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Total Tension as a Topological Index

Prajna S. Rai, K. N. Jayalakshmi, R. Rajendra∗, P. Siva Kota Reddy and B. M. Chandrashekara

abstract: In this article, we see the total tension of a graph as a topological index and establish a relation
between total tension index and total stress of a graph. We deduce that a graph is complete if and only if
its total tension and the number of geodesics in it are equal. We also deduce that the total tension of an
n-vertex connected proper subgraph of a complete graph Kn with n ≥ 3 vertices is greater than the total
tension of Kn. We obtain a formula for computing total tension of a tree. Further, a QSPR analysis has been
carried to demonstrate that total tension index can be used as a predictive measure for physical properties of
lower alkanes. Linear regression models involving total tension index have been presented for some physical
properties of lower alkanes.
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1. Introduction

For standard terms and concepts in graphs, refer to Harary’s book [3]. This article will provide
non-standard terms when needed. Let G = (V,E) denote an undirected graph that is finite, simple and
connected. A shortest path in G between two nodes x and y, is called a geodesic between x and y. The
number of geodesics in a graph G is denoted by f(G) or simply f , and fi denotes the number of geodesics
of length i in G. The molecular graph of a chemical molecule is a simple connected graph in which the
chemical bonds that bind its atoms together are represented as edges and the atoms themselves as nodes.

In essence, topological indices are theoretical molecular descriptors. In chemistry, these graph in-
variants are essential (see [7, 10, 11]). For graphs having significant applications in Chemistry, a variety
of topological indices have been investigated, such as the Wiener index, Zagreb index, Harary index,
etc. (see [10,11]).

Alfonso Shimbel [9] introduced the concept ‘stress of a node’ in a network in 1953 as a centrality
measure. The stress of a node u in a graph G, denoted by strG(u) (or simply str(u)), is the number of
geodesics passing through u. The notion of total stress (stress number) of a graph has been introduced
and studied by K. Bhargava et al. [1]. The total stress of a graph G, denoted by Nstr(G), is given by

Nstr(G) =
∑
u∈V

str(u) (1.1)

Inspired by the ideas of stress on a vertex and total stress of a graph, K. Bhargava et al. [2] have introduced
and investigated the notion of tension on edge in a graph and total tension of a graph. The tension on an
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edge e in a graph G, denoted by τG(e) or simply τ(e), is defined as the number of geodesics in G passing
through e. Tension on an edge is always ≥ 1. The total tension of G, denoted by Nτ (G), is defined as

Nτ (G) =
∑
e∈E

τ(e) (1.2)

In [4,5], Madhumitha et. al have obtained formulae for the evaluation of total tension of certain graphs,
generalized complements of some standard graphs and graph operations with diameter less than or equal
to two.

The experimental values for the physical properties - boiling points (bp) ◦C, molar volumes (mv) cm3,
molar refractions (mr) cm3, heats of vaporization (hv) kJ , critical temperatures (ct) ◦C, critical pressures
(cp) atm, and surface tensions(st) dyne cm−1 of considered lower alkanes are presented in the following
Table 1. For QSPR analysis for TTI of molecular graphs with the physical properties of lower alkanes
we use this data. For the experimental data of numerical values in columns 2 to 8 of the Table 1 one can
refer [7] or [11].

Table 1: Experimental values of the physical properties of low alkanes

Alkane bp
◦C

mv
cm3

mr
cm3

hv
kJ

ct
◦C

cp
atm

st
dyne cm−1

Pentane 36.1 115.2 25.27 26.4 196.6 33.3 16
2-Methylbutane 27.9 116.4 25.29 24.6 187.8 32.9 15
2,2-Dimethylpropane 9.5 122.1 25.72 21.8 160.6 31.6
Hexane 68.7 130.7 29.91 31.6 234.7 29.9 18.42
2-Methylpentane 60.3 131.9 29.95 29.9 224.9 30 17.38
3-Methylpentane 63.3 129.7 29.8 30.3 231.2 30.8 18.12
2,2-Dimethylbutane 49.7 132.7 29.93 27.7 216.2 30.7 16.3
2,3-Dimethylbutane 58 130.2 29.81 29.1 227.1 31 17.37
Heptane 98.4 146.5 34.55 36.6 267 27 20.26
2-Methylhexane 90.1 147.7 34.59 34.8 257.9 27.2 19.29
3-Methylhexane 91.9 145.8 34.46 35.1 262.4 28.1 19.79
3-Ethylhexane 93.5 143.5 34.28 35.2 267.6 28.6 20.44
2,2-Dimethylpentane 79.2 148.7 34.62 32.4 247.7 28.4 18.02
2,3-Dimethylpentane 89.8 144.2 34.32 34.2 264.6 29.2 19.96
2,4-Dimethylpentane 80.5 148.9 34.62 32.9 247.1 27.4 18.15
3,3-Dimethylpentane 86.1 144.5 34.33 33 263 30 19.59
2,3,3-Trimethylbutane 80.9 145.2 34.37 32 258.3 29.8 18.76
Octane 125.7 162.6 39.19 41.5 296.2 24.64 21.76
2-Methylheptane 117.6 163.7 39.23 39.7 288 24.8 20.6
3-Methylheptane 118.9 161.8 39.1 39.8 292 25.6 21.17
4-Methylheptane 117.7 162.1 39.12 39.7 290 25.6 21
3-Ethylhexane 118.5 160.1 38.94 39.4 292 25.74 21.51
2,2-Dimethylhexane 106.8 164.3 39.25 37.3 279 25.6 19.6
2,3-Dimethylhexane 115.6 160.4 38.98 38.8 293 26.6 20.99
2,4-Dimethylhexane 109.4 163.1 39.13 37.8 282 25.8 20.05
2,5-Dimethylhexane 109.1 164.7 39.26 37.9 279 25 19.73
3,3-Dimethylhexane 112 160.9 39.01 37.9 290.8 27.2 20.63
3,4-Dimethylhexane 117.7 158.8 38.85 39 298 27.4 21.62
3-Ethyl-2-methylpentane 115.7 158.8 38.84 38.5 295 27.4 21.52
3-Ethyl-3-methylpentane 118.3 157 38.72 38 305 28.9 21.99
2,2,3-Trimethylpentane 109.8 159.5 38.92 36.9 294 28.2 20.67
2,2,4-Trimethylpentane 99.2 165.1 39.26 36.1 271.2 25.5 18.77
2,3,3-Trimethylpentane 114.8 157.3 38.76 37.2 303 29 21.56
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2,3,4-Trimethylpentane 113.5 158.9 38.87 37.6 295 27.6 21.14
Nonane 150.8 178.7 43.84 46.4 322 22.74 22.92
2-Methyloctane 143.3 179.8 43.88 44.7 315 23.6 21.88
3-Methyloctane 144.2 178 43.73 44.8 318 23.7 22.34
4-Methyloctane 142.5 178.2 43.77 44.8 318.3 23.06 22.34
3-Ethylheptane 143 176.4 43.64 44.8 318 23.98 22.81
4-Ethylheptane 141.2 175.7 43.49 44.8 318.3 23.98 22.81
2,2-Dimethylheptane 132.7 180.5 43.91 42.3 302 22.8 20.8
2,3-Dimethylheptane 140.5 176.7 43.63 43.8 315 23.79 22.34
2,4-Dimethylheptane 133.5 179.1 43.74 42.9 306 22.7 21.3
2,5-Dimethylheptane 136 179.4 43.85 42.9 307.8 22.7 21.3
2,6-Dimethylheptane 135.2 180.9 43.93 42.8 306 23.7 20.83
3,3-Dimethylheptane 137.3 176.9 43.69 42.7 314 24.19 22.01
3,4-Dimethylheptane 140.6 175.3 43.55 43.8 322.7 24.77 22.8
3,5-Dimethylheptane 136 177.4 43.64 43 312.3 23.59 21.77
4,4-Dimethylheptane 135.2 176.9 43.6 42.7 317.8 24.18 22.01
3-Ethyl-2-methylhexane 138 175.4 43.66 43.8 322.7 24.77 22.8
4-Ethyl-2-methylhexane 133.8 177.4 43.65 43 330.3 25.56 21.77
3-Ethyl-3-methylhexane 140.6 173.1 43.27 43 327.2 25.66 23.22
3-Ethyl-4-methylhexane 140.46 172.8 43.37 44 312.3 23.59 23.27
2,2,3-Trimethylhexane 133.6 175.9 43.62 41.9 318.1 25.07 21.86
2,2,4-Trimethylhexane 126.5 179.2 43.76 40.6 301 23.39 20.51
2,2,5-Trimethylhexane 124.1 181.3 43.94 40.2 296.6 22.41 20.04
2,3,3-Trimethylhexane 137.7 173.8 43.43 42.2 326.1 25.56 22.41
2,3,4-Trimethylhexane 139 173.5 43.39 42.9 324.2 25.46 22.8
2,3,5-Trimethylpentane 131.3 177.7 43.65 41.4 309.4 23.49 21.27
2,4,4-Trimethylhexane 130.6 177.2 43.66 40.8 309.1 23.79 21.17
3,3,4-Trimethylhexane 140.5 172.1 43.34 42.3 330.6 26.45 23.27
3,3-Diethylpentane 146.2 170.2 43.11 43.4 342.8 26.94 23.75
2,2-Dimethyl-3-ethylpentane 133.8 174.5 43.46 42 338.6 25.96 22.38
2,3-Dimethyl-3-ethylpentane 142 170.1 42.95 42.6 322.6 26.94 23.87
2,4-Dimethyl-3-ethylpentane 136.7 173.8 43.4 42.9 324.2 25.46 22.8
2,2,3,3-Tetramethylpentane 140.3 169.5 43.21 41 334.5 27.04 23.38
2,2,3,4-Tetramethylpentane 133 173.6 43.44 41 319.6 25.66 21.98
2,2,4,4-Tetramethylpentane 122.3 178.3 43.87 38.1 301.6 24.58 20.37
2,3,3,4-Tetramethylpentane 141.6 169.9 43.2 41.8 334.5 26.85 23.31

Throughout this study, we refer to a graph as a simple connected graph. In section 2, we see total
tension as a topological index and obtain some results. Mainly, we establish a relation between total
tension index and total stress of a graph. We deduce that a graph is complete if and only if its total
tension and the number of geodesics in it are equal. We also deduce that the total tension of an n-vertex
connected proper subgraph of a complete graph Kn with n ≥ 3 vertices is greater than the total tension
of Kn. We obtain a formula for computing total tension of a tree. Section 3 presents the results of a
QSPR investigation of the physical properties of lower alkanes using the total tension index of molecular
graphs, along with some excellent linear regression models for some physical properties.

2. Total tension as a molecular descriptor

A topological index, often referred to as a molecular descriptor, is a mathematical formula that may
be applied to any graph that represents any molecular structure. One can evaluate mathematical val-
ues and look into some other physicochemical aspects of molecules using such a topological index. It is
therefore a useful strategy for avoiding costly and time-consuming laboratory experiments.
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The physical properties of chemical compounds are converted into numerical data via quantitative
structure-property relationship (QSPR) investigations, which are then used to build regression models
and investigate correlations between the physical attributes and the structure of the compounds. With
QSPR, a number of topological indices have been examined.

Since isomorphic graphs have same total tension, the total tension is a graph invariant i.e., the total
tension is a molecular descriptor(i.e., a topological index). We call total tension Nτ (G) of a graph G as
total tension index (TTI) of G. The following proposition gives bounds for the TTI.

Proposition 2.1 For any graph G,

|E(G)| ≤ Nτ (G) ≤ |E(G)|f(G) (2.1)

Proof: For an edge e in G, we have
1 ≤ τ(e) ≤ f(G).

Using this in the definition of total tension (1.2), we have the inequality (2.1). 2

Proposition 2.2 If G is a t-tension regular graph, then

Nτ (G) = |E(G)|t (2.2)

Proof: If G is t-tension regular, then τ(e) = t, ∀e ∈ E(G) and so from (1.2), we have

Nτ (G) =
∑

e∈E(G)

t = |E(G)|t.
2

Theorem 2.1 For any graph G,
Nτ (G) = Nstr(G) + f(G). (2.3)

Proof: By counting the number of geodesics and the internal edges in geodesics, we see that, for any
graph G of diameter d, the Total stress of G is given by

Nstr(G) =

d∑
i=1

fi(i− 1), (2.4)

where fi denotes the number of geodesics of length i in G (see [1, Proposition 2.6]). Also, the TTI of G
is given by

Nτ (G) =

d∑
i=1

ifi (2.5)

(see [2, Proposition 3.3]). Also,

f(G) =

d∑
i=1

fi (2.6)

Now, from the equations (2.4), (2.5) and (2.6), we have

Nstr(G) = Nτ (G)− f(G).

Re-arranging terms, we get the result (2.3). 2

Corollary 2.1 For the complete graph Kn, Nτ (Kn) =
(
n
2

)
.



Total Tension as a Topological Index 5

Proof: For Kn, we have Nstr(Kn) = 0 and f(G) =
(
n
2

)
. Therefore from Eq.(2.3), we have Nτ (Kn) =

(
n
2

)
.
2

Corollary 2.2 A graph G is a complete graph if and only if Nτ (G) = f(G).

Proof: In [6], it is proved that Nstr(G) = 0 if and only if G is complete. Using this fact in Eq.(2.3) of
Theorem 2.1, it follows that, G is complete if and only if Nτ (G) = f(G). 2

Corollary 2.3 An n-vertex connected graph G is complete if and only if Nτ (G) =
(
n
2

)
.

Proof: Let G be an n-vertex connected graph. Suppose that G is complete. Then by the Corollary 2.1,
Nτ (G) =

(
n
2

)
.

Conversely, suppose that Nτ (G) =
(
n
2

)
. Then from Eq.(2.3),

Nstr(G) + f(G) =

(
n

2

)
(2.7)

Since G is connected, there is a path between any two vertices in G and hence there is at least one
geodesic between any pair of vertices in G. Therefore there are at least

(
n
2

)
geodesics in G i.e.,

f(G) ≥
(
n

2

)
(2.8)

Using (2.8) in (2.7), we have (
n

2

)
= Nstr(G) + f(G) ≥ Nstr(G) +

(
n

2

)
=⇒ 0 ≥ Nstr(G) (2.9)

But

Nstr(G) ≥ 0 (2.10)

Now from (2.9) in (2.10), we have Nstr(G) = 0. Then, G is complete (because Nstr(G) = 0 if and only if
G is complete [6]). 2

Corollary 2.4 For a tree T on n nodes, from [1, Proposition 3.2], we have

Nτ (T ) =
∑
v∈I

 ∑
1≤i<j≤m

|Cv
i ||Cv

j |

+

(
n

2

)
, (2.11)

where I is the set of all non-pendant internal nodes in T and the sets Cv
1 , . . . , C

v
m denote the node sets

in the components of T − v for an internal node v of degree m = m(v).

Proof: For a tree T on n nodes, we have

Nstr(T ) =
∑
v∈I

 ∑
1≤i<j≤m

|Cv
i ||Cv

j |

 , (2.12)

where I is the set of all non-pendant internal nodes in T and the sets Cv
1 , . . . , C

v
m denote the node sets

in the components of T − v for an internal node v of degree m = m(v). Also, since there is only one path
between every pair of vertices in a tree, we have

f(T ) =

(
n

2

)
(2.13)

Now, using (2.12) and (2.13) in (2.3), we get (2.11). 2
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Corollary 2.5 For a tree T on n ≥ 2 vertices,

(i) Nτ (T ) = 1, for n = 2;

(ii) Nτ (T ) >
(
n
2

)
, for n > 2.

(iii) Nτ (T ) > Nτ (Kn)

Proof:

(i) For n = 2, T = P2 and so Nτ (T ) = 1.

(ii) For n > 2, T is not a complete graph and hence Nstr(T ) > 0 (because Nstr(G) = 0 if and only if G
is complete [6]). Then by Eq.(2.3) of Theorem 2.1, it follows that,

Nτ (T ) = Nstr(T ) + f(T ) > f(T ) =

(
n

2

)
.

(iii) For the complete graph, we have Nτ (Kn) = f(Kn) =
(
n
2

)
. Hence from (ii), we have Nτ (T ) >

Nτ (Kn). 2

Corollary 2.6 If G is an n-vertex connected proper subgraph of Kn with n ≥ 3, then Nτ (G) > Nτ (Kn).

Proof: Suppose thatG is an n-vertex connected proper subgraph ofKn with n ≥ 3. SinceG is connected,
there is a path between any two vertices in G and hence there is at least one geodesic between any pair
of vertices in G. Therefore there are at least

(
n
2

)
geodesics in G i.e.,

f(G) ≥
(
n

2

)
(2.14)

Since G is a proper subgraph of Kn, we have

Nstr(G) > 0, (2.15)

because Nstr(G) ≥ 0 and Nstr(G) = 0 if and only if G is complete [6]. Then using (2.14) and (2.15) in
Eq.(2.3) of Theorem 2.1, we get

Nτ (G) = Nstr(G) + f(G) > 0 +

(
n

2

)
=

(
n

2

)
= Nτ (Kn). 2

The following theorem give a formula for computing TTI of tress.

Theorem 2.2 For a tree T ,

Nτ (T ) =
∑

e∈E(T )

|V (Ce
1)||V (Ce

2)|, (2.16)

where Ce
1 and Ce

2 are the components of T − e corresponding to e ∈ E(T ).

Proof: Let T be a tree. From [2, Proposition 2.3], for an edge e ∈ E(T ), the tension on e is

τT (e) = |V (Ce
1)||V (Ce

2)|,

where Ce
1 and Ce

2 are the components of T − e. Therefore

Nτ (T ) =
∑
e∈E

τT (e) =
∑

e∈E(T )

|V (Ce
1)||V (Ce

2)|. 2
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Proposition 2.3 If G is a subgraph of a tree T , then

Nτ (G) ≤ Nτ (T ). (2.17)

The inequality will be strict if G is a proper subgraph of T .

Proof: Let G be a subgraph of a tree T . Since there is one and only one path between any two vertices
in a tree, we have

τG(e) ≤ τT (e)

for any edge e in G. Therefore, from (1.2),

Nτ (G) =
∑

e∈E(G)

τG(e) ≤
∑

e∈E(G)

τT (e) ≤
∑

e∈E(T )

τT (e) = Nτ (T ).

When G is a proper sub graph of T , the size of G is less than the size of T and hence there is at least
one edge in T that is not in G. Also, tension of any edge in T is ≥ 1. Therefore the inequality is strict
(2.17). 2

Remark 2.1 If G is a subgraph of a graph G′, then the inequality
Nτ (G) ≤ Nτ (G

′) need not be true, if G′ is not a tree. For example, consider the complete graph Kn

and any spanning tree T of Kn. From the Corollary 2.5, we have Nτ (T ) > Nτ (Kn).

3. A QSPR Analysis for TTI

We perform a QSPR study for TTI of molecular graphs of lower alkanes with their physical char-
acteristics in this part. The TTIs of molecular graphs were calculated using Eq.(2.16). Table 2 lists
the calculated TTI Nτ values of molecular graphs. QSPR analysis is performed using the experimental
values of the physical properties of the considered lower alkanes listed in Table 1, such as boiling points
(bp) ◦C, molar volumes (mv) cm3, molar refractions (mr) cm3, heats of vaporisation (hv) kJ , critical
temperatures (ct) ◦C, critical pressures (cp) atm, and surface tensions (st) dyne cm−1.

Table 2: TTI Nτ of low alkanes

Alkane Nτ

Pentane 20
2-Methylbutane 18
2,2-Dithylpropane 16
Hexane 35
2-Methylpentane 32
3-Methylpentane 31
2,3-Dimethylbutane 29
2,2-Dimethylbutane 28
Heptane 56
2-Methylhexane 52
3-Methylhexane 50
3-Ethylpentane 48
2,3-Dimethylpentane 46
2,4-Dimethylpentane 48
2,2-Dimethylpentane 46
3,3-Dimethylpentane 44
2,3,3-Trimethylbutane 42
Octane 84

Alkane Nτ

2-Methylheptane 79
3-Methylheptane 76
4-Methylheptane 75
4-Ethylhexane 72
2,2-Dimethylhexane 71
2,3-Dimethylhexane 70
2,4-Dimethylhexane 71
2,5-Dimethylhexane 74
3,3-Dimethylhexane 67
3,4-Dimethylhexane 68
3-Ethyl-3-methylpentane 64
3-Ethyl-2-methylpentane 67
2,3,3-Trimethylpentane 62
2,3,4-Trimethylpentane 65
2,2,3-Trimethylpentane 63
2,2,4-Trimethylpentane 66
Nonane 120
3-Ethylheptane 104
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Alkane Nτ

4-Ethylheptane 102
2-Methyloctane 114
3-Methyloctane 110
4-Methyloctane 108
2,2-Dimethylheptane 104
2,3-Dimethylheptane 102
2,4-Dimethylheptane 102
2,5-Dimethylheptane 104
2,6-Dimethylheptane 108
3,3-Dimethylheptane 98
3,4-Dimethylheptane 98
3,5-Dimethylheptane 100
4,4-Dimethylheptane 96
3-Ethyl-2-methylhexane 96
4-Ethyl-2-methylhexane 98
3-Ethyl-3-methylhexane 92
3-Ethyl-4-methylhexane 94

Alkane Nτ

2,3,3-Trimethylhexane 90
2,3,4-Trimethylhexane 92
2,3,5-Trimethylpentane 96
2,4,4-Trimethylhexane 92
3,3,4-Trimethylhexane 88
2,2,3-Trimethylhexane 92
2,2,4-Trimethylhexane 94
2,2,5-Trimethylhexane 98
3,3-Diethylpentane 88
2,2-Diethyl-3-ethylpentane 88
2,3-Diethyl-3-ethylpentane 86
2,4-Diethyl-3-ethylpentane 90
2,2,3,3-Tetramethylpentane 82
2,2,3,4-Tetramethylpentane 86
2,2,4,4-Tetramethylpentane 88
2,3,3,4-Tetramethylpentane 84

Regression Models:

An investigation was conducted using the following linear regression model

Y = A+B ·Nτ

where Y = Physical property and Nτ = TTI of molecular graphs of low alkanes. We have calculated and
tabulated the correlation coefficient r, its square r2, standard error (se), t-value, and p-value in Table 3
using Tables 1 and 2.

Table 3: r,r2, se, t and p for the physical properties (Y ) and TTI Nτ

Y r r2 se t p
bp 0.9436 0.8904 0.049 23.33 7.1E − 34
mv 0.9720 0.9447 0.045 33.84 7.4E − 44
mr 0.9616 0.9247 0.014 28.68 2.4E − 39
hv 0.9648 0.9308 0.007 30.03 1.4E − 40
ct 0.8889 0.7902 0.082 15.88 2.1E − 24
cp −0.9366 0.8772 0.004 −21.87 3.2E − 32
st 0.8110 0.6577 0.006 11.26 5.2E − 17

For the physical properties - bp, mv, mr, hv, ct, cp and st of low alkanes, the linear regression models
are displayed below:

bp = 29.0394 + 1.1314 ·Nτ (3.1)

mv = 113.9705 + 0.6435 ·Nτ (3.2)

mr = 24.8343 + 0.1937 ·Nτ (3.3)

hv = 23.7939 + 0.1983 ·Nτ (3.4)

ct = 193.2791 + 1.2954 ·Nτ (3.5)

cp = 33.4115− 0.0940 ·Nτ (3.6)

st = 16.1893 + 0.0620 ·Nτ (3.7)
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Figure 1: Model for bp Figure 2: Model for mv

Figure 3: Model for mr Figure 4: Model for hv

Figure 5: Model for ct Figure 6: Model for cp
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Figure 7: Model for st

Except for surface tensions, the numerical values of r, r2, se, t, and p (found in Table 3) for the
physical properties are excellent. According to the regression study, low alkanes’ physical characteristics
show strong linear correlations with TTI, as seen by high r2 values. This implies that TTI can accurately
anticipate the molecular characteristics of low alkanes. Predictions can therefore be made using the linear
regression models (3.1)-(3.6).

4. Conclusion

From the Table 3, it follows that the linear regression models (3.1)-(3.6) are useful for predicting the
physical properties of low alkanes. This demonstrates that in QSPR investigations, the total tension
index may be employed as a predictive indicator.
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