ -covers of X;
- 7. $\mathcal{I} \Gamma_k$ denote the collection of $\mathcal{I} \gamma_k$ -covers of X;
- 8. $\mathcal{O}^{\mathcal{I}-gp}$ denote the collection of \mathcal{I} groupable-covers of X.

3. Open covers and α_i -properties using ideals

In this section we identify some classes \mathcal{A} and \mathcal{B} for which these $\alpha_i(\mathcal{A}, \mathcal{B})$ -properties, i=2, 3, 4, are equivalent to $S_1(\mathcal{A}, \mathcal{B})$ and $G_1(\mathcal{A}, \mathcal{B})$ using the ideal notions in topological spaces.

Theorem 3.1 For a space X the following statements are equivalent:

- 1. X satisfies $\alpha_2(\Omega, \mathcal{I} \Gamma)$;
- 2. X satisfies $\alpha_3(\Omega, \mathcal{I} \Gamma)$:
- 3. X satisfies $\alpha_4(\Omega, \mathcal{I} \Gamma)$;
- 4. X satisfies $S_1(\Omega, \mathcal{I} \Gamma)$;
- 5. ONE has no winning strategy in the game $G_1(\Omega, \mathcal{I} \Gamma)$ on X.

Proof: (3) \Rightarrow (4). Let $(\mathcal{U}_n: n \in \mathbb{N})$ be a sequence of ω -covers of X. Assume that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m}: m \in \mathbb{N}\}$. Define $\mathcal{V}_n = \{U_{1,m_1} \cap U_{2,m_2}... \cap U_{n,m_n}: n < m_1 < m_2 < ... < m_n, U_{i,m_i} \in \mathcal{U}_i, i \leq n\} \setminus \{\phi\}$. Then for each $n \in \mathbb{N}$, \mathcal{V}_n is a ω -cover of X. Since \mathcal{I} -dense subset of $\mathcal{I} - \gamma$ -cover is $\mathcal{I} - \gamma$ -cover (see [4]) and by (3), there is an increasing sequence $\{n_1 < n_2 < ...\}$ in \mathbb{N} such that $\mathcal{V} = \{V_{n_i}: i \in \mathbb{N}\}$ is a $\mathcal{I} - \gamma$ -cover of X and for each $i \in \mathbb{N}$, $V_{n_i} \in \mathcal{V}_{n_i}$. Let for each $i \in \mathbb{N}$, $V_{n_{i+1}} = U_{1,m_1} \cap U_{2,m_2}... \cap U_{n_{i+1},m_{n_{i+1}}}$, $U_{j,m_j} \in \mathcal{U}_j$, $j \leq n_{i+1}$. Let $n_0 = 0$. For each $i \geq 0$, each $n \in \mathbb{N}$, $n_i \in \mathbb{N}$, $n_i \in \mathcal{V}_n$ and the set $\{O_n: n \in \mathbb{N}\}$ is a $\mathcal{I} - \gamma$ -cover of X. So X satisfies $S_1(\Omega, \mathcal{I} - \Gamma)$.

 $(4) \Rightarrow (5)$. Consider the following strategy σ for ONE in $G_1(\Omega, \mathcal{I} - \Gamma)$. Let in the first round ONE chooses $\sigma(\phi) = \{U_{(1)}, U_{(2)}, ..., U_{(n)}, ...\}$, a ω -cover of X. Suppose for each finite sequence t of natural numbers of length $\leq m$, U_t has been defined. Define now $\{U_{(n_1,n_2,...,n_m,k)}: k \in \mathbb{N}\}$ as the set $\sigma(U_{(n_1)}, U_{(n_1,n_2)}, ..., U_{(n_1,n_2,...,n_m)}) \setminus \{U_{(n_1)}, U_{(n_1,n_2)}, ..., U_{(n_1,n_2,...,n_m)}\}$. Clearly for each finite sequence t of natural numbers, the set $\{U_{(t,n)}: n \in \mathbb{N}\}$ is a ω -cover of X. By (4) for each t choose $n_t \in \mathbb{N}$ such that $\{U_{(t,n_t)}: t \text{ is a finite sequence of natural numbers}\}$ is an $\mathcal{I} - \gamma$ -cover of X. Define inductively the sequence

 $n_1 = n_{\phi}, n_{k+1} = n_{(n_1, n_2, ..., n_k)}$ for $k \ge 1$. Since every infinite subset of $\mathcal{I} - \gamma$ cover is \mathcal{I} -dense and \mathcal{I} -dense subset of $\mathcal{I} - \gamma$ -cover is $\mathcal{I} - \gamma$ -cover (see [4]). Thus the sequence $U_{(n_1)}, U_{(n_1, n_2)}, ..., U_{(n_1, n_2, ..., n_k)}, ...$ of moves of TWO is actually a $\mathcal{I} - \gamma$ -cover of X which shows that σ is not a wining strategy for ONE in the game $G_1(\Omega, \mathcal{I} - \Gamma)$.

(5) \Rightarrow (1). Let $(\mathcal{U}_n:n\in\mathbb{N})$ be a sequence of ω -cover of X and let for each $n\in\mathbb{N}$, $\mathcal{U}_n=\{U_{n,m}:m\in\mathbb{N}\}$. From each \mathcal{U}_n form a sequence of ω -covers of X in accordance with the strategy σ for ONE defined in the following way: ONE'S first move is $\sigma(\phi)=\mathcal{U}_1$. Let TWO now chooses a member $U_{1,m_{i_1}}\in\mathcal{U}_1$. Then ONE chooses the ω -cover $\mathcal{V}(1,m_{i_1})=\{U_{1,m}\cap U_{2,m}:m\geq m_{i_1}\}$ and plays $\sigma(U_{1,m_{i_1}})=\mathcal{V}(1,m_{i_1})$. If TWO now takes a set $U_{1,m_{i_2}}\cap U_{2,m_{i_2}}\in\mathcal{V}(1,m_{i_1})$ then ONE plays $\sigma(U_{1,m_{i_1}},U_{2,m_{i_2}})=\mathcal{V}(2,m_{i_2})=\{U_{1,m}\cap U_{2,m}\cap U_{3,m}:m\geq m_{i_2}\}$, which is still ω -covers of X. TWO then chooses a set $U_{1,m_{i_3}}\cap U_{2,m_{i_3}}\cap U_{3,m_{i_3}}\in\sigma(U_{1,m_{i_1}},U_{2,m_{i_2}})$ and so on. ONE and TWO proceed in this way for all $n\geq 2$. Since σ is not a winning strategy for ONE so there exists a σ -play:

 $\sigma(\phi), U_{1,m_{i_1}}; \sigma(U_{1,m_{i_1}}), U_{1,m_{i_2}} \cap U_{2,m_{i_2}}; \sigma(U_{1,m_{i_1}}, U_{2,m_{i_2}}), U_{1,m_{i_3}} \cap U_{2,m_{i_3}} \cap U_{3,m_{i_3}}; \dots$ lost by ONE. In other words, TWO's moves $U_{1,m_{i_1}}, U_{1,m_{i_2}} \cap U_{2,m_{i_2}}, U_{1,m_{i_3}} \cap U_{2,m_{i_3}} \cap U_{3,m_{i_3}}; \dots$ form a sequence which forms a $\mathcal{I} - \gamma$ -cover of X. Subsequently the sequence $U_{1,m_{i_1}}, U_{1,m_{i_2}}, U_{2,m_{i_2}}, U_{1,m_{i_3}}, U_{2,m_{i_3}}, U_{3,m_{i_3}}; \dots$ forms a $\mathcal{I} - \gamma$ -cover of X and obviously it contains infinitely many element from each \mathcal{U}_n , which shows that (1) holds.

On the lines of preceding theorem, we can prove the following two theorems.

Theorem 3.2 For a non-compact space X the following statements are equivalent:

- 1. X satisfies $\alpha_2(\mathcal{K}, \mathcal{I} \Gamma)$;
- 2. X satisfies $\alpha_3(\mathcal{K}, \mathcal{I} \Gamma)$;
- 3. X satisfies $\alpha_4(\mathcal{K}, \mathcal{I} \Gamma)$;
- 4. X satisfies $S_1(\mathcal{K}, \mathcal{I} \Gamma)$;
- 5. ONE has no winning strategy in the game $G_1(\mathcal{K}, \mathcal{I} \Gamma)$ on X.

Theorem 3.3 For a non-compact space X the following statements are equivalent:

- 1. X satisfies $\alpha_2(\mathcal{K}, \mathcal{I} \Gamma_k)$;
- 2. X satisfies $\alpha_3(\mathcal{K}, \mathcal{I} \Gamma_k)$;
- 3. X satisfies $\alpha_4(\mathcal{K}, \mathcal{I} \Gamma_k)$;
- 4. X satisfies $S_1(\mathcal{K}, \mathcal{I} \Gamma_k)$;
- 5. ONE has no winning strategy in the game $G_1(\mathcal{K}, \mathcal{I} \Gamma_k)$ on X.

We also have following result.

Theorem 3.4 For a space X and $\mathcal{B} \in \{\mathcal{I} - \Gamma, \mathcal{I} - \Gamma_k\}$ the following statements are equivalent:

- 1. X satisfies $\alpha_2(\Gamma_k, \mathcal{B})$;
- 2. X satisfies $\alpha_3(\Gamma_k, \mathcal{B})$;
- 3. X satisfies $\alpha_4(\Gamma_k, \mathcal{B})$;
- 4. X satisfies $S_1(\Gamma_k, \mathcal{B})$.

Proof: (3) \Rightarrow (4). Consider the sequence $(\mathcal{U}_n:n\in\mathbb{N})$ of γ_k -covers of X. Let $\mathcal{U}_n=\{U_{n,m}:m\in\mathbb{N}\}$. For all $n,m\in\mathbb{N}$ define $V_{n,m}=U_{1,m}\cap U_{2,m}\cap\ldots\cap U_{n,m}$. Then for each $n\in\mathbb{N}$, the set $\mathcal{V}_n=\{V_{n,m}:m\in\mathbb{N}\}$ is a γ_k -covers of X, since each \mathcal{U}_n is a γ_k -cover of X. By (3) there is an increasing sequence $n_1< n_2<\ldots$ in \mathbb{N} and a cover $\mathcal{V}=\{V_{n_i,m_i}:i\in\mathbb{N}\}\in\mathcal{B}$ such that for each $i\in\mathbb{N}$, $V_{n_i,m_i}\in\mathcal{V}_{n_i}$. Put $n_0=0$. For each $i\geq 0$, each j with $n_i< j\leq n_{i+1}$ and each $V_{n_{i+1},m_{i+1}}=U_{1,m_{i+1}}\cap\ldots\cap U_{n_{i+1},m_{i+1}}$, put $H_j=U_{j,m_{i+1}}$. For each $j\in\mathbb{N}$, $H_j\in\mathcal{U}_j$ and the set $\mathcal{H}=\{H_j:j\in\mathbb{N}\}$ is in \mathcal{B} , since \mathcal{H} is refined by \mathcal{V} which is in \mathcal{B} . So, X satisfies $S_1(\Gamma_k,\mathcal{B})$.

 $(4) \Rightarrow (1)$. Consider the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of γ_k -covers of X. Let $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$. Choose an increasing sequence $k_1 < k_2 < ... < k_p$. of positive integers and for each n and each k_i consider $\mathcal{V}(n, k_i) = \{U_{n,m} : m \geq k_i\}$. Then for each $n, i \in \mathbb{N}$, $\mathcal{V}(n, k_i)$ is a γ_k -covers of X. Apply (4) to the sequence $(\mathcal{V}(n, k_i) : n, i \in \mathbb{N})$, there is a sequence $(V_{n,k_i} : n, i \in \mathbb{N})$ such that for each $(n, i) \in \mathbb{N} \times \mathbb{N}$, $V_{n,k_i} \in \mathcal{V}(n,k_i)$ and the set $\mathcal{W} = \{V_{n,k_i} : n, i \in \mathbb{N}\} \in \mathcal{B}$. Hence the X satisfies $\alpha_2(\Gamma_k,\mathcal{B})$, since \mathcal{W} is chosen in such a way that for each $n \in \mathbb{N}$, $\mathcal{U}_n \cap \mathcal{W}$ is infinite.

In a similar way as Theorem 3.4, we can prove the following theorem.

Theorem 3.5 For a space X the following statements are equivalent:

```
    X satisfies α<sub>2</sub>(Γ, I – Γ);
    X satisfies α<sub>3</sub>(Γ, I – Γ);
    X satisfies α<sub>4</sub>(Γ, I – Γ);
    X satisfies S<sub>1</sub>(Γ, I – Γ).
```

4. *I*-Hurewicz bounded topological groups

Now we shall present the ideal version of certain covers in topological groups using the α_i -properties. For instance we introduce the ideal version of Hurewicz-bounded topological group called \mathcal{I} -Hurewicz-bounded topological group and characterize it in the form of α_i -properties. Let $\mathbb{F}(X)$ and $\mathbb{K}(X)$ stand for the class of nonempty finite sets and compact sets of X, respectively.

Throughout this section $(G, *, \tau)$ or G denotes the topological group with the identity element e. Let \mathcal{B}_e be a local base at e. For each $U \in \mathcal{B}_e$ with $U \neq G$ define

```
\begin{split} o(U) &= \{x * U : x \in G\} \\ \mathcal{O}(e) &= \{o(U) : U \in \mathcal{B}_e\} \\ \omega(U) &= \{F * U : F \in \mathbb{F}(G)\} \\ \Omega(e) &= \{\omega(U) : U \in \mathcal{B}_e \text{ and there is no } F \in \mathbb{F}(G) \text{ with } F * U = G\} \\ k(U) &= \{K * U : K \in \mathbb{K}(G)\} \\ \mathcal{K}(e) &= \{k(U) : U \in \mathcal{B}_e \text{ and there is no } K \in \mathbb{K}(G) \text{ with } K * U = G\} \\ \text{It is clear from the definitions, } \mathcal{O}(e) \subset \mathcal{O}; \ \Omega(e) \subset \Omega; \ \mathcal{K}(e) \subset \mathcal{K}. \end{split}
```

In [2], Hurewicz-bounded topological groups have been studied. A topological group G is Hurewicz-bounded if for each sequence $(U_n : n \in \mathbb{N})$ of open neighborhoods of e, there is a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of G such that for each $g \in G$, $g \in F_n * U_n$ for all but finitely many n. Equivalently, G is Hurewicz-bounded if it satisfies the selection principle $S_1(\Omega(e), \Gamma)$.

Now we define ideal version of a Hurewicz-bounded topological group (for the related study see [20,31]).

Definition 4.1 A topological group G is said to be \mathcal{I} -Hurewicz-bounded (in short, $\mathcal{I}HB$) if for each sequence $(U_n : n \in \mathbb{N})$ of open neighborhoods of e, there is a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of G such that for each $g \in G$, $\{n \in \mathbb{N} : g \notin F_n * U_n\} \in \mathcal{I}$. Equivalently, G is said to be $\mathcal{I}HB$ if it satisfies the selection principle $S_1(\Omega(e), \mathcal{I} - \Gamma)$.

Theorem 4.1 For a topological group G the following statements are equivalent:

```
1. G satisfies \alpha_2(\Omega(e), \mathcal{I} - \Gamma);
```

```
2. G satisfies \alpha_3(\Omega(e), \mathcal{I} - \Gamma);
```

- 3. G satisfies $\alpha_4(\Omega(e), \mathcal{I} \Gamma)$;
- 4. G satisfies $S_1(\Omega(e), \mathcal{I} \Gamma)$;
- 5. G satisfies $S_1(\mathcal{K}(e), \mathcal{I} \Gamma)$.

Proof: Since $(1) \Rightarrow (2) \Rightarrow (3)$, $(4) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ are obvious and $(3) \Rightarrow (1)$ can similarly prove as the proof of $(3) \Rightarrow (4)$. Thus we only prove $(3) \Rightarrow (4)$ and $(5) \Rightarrow (4)$.

- $(3)\Rightarrow (4)$. Consider the sequence $(U_n:n\in\mathbb{N})$ of elements of \mathcal{B}_e . For each $n\in\mathbb{N}$, let $V_n=U_1\cap U_2\cap\ldots\cap U_n$ be a member of \mathcal{B}_e . Apply (3) to the sequence $(V_n:n\in\mathbb{N})$, there is a sequence $n_1< n_2<\ldots$ in \mathbb{N} and finite sets $F_{n_i}\subset G,\ i\in\mathbb{N}$, so that $\{F_{n_i}*V_{n_i}:n\in\mathbb{N}\}$ is a $\mathcal{I}-\gamma$ cover of G. If $n_0=0$, then for each positive integer n with $n_{i-1}< n\le n_i,\ i\in\mathbb{N}$, put $F_n=F_{n_i}$ and U_n to be n-th component in the representation $U_1\cap U_2\cap\ldots\cap U_{n_i}$ of V_{n_i} . Evidently, $\{F_n*U_n:n\in\mathbb{N}\}$ is a $\mathcal{I}-\gamma$ cover of G. Thus the sequence $(F_n:n\in\mathbb{N})$ witnesses for $(U_n:n\in\mathbb{N})$ that G satisfies $S_1(\Omega(e),\mathcal{I}-\Gamma)$.
- $(5) \Rightarrow (4)$. Consider the sequence $(U_n : n \in \mathbb{N})$ of elements of \mathcal{B}_e . For each $n \in \mathbb{N}$, pick $V_n \in \mathcal{B}_e$ so that $V_n^2 \subset U_n$. Apply (5) to the sequence $(V_n : n \in \mathbb{N})$, there is a sequence $(K_n : n \in \mathbb{N})$ of compact subsets of G such that $\{K_n * V_n : n \in \mathbb{N}\}$ is a $\mathcal{I} \gamma$ cover of G. Now for each $n \in \mathbb{N}$, pick a finite set F_n in G such that $K_n \subset F_n * V_n$. Then for each $n, K_n * V_n \subset (F_n * V_n) * V_n \subset F_n * U_n$ and it concludes that $\{F_n * U_n : n \in \mathbb{N}\}$ is a $\mathcal{I} \gamma$ cover of G.

The proof of following theorem is similar to Theorem 4.1, thus omitted.

Theorem 4.2 For a topological group G the following statements are equivalent:

```
1. G satisfies \alpha_2(\Omega(e), \mathcal{I} - \Gamma_k);
```

- 2. G satisfies $\alpha_3(\Omega(e), \mathcal{I} \Gamma_k)$;
- 3. G satisfies $\alpha_4(\Omega(e), \mathcal{I} \Gamma_k)$;
- 4. G satisfies $S_1(\Omega(e), \mathcal{I} \Gamma_k)$;
- 5. G satisfies $S_1(\mathcal{K}(e), \mathcal{I} \Gamma_k)$.

Now we prove some more characterization on $\mathcal{I}HB$ using the $S_1(\mathcal{A},\mathcal{B})$ selection principle. Let G and H be topological space with H a subspace of G. We shall use the following notion in our next results.

- 1. \mathcal{O}_G : The collection of open covers of G.
- 2. \mathcal{O}_{GH} : The collection covers of H by sets open in G.

Theorem 4.3 Let H be a subgroup of topological group G. Then following are equivalent:

- 1. $S_1(\Omega_G(e), \mathcal{O}_{GH}^{\mathcal{I}-gp});$
- 2. $S_1(\Omega_H(e), \mathcal{O}_H^{\mathcal{I}-gp}).$

Proof: We only prove $(1) \Rightarrow (2)$. Let $(\omega(U_n): n \in \mathbb{N})$ be a sequence in $\Omega_H(e)$. Since each $U_n \in \mathcal{B}_e$ (in H). Choose for each $n \in \mathbb{N}$, $T_n \in \mathcal{B}_e$ (in G) such that $U_n = T_n \cap H$. Now choose $S_n \in \mathcal{B}_e$ (in G) such that $S_n^{-1} * S_n \subset T_n$. Apply (1) to the sequence $(\omega(S_n): n \in \mathbb{N})$ we get for each n a finite set $F_n \subset G$ such that for each element $x \in H$ there is an $\{n \in \mathbb{N}: x \notin F_n * S_n\} \in \mathcal{I}$. So $\{n \in \mathbb{N}: x \in F_n * S_n\} \in \mathcal{F}(\mathcal{I})$. For each n, and for each $f \in F_n$, choose a $h_f \in H$ as $h_f \in H \cap f * S_n$ if nonempty, $h_f = e$ otherwise. Then put $H_n = \{h_f : f \in F_n\}$, a finite subset of H. For each n, $H_n * U_n \in \omega(U_n) \in \Omega_H(e)$. Let $x \in H$. Then $x \in F_n * S_n$ for some n as every member of $\mathcal{F}(\mathcal{I})$ is nonempty. Choose $f_x \in F_n$ so that $x \in f_x * S_n$. Then evidently $H \cap f_x * S_n$ is nonempty, and so $h_{f_x} \in H$ is defined as an element of this intersection. Since $h_{f_x} \in f_x * S_n$, $f_x \in h_{f_x} * S_n^{-1}$, thus $x \in h_{f_x} * S_n^{-1} * S_n \subset h_{f_x} * T_n$. Now $h_{f_x}^{-1} * x \in H \cap T_n = U_n$, $x \in h_{f_x} * U_n \subset H_n * U_n$. Therefore $\{n \in \mathbb{N}: x \in F_n * S_n\} \subset \{n \in \mathbb{N}: x \in H_n * U_n\}$. This completes the proof.

Corollary 4.1 If G has property $S_1(\Omega_G(e), \mathcal{I} - \Gamma_G)$, then for each infinite subgroup H of G, has the property $S_1(\Omega_H(e), \mathcal{I} - \Gamma_H)$.

5. Hyperspace and α_i -properties using ideals

In this section we shall present the ideal version of certain covers in hyperspaces using the α_i -properties. For a space X, the collection of all closed subsets of X is denoted by 2^X . Let $\mathbb{F}(X)$ and $\mathbb{K}(X)$ stand for the class of nonempty finite sets and compact sets of X, respectively. If A is a subset of X and \mathcal{A} is a family of subsets of X, then we write

$$A^+ = \{ F \in 2^X : F \subset A \}, A^+ = \{ A^+ : A \in A \}.$$

Notice that we use same symbol F to denote a closed subset of X and the point F in 2^X ; from the context it will be clear what F is.

The upper Fell topology F^+ on 2^X is the topology whose base is the collection $\{(K^C)^+: K \in \mathbb{K}(X)\} \cup \{2^X\}.$

The upper Vietoris topology V^+ has basic open sets of the form U^+ , U open in X. It is clear that $(\mathbb{K}(X), V^+)$ and $(\mathbb{F}(X), V^+)$ are considered as subspaces of $(2^X, V^+)$.

Theorem 5.1 For a space X and an open cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}\$ of X. The following statements hold:

- 1. \mathcal{U} is a $\mathcal{I} \gamma$ -cover of X if and only if \mathcal{U}^+ is a $\mathcal{I} \gamma$ -cover of $(\mathbb{F}(X), \mathsf{V}^+)$;
- 2. \mathcal{U} is a $\mathcal{I} \gamma_k$ -cover of X if and only if \mathcal{U}^+ is a $\mathcal{I} \gamma_k$ -cover of $(\mathbb{K}(X), \mathsf{V}^+)$;
- 3. \mathcal{U} is a \mathcal{I} - ω -groupable cover of X if and only if \mathcal{U}^+ is a \mathcal{I} - ω -groupable cover of $(\mathbb{F}(X), \mathsf{V}^+)$;
- 4. \mathcal{U} is a \mathcal{I} -k-groupable cover of X if and only if \mathcal{U}^+ is a \mathcal{I} -k-groupable cover of $(\mathbb{K}(X), \mathsf{V}^+)$.

Proof: (1) Let \mathcal{U} be a $\mathcal{I} - \gamma$ -cover of X and let $F \in (\mathbb{F}(X), \mathsf{V}^+)$. The set $\{n \in \mathbb{N} : F \nsubseteq U_n\} \in \mathcal{I}$. This means $\{n \in \mathbb{N} : F \notin U_n^+\} \in \mathcal{I}$ for $U_n^+ \in \mathcal{U}^+$, that is \mathcal{U}^+ is a $\mathcal{I} - \gamma$ -cover of $(\mathbb{F}(X), \mathsf{V}^+)$.

- (2) Similar to (1).
- (3) Let \mathcal{U} is a \mathcal{I} - ω -groupable cover of X and let $\mathcal{U} = \bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ be a partition of \mathcal{U} witnessing that fact. Let $\{F_1, F_2, ..., F_p\}$ be a finite subset of $\mathbb{F}(X)$. Then $F = F_1 \cup F_2 \cup ... \cup F_p$ is a finite subset of X and thus $\{n \in \mathbb{N} : F \nsubseteq \cup \mathcal{U}_n\} \in \mathcal{I}$. Then $\{n \in \mathbb{N} : \{F_1, F_2, ..., F_p\} \notin \cup \mathcal{U}_n^+\} \in \mathcal{I}$. Thus \mathcal{U}^+ is a \mathcal{I} - ω -groupable cover of $(\mathbb{F}(X), \mathbb{V}^+)$.

(4) Similar to (3).
$$\Box$$

To prove our next theorem we need following lemma from [8].

Lemma 5.1 [8] For a space X and an open cover W of $(\mathbb{K}(X), \mathsf{V}^+)$ the following holds: W is an ω -cover of $(\mathbb{K}(X), \mathsf{V}^+)$ if and only if $\mathcal{U}(W) = \{U \subset X : U \text{ is open in } X \text{ and } U^+ \in W \text{ for some } W \in \mathcal{W}_n\}$ is a k-cover of X.

Theorem 5.2 For a space X the following statements are equivalent:

- 1. $(\mathbb{K}(X), \mathsf{V}^+)$ satisfies $\alpha_2(\Omega, \mathcal{I} \Gamma)$;
- 2. $(\mathbb{K}(X), \mathsf{V}^+)$ satisfies $\alpha_3(\Omega, \mathcal{I} \Gamma)$;
- 3. $(\mathbb{K}(X), \mathsf{V}^+)$ satisfies $\alpha_4(\Omega, \mathcal{I} \Gamma)$;
- 4. $(\mathbb{K}(X), \mathsf{V}^+)$ satisfies $S_1(\Omega, \mathcal{I} \Gamma)$;
- 5. X satisfies $S_1(\mathcal{K}, \mathcal{I} \Gamma_k)$.

Proof: The equivalence of (1), (2), (3) and (4) are follows from Theorem 3.1.

 $(4) \Rightarrow (5)$. Consider the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of k-covers of X. Then $(\mathcal{U}_n^+ : n \in \mathbb{N})$ is a sequence of ω -cover of $(\mathbb{K}(X), \mathsf{V}^+)$. For some $n \in \mathbb{N}$, let $\{K_1, K_2, ..., K_m\}$ be a finite subset of $\mathbb{K}(X)$. Then $K = K_1 \cup K_2 \cup ... \cup K_m$ is a compact subset of X and thus there is $U \in \mathcal{U}$ with $K \subset U$, that is for each $i \leq m, K_i \subset U$ and thus $K_i \in U^+$. Therefore $\{K_1, K_2, ..., K_m\} \subset U^+$ and \mathcal{U}_n is an ω -cover of $\mathcal{K}(X)$. Apply (4) on each n, there is an element $U_n^+ \in \mathcal{U}_n^+$ such that the set $\mathcal{U}^+ = \{U_n^+ : n \in \mathbb{N}\}$ is a $\mathcal{I} - \gamma$ -cover of $(\mathbb{K}(X), \mathsf{V}^+)$. To prove (5), it is sufficient to prove that $(U_n : n \in \mathbb{N})$ is a $\mathcal{I} - \gamma_k$ cover of X. Then for each compact subset K of X, the set $\{n \in \mathbb{N} : K \notin U_n^+\} \in \mathcal{I}$. Consequently, $\{n \in \mathbb{N} : K \in U_n^+\} \in \mathcal{F}(\mathcal{I})$. Let $K \in U_n^+$ for some $n \in \mathbb{N}$. Then $K \subset U_n$ for some $n \in \mathbb{N}$. Therefore $\{n \in \mathbb{N} : K \in U_n^+\} \subset \{n \in \mathbb{N} : K \subset U_n\} \in \mathcal{F}(\mathcal{I}).$ Thus it shows that $(U_n : n \in \mathbb{N})$ is a $\mathcal{I} - \gamma_k$ cover of X. (5) \Rightarrow (4). Consider the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of ω -cover of $(\mathbb{K}(X), \mathsf{V}^+)$. For each $n \in \mathbb{N}$, let $\mathcal{W}_n = \{W \subset X : \text{W is open in X and } W^+ \in U \text{ for some } U \in \mathcal{U}_n\}.$ By Lemma 5.1, each \mathcal{W}_n is a k-cover of X. Apply (5) to the sequence $(W_n : n \in \mathbb{N})$, there is a sequence $(W_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $W_n \in \mathcal{W}_n$ and the set $\mathcal{W} = \{W_n : n \in \mathbb{N}\}$ is a a $\mathcal{I} - \gamma_k$ cover of X. For each $W_n \in \mathcal{W}$, pick $U_n \in \mathcal{U}_n$ so that $W_n^+ \in U_n$. To prove (4), it is sufficient to prove that $(U_n : n \in \mathbb{N})$ is a $\mathcal{I} - \gamma_k$ cover of $(\mathbb{K}(X), \mathsf{V}^+)$. Then for each $K \in \mathbb{K}(X)$, the set $\{n \in \mathbb{N} : K \subset W_n\} \in \mathcal{I}$. Consequently, $\{n \in \mathbb{N} : K \subseteq W_n\} \in \mathcal{F}(\mathcal{I})$. Let $K \subseteq W_n$ for some $n \in \mathbb{N}$. Then $K \in W_n^+ \in U_n$ for some $n \in \mathbb{N}$. Therefore $\{n \in \mathbb{N} : K \subseteq W_n\} \subset \{n \in \mathbb{N} : K \in U_n\} \in \mathcal{F}(\mathcal{I})$. Thus it shows that $(U_n : n \in \mathbb{N})$ is a $\mathcal{I} - \gamma_k$ cover of $(\mathbb{K}(X), \mathsf{V}^+)$.

Lemma 5.2 [8] For a space X and an open cover W of $(\mathbb{F}(X), \mathsf{V}^+)$ the following holds: W is an ω -cover of $(\mathbb{F}(X), \mathsf{V}^+)$ if and only if $\mathcal{U}(W) = \{U \subset X : U \text{ is open in } X \text{ and } U^+ \in W \text{ for some } W \in \mathcal{W}_n\}$ is an ω -cover of X.

We can similarly prove the following theorem, by using Lemma 5.2 and Theorem 3.1.

Theorem 5.3 For a space X the following statements are equivalent:

```
    (F(X), V<sup>+</sup>) satisfies α<sub>2</sub>(Ω, I – Γ);
    (F(X), V<sup>+</sup>) satisfies α<sub>3</sub>(Ω, I – Γ);
    (F(X), V<sup>+</sup>) satisfies α<sub>4</sub>(Ω, I – Γ);
    (F(X), V<sup>+</sup>) satisfies S<sub>1</sub>(Ω, I – Γ);
    X satisfies S<sub>1</sub>(Ω, I – Γ).
```

6. Abstract boundedness and α_i -properties using ideals

In 1949, S. T. Hu [7] were introduced and studied an abstract boundedness in any topological space. A family $\mathbb B$ of nonempty closed subsets of a space X is said to be an abstract boundedness (or, boundedness) if it is closed for finite unions, closed hereditary and contains all singletons. If $\mathbb B$ is a boundedness in a space X and $\mathcal U$ is an open cover of X, then $\mathcal U$ is said to be a $\mathbb B$ -cover if each $B \in \mathbb B$ is contained in an element of $\mathcal U$ and $X \notin \mathcal U$. $\mathcal U$ is called $\gamma_{\mathbb B}$ -cover [16,13] if it is infinite and each $B \in \mathbb B$ is contained in all but finitely many elements of $\mathcal U$.

Now we introduce the ideal version of the $\gamma_{\mathbb{B}}$ -cover called $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover. A countable open cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ of a space X is said to be an $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover if for each $B \in \mathbb{B}$, the set $\{n \in \mathbb{N} : B \not\subseteq U_n\} \in \mathcal{I}$. For a given boundedness \mathbb{B} in a space, the collection of all \mathbb{B} -cover (resp. $\gamma_{\mathbb{B}}$, $\mathcal{I} - \gamma_{\mathbb{B}}$) denoted by $\mathcal{O}_{\mathbb{B}}$ (resp. $\Gamma_{\mathbb{B}}$, $\mathcal{I} - \Gamma_{\mathbb{B}}$).

Lemma 6.1 An \mathcal{I} -dense subset of an $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X is also an $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X.

Proof: Let $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ be an $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X and $\{U_{n_k} : k \in \mathbb{N}\}$ be an \mathcal{I} -dense subset of \mathcal{U} . Suppose that $\{U_{n_k} : k \in \mathbb{N}\}$ is not an $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X. Then there is a set $B \in \mathbb{B}$ for which the set $\{k \in \mathbb{N} : B \notin U_{n_k}\} \notin \mathcal{I}$. But $\{n_k \in \mathbb{N} : B \notin U_{n_k}\} \notin \mathcal{I}$ from the definition of \mathcal{I} -dense. Now observe that $\{n_k \in \mathbb{N} : B \notin U_{n_k}\} \notin \mathcal{I}$ from the definition of $\mathcal{I} \subset \{n \in \mathbb{N} : B \notin U_n\}$. Since \mathcal{U} is an $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X, so $\{n \in \mathbb{N} : B \notin U_n\} \in \mathcal{I}$ and so $\{n_k \in \mathbb{N} : B \notin U_{n_k}\} \in \mathcal{I}$, a contradiction.

If an infinite subset of $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X is \mathcal{I} -dense, then by above lemma, every infinite subset of $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X is $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X. We give several results related to boundedness without proof, since the proofs are quite similar to Theorem 3.1, Theorem 3.4 and Theorem 5.3.

Theorem 6.1 For a space X the following statements are equivalent:

- 1. X satisfies $\alpha_2(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma)$;
- 2. X satisfies $\alpha_3(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma)$;
- 3. X satisfies $\alpha_4(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma)$;
- 4. X satisfies $S_1(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma)$;
- 5. ONE has no winning strategy in the game $G_1(\mathcal{O}_{\mathbb{R}}, \mathcal{I} \Gamma)$ on X.

Theorem 6.2 If an infinite subset of $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X is \mathcal{I} -dense, then the following statements are equivalent:

- 1. $X \text{ satisfies } \alpha_2(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma_{\mathbb{B}});$
- 2. X satisfies $\alpha_3(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma_{\mathbb{B}})$;
- 3. $X \text{ satisfies } \alpha_4(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma_{\mathbb{B}});$
- 4. X satisfies $S_1(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma_{\mathbb{B}})$;
- 5. ONE has no winning strategy in the game $G_1(\mathcal{O}_{\mathbb{R}}, \mathcal{I} \Gamma_{\mathbb{R}})$ on X.

Theorem 6.3 For a space X the following statements are equivalent:

- 1. X satisfies $\alpha_2(\Gamma_{\mathbb{R}}, \mathcal{I} \Gamma)$;
- 2. X satisfies $\alpha_3(\Gamma_{\mathbb{B}}, \mathcal{I} \Gamma)$;
- 3. X satisfies $\alpha_4(\Gamma_{\mathbb{B}}, \mathcal{I} \Gamma)$;
- 4. X satisfies $S_1(\Gamma_{\mathbb{B}}, \mathcal{I} \Gamma)$;
- 5. ONE has no winning strategy in the game $G_1(\Gamma_{\mathbb{R}}, \mathcal{I} \Gamma)$ on X.

Theorem 6.4 If an infinite subset of $\mathcal{I} - \gamma_{\mathbb{B}}$ -cover of X is \mathcal{I} -dense, then the following statements are equivalent:

- 1. $X \text{ satisfies } \alpha_2(\Gamma_{\mathbb{B}}, \mathcal{I} \Gamma_{\mathbb{B}});$
- 2. X satisfies $\alpha_3(\Gamma_{\mathbb{B}}, \mathcal{I} \Gamma_{\mathbb{B}})$;
- 3. X satisfies $\alpha_4(\Gamma_{\mathbb{R}}, \mathcal{I} \Gamma_{\mathbb{R}})$;
- 4. X satisfies $S_1(\Gamma_{\mathbb{B}}, \mathcal{I} \Gamma_{\mathbb{B}})$;
- 5. ONE has no winning strategy in the game $G_1(\Gamma_{\mathbb{B}}, \mathcal{I} \Gamma_{\mathbb{B}})$ on X.

Consider \mathbb{B} as a subspace of $(2^X, \mathsf{V}^+)$ and denote this space by $(\mathbb{B}(X), \mathsf{V}^+)$. Then we have the following.

Theorem 6.5 For a space X the following statements are equivalent:

- 1. $(\mathbb{B}(X), \mathsf{V}^+)$ satisfies $S_1(\mathcal{O}_{\mathbb{B}}, \mathcal{I} \Gamma)$;
- 2. X satisfies $S_1(\mathcal{O}_{\mathbb{R}}, \mathcal{I} \Gamma)$.

Acknowledgments

The first author aknowledges the support by the Anusandhan National Research Foundation (ANRF), Department of Science and Technology (DST), Government of India, under the project file no.: EEQ/2023/000490.

The authors would like to thank the referee for his/her several comments and valuable suggestions.

References

- Arhangel'skii, A.V., The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Doklady. 13, 1185-1189, (1972).
- Babinkostova, L., Kočinac, Lj.D.R., Scheepers, M., Combinatorics of open covers (XI), Topology Appl. 154, 1269-1280, (2007).
- 3. Caserta, A., Maio, G.D., Kočinac, Lj.D.R., Meccariello, E., Application of k-covers II, Topology Appl. 153, 3277-3293, (2006).
- 4. Das, P., Certain types of open covers and selection principles using ideals, Houston J. Math. 39(2), 637-650, (2013).
- 5. Das, P., Chandra, D., Some further results on $\mathcal{I} \gamma$ and $\mathcal{I} \gamma_k$ -covers, Topology Appl. 16, 2401-2410, (2013).
- 6. Gerlits, J., Nagy, Zs., Some properties of C(X), I, Topol. Appl. 14, 151-161, (1982).
- 7. Hu, S.T., Boundedness in a topological space, Journal Math. Pures Appl. 28, 287-320, (1949).
- 8. Kočinac, Lj.D.R., Selection principles related to α_i-properties, Taiwanese Journal of Mathematics 12(3), 561-571, (2008).
- 9. Lj.D.R. Kočinac, S. Konca, S. Singh, Set star-Menger and set strongly star-Menger spaces, Mathematica Slovaca, 72 (2022), 185–196.
- Kočinac, Lj.D.R., Selected results on selection principles, in: Sh. Rezapour (Ed.), Proceedings of the 3rd Seminar on Geometry and Topology, July 15-17, Tabriz, Iran, 71-104, (2004).
- 11. Maio, G.D., Meccariello, E., Naimpally, S., Bounded topologies, Applied General Topology 4, 421-444, (2003).
- 12. Maio, G.D., Kočinac, Lj.D.R., Meccariello, E., Selection principles and hyperspace topologies, Topology Appl. 153, 912-923, (2005).
- 13. Maio, G.D., Kočinac, Lj.D.R., Some covering properties of hyperspaces, Topology Appl. 17-18, 1959-1969, (2008).
- 14. Maio, G.D., Kočinac, Lj.D.R., Statistical convergence in topology, Topology Appl. 156, 28-45, (2008).
- 15. Maio, G.D., Kočinac, Lj.D.R., Meccariello, E., Application of k-covers, Acta Mathematica Sinica., English Series 22, 1151-1160, (2006).
- 16. Maio, G.D., Kočinac, Lj.D.R., Boundedness in topological spaces, Math. Vensik 60, 137-148, (2008).
- 17. Naimpally, S.A. Warrack B.D., Proximity spaces, Cambridge Tracts in Mathematics 59, Cambridge, 1970.
- 18. Scheepers, M., The combinatorics of open covers (I): Ramsey theory, Topol. Appl. 69, 31-62, (1996).
- 19. Scheepers, M., Selection principles and covering properties in topology, Note di Mathematica 22, 3-41, (2003).
- Singh, S., Tyagi, B.K., Bhardwaj, M., An ideal version of star-C-Hurewicz covering property, Filomat 33(19), 6385-6393, (2019).
- 21. S. Singh, Remarks on set-Menger and related properties, Topology Appl., 280 (2020), Article No. 107278
- 22. S. Singh, A note on set-star-K-Menger spaces, Math. Slovaca, 72 (6) (2022), 1597-1604
- 23. S. Singh, Set starcompact and related spaces, Afr. Math., 32 (2021), 1389-1397
- 24. S. Singh, On set-star-K-Hurewicz spaces, Bull. Belg. Math. Soc. Simon Stevin, 28 (3) (2021), 361-372
- 25. S. Singh, On set-star-K-Menger spaces, Publ. Math. Debrecen, 100 (2022), 87-100.
- 26. S. Singh, On set star-Menger spaces, Quaestiones Mathematicae, 46 (11) 2023, 2465-2473.
- 27. S. Singh, On set star-C-Menger spaces, Quaestiones Mathematicae, 2025, 1-15, DOI: 10.2989/16073606.2025.2457694.
- 28. S. Singh, On set star-Lindelöf spaces, Appl. Gen. Topology., 23 (2) (2022), 315-323.
- 29. Tsaban, Boaz., On the Kočinac α_i-properties, Topology Appl. 155, 141-145, (2007).
- 30. Tsaban, Boaz., Some new directions in infinite-combinatorial topology, in: J. Bagaria, S. Todorčevic (Eds.), Set Theory, in: Trends in Mathematics, Birkhäuser, 225-255, (2006).
- Tyagi, B.K., Singh, S., Bhardwaj, M., Ideal analogues of some variants of Hurewicz property, Filomat 33(9), 2725-2734, (2019).

Sumit Singh,
Department of Mathematics,
Ramjas College, University of Delhi
University Enclave, Delhi-110007

E-mail address: sumitkumar405@gmail.com, sumit@ramjas.du.ac.in

and

Geetanjali Raiya,
Department of Mathematics,
Janki Devi Memorial College
University of Delhi, Delhi-110060
India.

 $E\text{-}mail\ address: \verb"geetanjaliraiya@gmail.com"}$

and

Manoj Kumar Rana, Department of Mathematics, Ramjas College, University of Delhi University Enclave, Delhi-110007 India.

 $E ext{-}mail\ address: mkrana.du@gmail.com}$