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1. Abstract

In this article we compute the dominating number (DN) and dominant metric dimension (Ddim)
of zero divisor graphs of some small finite commutative rings with order not exceeding 14. Consider
a commutative ring denoted as and let represent its zero-divisor graph (ZD-graph). The vertices of
these graphs correspond to the non-zero divisors (ZD) within the commutative ring (CR), where an edge
connects two distinct vertices if their product in the ring results in zero. This paper focuses on studying
the domination number and dominant metric dimension for zero divisor graphs of orders 3, 4, 5, 6, 7, 8, 9,
and 10 within a small finite commutative ring with a unity. Employing a combination of computational
methods and mathematical techniques, our research sheds light on the structural nuances of these small
commutative rings, enhancing our comprehension of their algebraic behavior and paving the way for
potential applications in algebraic theory and related fields.

keywords: algebraic structures, zero divisor graphs, dominant metric dimensions, equivalence classes,
metric-dimension, compressed zero-divisor graph.

2. Introduction

Beck [1] proposed the connection between graph theory and algebra by introducing a ZD-graph of a
CR R. The primary focus OF author’s [1] was on the coloring of nodes in a graph, specifically on the
ring elements that corresponded to these nodes. Note that, a zero vertex is linked to all other vertices in
this case. Zo(R) denotes this type of ZD-graph in literature. In [2], Anderson and Livingston conducted
a study on a ZD-graph in which each node represents a nonzero ZD. According to them an undirected
graph obtained by considering x and y as nodes joined by an edge iff xy = 0 is called a ZD-graph of R.
The study of Anderson and Livingston emphasizes the case of finite rings, as finite graphs can be obtained
when R is finite. Their task was to determine whether a graph is complete for a given ring or a star for
a given ring. Here Z(R) will denote this type of ZD-graph of R. This ZD-graph definition differs slightly
from Beck’s ZD-graph definition for R. Remember, zero is not considered as a vertex of ZD-graph here,
hence Z(R) ⊆ Z0(R). Anderson and Livingston [2] found the correlation between properties of ring R
and the graph properties of associated Z(R); Moreover, this study yields essential outcomes concerning
Z(R). Redmond [3] expanded the ZD-graph idea from unital
commutative rings (CR) to noncommutative rings. Different methods were presented by him to charac-
terize the ZD-graph related to a noncommutative ring, encompassing both undirected & directed graphs.
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Redmond [4] extended this work using a ZD-graph for a commutative ring and transformed it into an
ideal-based ZD graph. The aim was to generalize the method by substituting elements with zero products
with elements whose product belongs to a particular ideal I of ring R.

An ideal based ZD-graph denoted by ΓI(R) can be obtained by considering two nonzero ZD, x and
y of R as nodes and there is an edge between them iff xy ∈ I such that {xy ∈ I, for some, y ∈ R − I}.
Numerous authors have defined various types of graphs, including total graphs, unit graphs, ideal-based
ZD-graph, Jacobson graphs, ZD-graph of equivalence classes, and more. These works can be found in
sources such as [5-9]. Readers may refer to [10, 11] for a deeper understanding of graph theory, and
for some fundamental definitions of ring theory, [12, 13] can be consulted. Reader may also study some
distinguishing parameters for different graphs in [24-25].

The graph associated with R provides a remarkable demonstration of the properties of L(R), the
lattice of ideals of R. This graph enables us to visualize and analyze the algebraic properties of rings
through graph theory techniques. In [5], the properties of Z(R) were analyzed by the authors and found
to be interesting. To study Z(R), we stick to the method presented by Anderson and Livingston in [5],
where non-zero ZD are vertex set for Z(R). Unless otherwise stated, we consider R is a finite unital CR
in this paper. L(R) denotes set of non-zero ZD, as discussed earlier. Consider the ring R contains only
single maximal ideal then it is called local.

Let x ∈ R, then annihilator of x is denoted and defined as ann(x) = {y ∈ R : xy = 0}. An element
r ∈ R, is a nilpotent element if rm = 0, for some positive integer m. Reduced ring is defined as a ring
containing no nilpotent elements (i.e., non-zero elements). Zn is called ring of integers modulo n and
defined as Zn = {0, 1, 2, . . . , n − 1}, while ring of gaussian integers modulo n is denoted and defined as
Zn[i] = {x+ iy : x, y ∈ Zn and i2 = −1

}
under the complex multiplication and addition, and F denotes

finite field. Osba et al. introduced the graph for Zn[i] in [14], Z (Zn[i]) denotes the ZD-graph of the
Gaussian integer ring Zn[i].

For a graph G, a subset S ⊆ V (G) is said to be a dominating set (DS) of G if for ∀x ∈ V (G) | S, ∃ at
least one vertex u ∈ S such that x is adjacent to u. The minimum cardinality among DS of G is referred
as dominating number (DN) of G and denoted by γ(G) [26]. Let W = {w1, w2, . . . , wk} ⊆ V (G) is an
ordered set. If every pair of vertices u, v ∈ V (G) have distinct representation with respect to W , that is,
r(u | W ) ̸= r(v | W ), where r(u | W ) = (d (u,w1) , d (u,w2) , . . . , d (u,wk)) then W is called a resolving set
(RS) of G. The RS of G with minimum cardinality is called metric dimension (MD) of G. We denote MD
as dim(G). Brigham, et al. [27] studied MD and DS collectively and named it as resolving domination
number, denoted by γr(G). The concluded that max{dim(G), γ(G)} ≤ γr(G) ≤ dim(G) + γ(G). Later,
Henning and Oellarmann [28] studied the metric locating DN of graph G, denoted by γM (G) and found
that γ(G) ≤ γM (G) ≤ n− 1. Then, Gonzalez, et al. [29] studied different lower and upper bounds, i.e.,
max{dim(G), γ(G)} ≤ γM (G) ≤ dim(G)+ γ(G). A dominant RS of G is an ordered set W ⊆ V (G), such
that W is a RS and a DS of G. The minimum cardinality of dominant RS is called a dominant basis of G,
while the cardinality of dominant basis is recognized as a dominant MD of G and denoted by Ddim(G).

The contribution of this article lies in its comprehensive exploration of the dominating number and
dominant metric dimension of zero divisor graphs associated with finite commutative rings
of order not exceeding 14. By employing a combination of computational methods and mathematical
techniques, the research offers valuable insights into the underlying algebraic structures of these small
rings. The determination of the dominating number provides a crucial understanding of the minimal set
of vertices necessary to control the entire zero divisor graph, thereby revealing the specific elements that
exert significant influence on the ring’s properties. Concurrently, the introduction of the novel concept
of dominant metric dimension adds a new dimension to the analysis by quantifying the graph’s ability to
identify elements based on distance considerations.

This study contributes to the field of algebraic structures by enhancing our comprehension of the
structural nuances inherent in small commutative rings. The insights gained from investigating the dom-
inating number and dominant metric dimension provide researchers with a powerful tool for unraveling
the algebraic intricacies of these rings. Such knowledge not only deepens our understanding of fun-
damental algebraic concepts but also opens avenues for potential applications in algebraic theory and
related fields. Researchers in the domain of algebraic structures can leverage the findings of this article
to refine existing theories, develop new methodologies, and advance the broader understanding of finite
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commutative rings. Ultimately, this research significantly enriches the theoretical framework in algebra
and contributes to the ongoing dialogue within the academic community on the structural analysis of
algebraic systems.

The novelty of finding the Ddim of graphs lies in the fact that it is provides a more complete under-
standing of the graph’s structure and algebraic properties, which can be useful in many applications such
as network design, social networking, and communication systems.

3. Main results

Formally, Graph is an ordered pair G = (V,E); here V and E stands for vertices or nodes and
edge set, respectively. A graph’s order and size are defined as cardinality of nodes set and edges set,
respectively. The open neighborhood of a node v is written as N(v), and defined as {v ∈ V (G) : vu ∈
E(G)}, while closed neighborhood of a node u is written as N [u], and defined as {u} ∪ N(u). The
distance d (u′, v′) between two nodes u′ and v′ is defined as length of shortest path between them, while
d (w, e′) = min {d (w, u′) , d (w, v′)} defines the distance between a node w and edge e′ = u′v′. The
length of the longest path is the diameter of the graph which is denoted by diam(G) Mathematically,
diam(G) = sup{d(r, s) : where r and s are distinct vertices in G}. Let H be a subset of vertices along
with any subset of edges containing those vertices, forming a subgraph of graph G written as H ⊂ G.
The number of edges in the smallest cycle subgraph in graph G is referred to as the girth of the graph,
denoted by gr(G). The maximal complete subgraph of graph G is termed a clique, denoted by K, and
|K| = ω(G) is identified as the clique number.

A graph is said to be regular graph if for every r ∈ V,deg(r) = c for a fix, c ∈ Z+. A graph is said to
be complete graph if there is a connection between all pairs of vertices. It is represented by km, where
m is the number of vertices. A graph is considered a complete bipartite graph if it can be divided into
two distinct sets of vertices, X and Y , where each vertex in X is connected to every vertex in Y , and it
is usually denoted by km,n, where |X| = m and |Y | = n. Let G be a connected graph, and if the removal
of a vertex results in two or more disconnected components in the graph, the vertex is designated as a
cut vertex.

Kelenc et al. [16] studied the edge md (emd) of various graphs, including the path graph Pn, complete
graph km, and complete bipartite graph km,n. The relationship between the md and the
emd allows for the identification of graphs where these two dimensions are equal, as well as for some
other graphs G for which dim(G) < dimE(G) or dimE(G) < dim(G). Basically, Kelenc et al. explored
the comparison of values dim(G) and dimE(G). Recently, a study on metric parameters for ZD-graphs
has been done. Redmond in 2002 [17] studied the ZD-graphs of noncommutative rings, and in 2003 [18]
the ideal based ZD-graphs of commutative rings was studied by him. In 2019 [19] the metric dimension
of ZD-graphs for ring Zn was calculated. In 2020 [20] bounds for the emd of ZD-graphs related to rings
were studied by Siddiqui et al. Pirzada and Aijaz in 2020 [21] studied ZD-graphs for commutative rings
for their metric and upper dimension.

Susilowati et al. [15] determined the Ddim of a specific class of graphs, characterized graphs with
particular Ddim, and computed the Ddim of joint and comb products of graphs. In this context, we
examine selected findings from references [30-31] as follows:

Remarks

1. For path graph denoted by Pn and cyclic graph Cn, γ (Pn) = γ (Cn) =
⌈
n
3

⌉
and dim (Pn) = 1 and

dim (Cn) = 2.

2. For a complete graph denoted by Kn, γ (Kn) = 1 and dim (Kn) = n− 1.

3. For a start graph denoted by Sn, γ (Sn) = 1 and dim (Sn) = n− 2, ∀n ≥ 2.

4. Consider a complete bipartite graph Km,n, γ (Km,n) = 2 and dim (Km,n) = m+ n− 2, ∀m,n ≥ 2.

Furthermore, we consider some previous results on dominant metric dimension of G as follows:
Theorem 1 [15]: If Cn is a cyclic graph of order n ≥ 7, then Dimd (Cn) = γ (Cn).
Theorem 2 [15]: If G is a start graph Sn, having order n ≥ 2, then Dimd(G) = n− 1.
Theorem 3 [15]: Let Km,n be a complete bipartite graph with m,n ≥ 2, then Dimd (Km,n) = dim (Km,n).
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Theorem 4 [15]: If G is a path graph Pn, with n ≥ 4, then Dimd (Pn) = γ (Pn).
Theorem 5 [15]: If G is a complete graph Kn, with n ≥ 2, then Dimd (Kn) = dim (Kn).
Theorem 6 [15]: Dimd (Pn) = 1 ⇔ G ∼= Pn, n = 1, 2.
Moreover, Ddim for a single vertex graph G is supposed to be zero and for an empty graph it is undefined.
Our discussion commences with the subsequent observation. Adirasari, et al. [23] studied the Ddim of
corona product graphs.

4. Dominating number and dominant metric dimension of ZD-graphs

Here, we consider simple connected ZD-graphs that possess a countable number of vertices. We
analyze some ZD-graphs associated to small finite commutative rings and determine their dominating
number and the dominant metric dimension, leading to the subsequent outcomes.

Theorem 3.1: If Γ(R) ∼= G having 3 vertices then γ(G) and Dimd(G) are given in the Table 3.1.

No. Vertices R ing ( R ) R — Graph G γ(G) Dimd(G)
Z6 6
Z8 8

3 Z2[x]/
(
x3

)
8 K1,2 1 2

Z4[x]/
(
2x, x2 − 2

)
8

Z2[x, y]/(x, y)
2 8

Z4[x]/(2, x)
2 8

F4[x]/
(
x2

)
16 K3 1 2

Z4[x]/
(
x2 + x+ 1

)
16

Table 3.1: ZD-graphs with 3 vertices
Proof. Case (a). The Γ(R) ∼= K1,2 is a special case of bipartite graph and we can consider K1,2 as star
graph Sn, with n = 3. By Remark 3, γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 2, by Theorem 2.

Case (b). The Γ(R) ∼= K3 is special case of complete graph Kn, with n = 3. Hence by Remark 2 ,
γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 2, by using Theorem 5 along with Remark 2. []

Theorem 3.2: If Γ(R) ∼= G having 4 vertices then γ(G) and Dimd(G) are given in the Table 3.2.

No. Vertices R ing ( R ) |R| Jraph G γ(G) Dimd(G)
Z2 × F4 8 K1,3 1 3

4 Z3 × Z3 9 K2,2 2 2
Z25 25 K4 1 3

Z5[x]/
(
x2

)
25 K4

Table 3.2: ZD -graphs with 4 vertices
Proof. Case (a). When Γ(R) ∼= K1,3, it is a special case of bipartite graph, and we can consider K1,3 as
star graph Sn, with n = 4. By Remark 3, γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 3, by Theorem
2. On another hand when Γ(R) ∼= K2,2, it is a special case of bipartite graph with m = n = 2, By Remark
4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 2, by using Theorem 3 along with Remark 4.

Case (b). When Γ(R) ∼= K4, it is special case of complete graph Kn, with n = 4. By Remark 2,
γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 3, by using Theorem 5 along with Remark 2. []

Theorem 3.3: If Γ(R) ∼= G having 5 vertices then γ(G) and Dimd(G) are given in the Table 3.3.

No. Vertices R ing ( R ) | R — Jraph G γ(G) Dimd(G)
5 Z2 × Z5 10 K1,4 1 4

Z3 × F4 12 K2,3 2 3
Z2 × Z4 8 Fig. 3.1

Z2 × Z2[x]/
(
x2

)
8 Fig. 3.1 2 3
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Table 3.3: ZD -graphs with 5 vertices

Proof. Case (a). When Γ(R) ∼= K1,4, it is a special case of bipartite graph, and we can considerK1,4 as
star graph Sn, with n = 5. By Remark 3, γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 4, by Theorem
2 . On another hand when Γ(R) ∼= K2,3, it is a special case of bipartite graph with m = 2,&n = 3, By
Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 3, by using Theorem 3 along with Remark 4 .

Case (b). The ZD -graph for rings Z2×Z4,Z2×Z2[X]/
(
x2

)
is given in Fig. 3.1. From the figure, the

set {2, 5} is a dominating set for the graph and hence γ(Γ(R)) = 2. Whereas the set {2, 3, 4} is dominant
resolving set for the graph, so Dimd(Γ(R)) = 3. ]
Figure 3.1

Figure 1: picture 1

Theorem 3.4: If Γ(R) ∼= G having 6 vertices then γ(G) and Dimd(G) are given in the Table 3.4.

No. Vertices R ing ( R ) |R| Jraph G γ(G) limd(G)
6 Z3 × Z5 15 K2,4

F4 × F4 16 K3,3 2 4
Z2 × Z2 × Z2 8 Fig. 3.2 3 3

Z7[x]/
(
x2

)
49 K6

Z49 49 K6 1 5

Table 3.4: ZD -graphs with 6 vertices

Proof. Case (a). When Γ(R) ∼= K2,4, it is a special case of bipartite graph with m = 2&n = 4. By
Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 4, by using Remark 4 along with Theorem
3. On another hand when Γ(R) ∼= K3,3, it is a special case of bipartite graph with m = 3&n = 3, By
Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 4, by using Theorem 3 along with Remark 4.

Case (b). The ZZD-graph for ring Z2 ×Z2 ×Z2 is given in Fig. 3.2. From the figure, the set {2, 3, 4}
is a dominating and resolving set for graph Γ(R), hence γ(Γ(R)) = Dimd(Γ(R)) = 3.

Case (c). When Γ(R) ∼= K6, it is special case of complete graph Kn, with n = 6. By Remark 2,
γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 5, by using Theorem 5 along with Remark 2. []
Figure 3.2

Figure 2: picture 2

Theorem 3.5: If Γ(R) ∼= G having 7 vertices then γ(G) and Dimd(G) are given in the Table 3.5.
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No. Vertices R ing ( R ) |R| Jraph G γ(G) Simd (G)

F4 × Z5 20 K3,4 2 5
Z3 × Z4 12 Fig. 3.3

Z3 × Z2[x]/
(
x2

)
12 Fig. 3.3 2 4

Z16 16 Fig. 3.4

Z2[x]/
(
x4

)
16 Fig. 3.4

Z4[x]/
(
x2 + 2

)
16 Fig. 3.4 1 5

Z4[x]/
(
x2 + 2x+ 2

)
16 Fig. 3.4

Z4[x]/
(
x3 − 2, 2x2, 2x

)
16 Fig. 3.4

Z2[x, y]/
(
x3, xy, y2

)
16 Fig. 3.5

Z8[x]/
(
2x, x2

)
16 Fig. 3.5

Z4[x]/
(
x3, 2x2, 2x

)
16 Fig. 3.5 1 5

Z4[x, y]/
(
x2 16 Fig. 3.5

Z4[x]/
(
x2 + 2x

)
16 Fig. 3.6

Z8[x]/
(
2x, x2 + 4

)
16 Fig. 3.6 1 3

Z2[x, y]/
(
x2, y2 − xy

)
16 Fig. 3.6

Z4[x, y]/
(
x2, y2 − xy, xy 16 Fig. 3.6

Z4[x, y]/
(
x2, y2, xy 16 Fig. 3.7

Z2[x, y]/
(
x2, ŷ2

)−
16 Fig. 3.7 1 3

Z4[x]/
(
x2

)
16 Fig. 3.7

Z2[x, y, z]/(x, y, z)
2 16 K7

Z4[x, y]/
(
x2, y2, xy, 2x, 2y

)
16 K7

F8[x]/
(
x2

)
64 K7 1 6

Z4[x]/
(
x3 + x+ 1

)
64 K7

Table 3.5: ZD -graphs with 7 vertices

Proof. Case (a). When Γ(R) ∼= K1,6, it is a special case of bipartite graph and we can consider K1,6

as star graph Sn with n = 7. By Remark 3, γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 6, by using
Remark 3 along with Theorem 2. On another hand, when Γ(R) ∼= K3,4, it is a special case of bipartite
graph with m = 3&n = 4. By Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 5, by using
Remark 4 along with Theorem 3 .

Case(b). The ZZD-graph for rings Z3 × Z4,Z3 × Z2[x]/
(
x2

)
is given in Fig 3.3. From the figure, the

set {3, 6} is a dominating set and resolving set {2, 4, 7} for graph Γ(R), hence γ(Γ(R)) = 2 and {1, 2, 4, 7}
is Dimd(Γ(R)) = 4.

Figure 3: picture 3

Figure 3.3

Case (c). The ZD-graph for ring Z16,Z2[x]/
(
x4

)
,Z4[x]/

(
x2 + 2

)
,Z4[x]/

(
x2 + 2x+ 2),

Z4[x]/
(
x3 − 2, 2x2, 2x

)
is given in Fig. 3.4. From the figure, the set {5} is a dominating set and re-

solving set {1, 2, 3, 4, 5, 7} for graph Γ(R), hence γ(Γ(R)) = 1 and Dimd(Γ(R)) = 5.

Figure 3.4
Case (d). The ZD-graph for rings: Z2[x, y]/

(
x3, xy, y2

)
,Z8[x]/

(
2x, x2

)
,Z4[x]/

(
x3, 2x2, 2x

)
is given in

Fig. 3.5. From the figure, the set {5} is a dominating set and resolving set {1, 2, 4, 5, 6} for graph Γ(R),
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Figure 4: picture 4

hence γ(Γ(R)) = 1 and Dimd(Γ(R)) = 5.

Figure 5: picture 5

Figure 3.5

Case (e). The ZD-graph for rings Z4[x]/
(
x2 + 2

)
,Z4[x]/

(
x2 + 2x

)
,Z8[x]/

(
2x, x2+ 4),

Z2[x, y]/
(
x2, y2 − xy

)
,Z4[x]/

(
x2, y2 − xy, xy − 2, 2x, 2y

)
is given in Fig. 3.6. From the figure, the set

{7} is a dominating set and resolving set {1, 2, 5} for graph Γ(R), hence γ(Γ(R)) = 1 and Dimd(Γ(R)) = 3.

Figure 6: picture 6

Figure 3.6
Case (f). The ZD-graph for rings Z4[x, y]/

(
x2, y2, xy − 2, 2x, 2y

)
,Z2[x, y]/

(
x2, y2

)
,Z4[x]/

(
x2

)
is given

in Fig. 3.7. From the figure, the set {4} is a dominating set and resolving set {1, 3, 5} for graph Γ(R),
hence γ(Γ(R)) = 1 andDimd(Γ(R)) = 3.

Figure 3.7
Case (g). When Γ(R) ∼= K7, it is special case of complete graph Kn, with n = 7. By Remark 2,
γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 6, by using Theorem 5 along with Remark 2. []

Theorem 3.6: If Γ(R) ∼= G having 8 vertices then γ(G) and Dimd(G) are given in the Table 3.6.
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Figure 7: picture 7

No. Vertices R ing ( R ) |R| Jraph G γ(G) imd(G)
Z2 × F8 16 K1,7 1 7
Z3 × Z7 21 K2,6 2 6

8 Z5 × Z5 25 K4,4 2 4
Z27 27 Fig. 3.8

Z9[x]/
(
3x, x2 − 3

)
27 Fig. 3.8 1 7

Figure 3.7
Case (g). When Γ(R) ∼= K7, it is special case of complete graph Kn, with n = 7. By Remark 2,
γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 6, by using Theorem 5 along with Remark 2. []

Theorem 3.6: If Γ(R) ∼= G having 8 vertices then γ(G) and Dimd(G) are given in the Table 3.6.

No. Vertices R ing ( R ) |R| Jraph G γ(G) imd(G)
Z2 × F8 16 K1,7 1 7
Z3 × Z7 21 K2,6 2 6

8 Z5 × Z5 25 K4,4 2 4
Z27 27 Fig. 3.8

Z9[x]/
(
3x, x2 − 3

)
27 Fig. 3.8 1 7

able 3.6: ZD-graphs with 8 vertices
Proof. Case (a). When Γ(R) ∼= K1,7, it is a special case of bipartite graph, and we can consider K1,7, as
a star graph Sn, with n = 8. By Remark 3, γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 7, by using
Remark 3 along with Theorem 2. On another hand, when Γ(R) ∼= K2,6, it is a special case of bipartite
graph with m = 2&n = 6. By Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 6, by using
Remark 4 along with Theorem 3. On another hand when Γ(R) ∼= K4,4, it is a special case of bipartite
graph with m = 4&n = 4, By Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 4, by using
Theorem 3 along with Remark 4 .

Case (b). The ZD-graph for ring Z27,Z9[x]/
(
3x, x2 − 3

)
,Z9[x]/

(
3x, x2 − 6

)
,Z3[x]/

(
x3

)
is given in

Fig. 3.8. From the figure, the set {7} is a dominating set and resolving set {1, 2, 3, 4, 5, 7} for graph Γ(R),
hence γ(Γ(R)) = 1 and Dimd(Γ(R)) = 7.

Figure 8: picture 8

Figure 3.8
Case (c). When Γ(R) ∼= K8, it is special case of complete graph Kn, with n = 8. By Remark 2,
γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 7, by using Theorem 5 along with Remark 2. []
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Theorem 3.7: If Γ(R) ∼= G having 9 vertices then γ(G) and Dimd(G) are given in the Table 3.7.

No. Vertices R ing (R) |R| Graph G γ(G) ) im d (G)
Z2 × F9 18 K1,8 1 8
Z3 × F8 24 K2,7 2 7

9 F4 × Z7 28 K3,6 2 7
Z2 × Z2 × Z3 12 Fig. 3.9 3 6
Z4 × F4 16 Fig. 3.10 2 6

Z2[x]/
(
x2

)
× F4 16 Fig. 3.10

Proof. Case (a). When Γ(R) ∼= K1,8, it is a special case of bipartite graph, and we can consider K1,8,
as a star graph Sn, with n = 9. By Remark 3, γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 8, by using
Remark 3 along with Theorem 2. On another hand, when Γ(R) ∼= K2,7, it is a special case of bipartite
graph with m = 2&n = 7. By Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 7, by using
Remark 4 along with Theorem 3. On another hand when Γ(R) ∼= K3,6, it is a special case of bipartite
graph with m = 3&n = 6, By Remark 4 , γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 7, by using
Theorem 3 along with Remark 4 .

Case (b).The ZZD-graph for ring Z2 × Z2 × Z3 is given in Fig. 3.9. From the figure, the set {5, 6, 8}
is a dominating set and resolving set {1, 2, 3, 4, 7} for graph hence γ(Γ(R)) = 3 and Dimd(Γ(R)) = 6.

Figure 9: picture 9

Figure 3.9
Case (c). The ZD-graph for ring Z4 × F4) ,Z2[x]/

(
x2

)
× F4 is given in Fig. 3.10. From the figure, the

set {4, 6} is a dominating set and resolving set {1, 2, 3, 5, 7, 9} for graph Γ(R), hence γ(Γ(R)) = 2 and
Dimd(Γ(R)) = 6. []

Figure 10: picture 10

Figure 3.10
Theorem 3.8: If Γ(R) ∼= G having 10 vertices then γ(G) and Dimd(G) are given in the Table 3.8.

No. Vertices R ing ( R ) |R| Graph G γ(G) Dimd(G)

F4 × F8 32 K3,7

Z5 × Z7 35 K4,6

Z11[x]/
(
x2

)
121 K10

Table 3.8: ZD-graphs with 10 vertices
Proof. Case (a). When Γ(R) ∼= K2,8, it is a special case of bipartite graph with m = 2&n = 8. By

Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 8, by using Remark 4 along with Theorem
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3. On another hand when Γ(R) ∼= K3,7, it is a special case of bipartite graph with m = 3&n = 7, By
Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 8, by using Theorem 3 along with Remark
4. On another hand when Γ(R) ∼= K4,6, it is a special case of bipartite graph with m = 4&n = 6, By
Remark 4, γ(Γ(R)) = 2. On another hand, Dimd(Γ(R)) = 8, by using Theorem 3 along with Remark 4.

Case (c). When Γ(R) ∼= K10, it is special case of complete graph Kn, with n = 10. By Remark 2,
γ(Γ(R)) = 1. On another hand, Dimd(Γ(R)) = 9, by using Theorem 5 along with Remark 2. []
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