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Certain properties and numerical applications of generalized hybrid special polynomials
associated with Hermite polynomials
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ABSTRACT: This paper introduces a novel class of generalized Hermite-based Apostol-type Frobenius-Euler
polynomials and numbers of order v and level a. We establish fundamental identities and properties by
employing generating function techniques, including summation formulas, differential and integral relations,
and addition theorems. Furthermore, we investigate their connections with Stirling numbers of the second
kind and various other polynomial families. Additionally, we derive a corresponding differential equation and
a recurrence relation for these newly defined polynomials. To visualize their behaviour, we utilize Maple to
compute numerical values and illustrate the distribution of their zeros through surface plots.
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1. Introduction

For a,u € C, with u # 1, the Frobenius-Euler polynomials bz S (&;u) of order a, are defined by the
generating function as follows

< = )"‘e& = ZHﬁa)(ﬁ;U)Zfr, 12l < [log(w)l-

e* —u = 7!

When o =1, Hr(l)(f ;u) := H(&u) is called the r-th Frobenius-Euler polynomials. In the special case
when a =1 and u = -1, H.(§;—1) := E,.(§) denotes the Euler polynomials. (see, [14]).

The Frobenius—Euler polynomials and numbers have been extensively investigated by numerous re-
searchers and have garnered significant attention in the mathematical community. Several authors
[5,7,13,16,17] have proposed novel generalizations of these polynomials, leading to the derivation of
fundamental properties, recurrence relations, and differential equations. Moreover, their studies have
established intricate connections between Frobenius—Fuler polynomials and various other classes of poly-
nomials and numerical sequences, further enriching the field of mathematical analysis.
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This paper introduces and investigates a novel class of generalized Hermite-based Apostol-type
Frobenius—Euler polynomials and numbers, characterized by order v and level . By leveraging gen-
erating function techniques, we derive fundamental identities and key structural properties, including
summation formulas, differential and integral relations, and addition theorems. Furthermore, we ex-
plore their interconnections with Stirling numbers of the second kind and various well-known polynomial
families. Additionally, we establish a corresponding differential equation and a recurrence relation for
these polynomials. To further analyze their behaviour, we employ computational tools such as Maple to
compute numerical values and visualize the distribution of their zeros through surface plots.

The paper is organized as follows:

Section 2 introduces essential definitions and reviews relevant background results, including Stirling
numbers of the second kind, generalised Apostol-Bernoulli, Apostol-Euler, and Apostol-Genocchi poly-
nomials of level «, as well as Fubini, Bernstein, and Hermite polynomials. Section 3 explores the funda-
mental properties of the generalized Hermite—based Apostol-type Frobenius—Euler polynomials, focusing
on their recurrence relations and differential equations. Additionally, it presents explicit formulas that
establish connections between these polynomials and other significant families of numbers and polynomi-
als. Section 4 is dedicated to the numerical investigation of the newly introduced polynomials, including
the computation of numerical values and an analysis of the distribution of their zeros using surface plots.
Section 5 provides concluding remarks, summarizing the key findings and potential directions for future
research.

2. Background and previous results

In this paper, we follow standard mathematical notations: N = {1,2,3,...} represents the set of
natural numbers, while Ny = {0,1,2, ...} denotes the set of non-negative integers. The set of all integers
is denoted by Z, the set of real numbers by R, and the set of complex numbers by C. For the complex
logarithm, we consider the principal branch. Additionally, when dealing with expressions of the form w =
z¥, we assume a single-valued interpretation such that 1¥ = 1, ensuring consistency in our computations.

The Stirling numbers of the second kind, denoted by S(r,s), are defined through the generating
function (see [14, p. 78]):

M :iS(r,s)%, (2.1)

which satisfies the conditions:

S(r,1) =S(r,r)=1, S(rr—1)= (;)

Furthermore, Agikgoz et al. [1, Eq. 2.12] introduced a generalized form of the (p, ¢)-Stirling numbers
of the second kind, denoted by Sl[flq_u (r;v;7y), through the generating function:

(7617“1 > hmo [h]zpq )

[V]p,q!

ZSQ I 7"v;v)[z

T]p,q!'

By taking the limit ¢ — p = 1, this formulation reduces to

(7@2U232'> Zs[alTU’y)

o
rl’
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Notably, when setting a = v = 1, the above expression simplifies to equation (2.1).
The Bernstein polynomials Bs (), of degree r, are defined by employing the following generating
function (see, [2]):

( (1 5)Z_ZBST 7; SeNo,

where
r r—S
B = (D)ea-o
For mathematical convention, we usually set B;,.(§) =0 if s > r.

In recent years, notable progress has been made in developing various generalizations of special func-
tions within mathematical physics. These advancements provide a robust analytical framework for solving
various mathematical physics problems and have extensive practical applications across diverse domains.
Notably, the significance of generalized Hermite polynomials has been underscored, as noted in previous
studies [9,10]. These polynomials find utility in addressing challenges in quantum mechanics, optical
beam transport, and a spectrum of problems spanning partial differential equations to abstract group
theory.

The “2-variable Hermite Kampé de Feriet polynomials (2VHKAFP)”, denoted as Q,(&,n) [3], are
expressed through the following generating function:

222 > "
65 = § Qn(gv n)ﬁ7
which for n = 0, gives

The generating function of the ordinary Hermite polynomials is defined by (see, [11]):

e r
2 =N H,(6)2
r=0

so that

where {g} is the truncated part of g

Let v,v € C, @ € N and a,c € R the generalized Apostol-Euler G[Ta_l’y] (&;¢,a;v) polynomials of
order v, are defined respectively (cf. [4,6,12]):

T 20(
glo—1v] (5;0,@;7)% = .

T a—1
; (zlna)*
yc* + Z T

k=0

M8

ﬂ
I
=

When ¢ = a = e, we arrive at the following:

(G, e5) = €0 (g5 ),
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Recently, Quintana et al. [8] introduced some properties and recurrence formula of the generalized
Euler polynomials E,[ﬂa_l] (&) of level . Also, they provided the following expression

a—1 Zk [e’e) e
eerZE — Z(Ham)ﬁ,
k=0 n=0 ’

where

1, fo<r<a,
a =
ne 0, ifr>a.

Motivated by these papers, we define the generalized Hermite-based Apostol type Frobenius-Euler Poly-
nomials of order v and level a.

3. The generalized Hermite based Apostol type Frobenius-Euler polynomials and their

Properties

Definition 3.1 For a fized « € N, r € Ny, v,y € C, u € C\ {1}, the generalized Hermite based
Apostol-type Forbenius-FEuler polynomials of order v and level a and variable £, € R, re defined through
the following generating function, in a suitable neighbourhood of z = 0:

v

(1 —u)” z

Etn2® _ CT P
a—1 zl € - Z ng (5) 777“77) ’]"! . (31)
r=0
ey
=0

Setting n = 0, the above expression reduces to generalized Apostol-type Frobenius-Euler polynomials:

v

(1 7“)04 z - a—1,v z"
a1 et = E FELTE ](fﬂtﬁ)ﬁ
r=0
ver: —u E -
l!
=0

Upon setting £ =0 =1 in (3.1), we have

w&LTH0,05u;9) == €T (i),

called the generalized Hermite based Apostol-type Frobenius-FEuler numbers of order v and level o, and for
v =0 the generalized Hermite based Apostol-type Forbenius-Euler polynomials reduces to the generalized
Hermite based Apostol-type Forbenius-FEuler polynomials reduces to 2-variable Hermite Kampé de Feriet
polynomials (2VHKAIFP), denoted as 9, (&,1n).

Performing some manipulations on the generating function (3.1), we have

v v

(1 —u)® otz <(1—u)a>v e e£z+nz2’

a1l g 29 (—u) !
z
et —u ) I
1=0

a—1
_ z
(e +D 3
1=0

and thus,

- [a—1,v] - é _ (17u)a e [a—1,v] j ir
ZH‘ST’ (5,777%7) 7! ( 20‘(—U> Zer 577]7 w rl .

r=0 r=0
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The proposition 3.1, provides some properties of the generalized Hermite based Apostol type Frobenius-
Euler polynomials 5 &,[*~1V] (&, m; u;~y) whiteout proofs since they can easily be proved through Definition
3.1.

Proposition 3.1 For a fizred a € N, let {ng[a—l,l/] (5,n;u;’y)} be the sequence of the generalized
=0

Hermite based Apostol type Frobenius-FEuler polynomials, of order v and level o. Then the following
identities hold true:

1. Summation formula. For every r € Ny

T

e e ) = 32 () - ) @ute)

s=0

2. Differential relation. For a fixred « € N, v,v € C and r,j € Ny with 0 < 57 < r, we have

D5H5r+1 B (€ 75 U; ’7) (T + 1) ng[a—l,l/] (ga n;u; ’7)7
j a—1,v 7! [a—1,v]
Déj)ng[ . }(ﬁ,n;uw) = Wng J b (& myus7). (3.2)

3. Integral formula. For a fived « € N, v,y € C, we have

&1 g, [a—1,v] 03U — 4E, [a—1,v] s
/ HENTI (€ sz ) de = HEHL (1,1 ’(72 +f) +1 (€0:7m ’Y).
0

4. Addition formula.

o— V - T Oé V
ng ! (€ + Y, n;u; 7) (S) ng s ! (€ 75 U '7)2/ (33)
s=0
o— l/ d T o— 12 r—S8
HELTIE +y musy) = <S> aELP T usy) (E+y) 0 (3.4)
s=0
5,
HELTIE N+ yusy) = (25) #E 25T E My us )y, (3.5)
s=0
(5] ,
ELTE N+ yuy) = (25) HELT M () (p+y)
s=0

Setting y =1 in (3.3), we have

T

a—1,v r G LY
wETINE+ 15 usy) = (S> #E s E ).
s=0
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5. Addition formula of the argument.

a—1,v - r a— 1,V o—
w4y mius) = <S)H5rs[ S ) pEL T (05 y),
s=0
(5] .
a& TN+ yuy) = (25) €2l TE i w ) T (g0 ).
s=0
6. We have
a- rly a- -
Blet(g, ) = CEG (r_a)ngr—a[ ey ™1); r>a,
a a—1
[a—1] A — [e—1] a1
Gr (577777) (’y—f—l)ang (5777, Yo )7
[a—1] 299>yl [a—1] -1
&, (5777;7)=(7+1) o= )|H5r THE YT ) T2

Since this proposition is a straightforward consequence of the Definition (3.1), we shall omit its proof.
So, we focus our efforts on the proof of the Addition theorems (Equations (3.3), (3.4) and (3.5)).

Proof: To demonstrate identity (3.3), substituting £ by £ + y in (3.1) we have

v

(1 B u)a 24+n2? - a—1,v 2"
o | T =D wE Ty ) (3.6)

z r=0
ey
=0

rewriting the left hand of (3.6)

S a—1,v - a—1,V ZT
> wELT (e ) S E y" T, =D n& ey )
r=0 r=0

applying the Cauchy product, we obtain

S r a—1,v szr . a—1,v 2"
ZZ( >H<‘3r_s[ M muNY S =Y uE T ey ) S
=0 5=0 \° r r=0 "

T
By comparing the coefficients of Z—' on both sides in above equation, we obtain (3.3). The equation (3.4)

7!
is obtain rewriting the equation (3.6) in the form:

. a—1,v Zr - ZT o o— V "
> & T ) Y (€)= wETE g )
r=0 r=0 r=0

Making the corresponding modifications, we can apply the same reasoning as in the proof of (3.5). O
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Theorem 3.1 The 2-variable Hermite Kampé de Feriet polynomials (2VHKIFP), Q,(§,n) can be
espres in term of the generalized Hermite based Apostol-type Frobenius-FEuler polynomials.

1 —~ (r [a—1]
Qr (fa 77) = T N4 Z (’Y - uas,a) ng—s (65 75 u; 7) (37)

(I—u)* = \s

where
1, if0<s<a,
s .o = .
’ 0, if s> a.

Proof: (3.7). Setting v =1 in (3.1), we have
2 — = a— z"
(1 — ) = (76 _”Z ll) (Z &! H(fﬂ?;“ﬂ)ﬂ)
r=0
(Z uara (ZHg [o= 1] E 75 U; ’Y) >

r=0

ﬁ‘l\?

therefore,
co T o7
1_u ZQrfn Z ( > _uasa)ng s[a 1](5 777“ ’Y)*'

r=0 s=
z"
By comparing the coefficients of — on both sides, we obtain the result.
r!

Theorem 3.2 The generalized Hermite-based Apostol type Frobenius-Euler polynomials satisfy the fol-
lowing relations

min(r,a—1)

a—1,V r a—1,V « a—1,V—
yrEL T E wy) —u Y <S)Hé}_s[ Ml Guy) = 1 —w)® g& (G uy), (3.8)

s=0

min(r,a—1)

—1,v r a—1,v a a—1.v—
g w3 (7Y~ diuin) = (1) 8 T,

s=0

(3.9)
Proof: (3.8). Form (3.1)
a—1 o a a—1 | oo
z (1_11/) £z (1—U) (&+1)=z _ z [ee— 11/
(S| | e = SRR e e
=0 1=0

+ Yo mE T G un) G (3.10)

r=0

operating in the Lh.s. of (3.10), we find
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v v

(1—u)” €z (1—u)~
—“Zu e | O T ey

e+ 1)z

_UZ I

v

v—1

I
—~
—_

\
<
N
Q
—~
—_
I
<
~
Q

=0

Oé W= Z
(1 —u) Z glomt 1](§,ufy)—'.

r=0

Operating in the r.h.s. of (3.10), we find

'YZHg (S s

LE IS s
r=0

1=0 .’I“O

oo min(r,a—1)

S S (at

o0

mm('r‘,a—l)
5 (st )

r o1y 2"
s Wy Z (S) ng—s[ 1 ](gaua’Y) F
r=0 5=0 :

T

Comparing the coefficients of z—', we obtain (3.8)

Proof: (3.9). Form (3.1)

- [a— 1u] = l = a— 11/] 2" (17u)a £z
Y ) G S e 5 - | |
- R
=0
a—1 o
4 (17’&) (6-1)z
—UZF ﬁ (& , (311)
1=0 ’Y@Z—UZ*

operating in the r.h.s. of (3.11) we find
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-1
(1 —w)* £z <« 7 (1 —w) (6—1)z
=7 Oé—lzl & —U;F a_lzl €
e —u) - v —uy
1=0 1=0
-1
(1—w)*> ¢ =z _
o = B u) e
o —u Z zZ 1=0
|
— l!
v
—1
_ (1 _u)a £z z S Zl —
= (XZ—lzl e yer — ulzg ﬁ €
ve: —u T B
— l!
v—1
—(1-u)® _(A—w Q6= 1)z

a—1 Zl
vez—uzﬂ
1=0
« - a—1,v— ZT
= (=) n& e - Lui)

Operating in the Lh.s. of (3.11), we find

—W’TZOHg (g usy) f—uzz TZHE o=l —1;U;7)%

oo min(r,a—1) r

_VZH"': ot s )2 Z Z (Z>H5 75[6‘_17”](5—1;11;’7)%

0o mm(r,a—l) r
a—1,v r a—1,v 4
Z Vng[ L ](§;u;7)fu Z <S>H5r—s[ b ](5*1;%’7) R

r=0 s=0

r

z
By comparing the coefficients of — we obtain (3.9). O
7!

Upon setting v = 1, in (3.8), we give the following corollary.

Corollary 3.1 The generalized Hermite-based Apostol type Frobenius-Euler polynomials, for v =0 sat-
isfy the following relations

min(r,a—1)

QT(&”):ﬁ 7§<Z)H5k[a_”(§m;uw)—u > (;)H&_s[a‘”(ﬁ,n;u;v) ,

s=0

where Q,.(€,7) is the 2-variable Hermite Kampé de Feriet polynomials (2VHKdFP).
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Theorem 3.3 The generalized Hermite-based Apostol type Frobenius-Euler polynomials satisfy the fol-
lowing relation, with u # 1

Ll 1wz ) —u g&LE ;g - a1,
s=0

Proof:

W’ZHg I+ 1 m sy *—UZHF; A (T ’Y)*,

r=0 r=0
v 14

(1 — u)a e(§+1)z+nz2 —u (]‘ — u)a e§z+nz2

a—1 a—1
veF —u E - ver —u E z
l! l!

=0 =0

=7

1— )™
= (—Z)—ll e§Z+7722 (,Yez o U)

z
e u )
=0

yer —u

Hence by using (3.1) in the above equation and applying the Cauchy product

oo

Z(WHET[Q71V(£+17’7U’Y)_UHE (o= 11/](5 777”7))7
r=0
oo i s o B o7
:(1_U)ZH€T[ L ](§7U;U;7)HZH&[O’ 11(“77)?
r=0 r=0
_ a—1,v] [—1] . 2774
(1-u zz( Y ) )

‘s

z
comparing the coefficients of - on both sides, we obtain the proof.

r 0

Theorem 3.4 The generalized Hermite-based Apostol type Frobenius-Euler polynomials satisfy the fol-
lowing identity

min(r,a—1)

_ r a— - r
’Yng[a 1] (5 + 1; 75 U3 'Y) —Uu Z (S> ngfs[ 1] (57 75 U3 ’7) = (S> ('7 - uas,a)

s=0 s=0
X ng—s[ail] (fa ;U 7);
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where
1, if0<s<a,

a =
o {0, if s > a.

Proof: Using Definition 3.1, we attain

’l"

VZH&[Q’”(EJan;uw)Z: Z 72 (g msu; 7)
r=0 r=0 " r=0

(’ye - Z _)ZHE §7Iau7) z
Dy _)sz )

)ZHS o 1] Eanvu 7)

o z
) (’y_uas,a) ngfs[ 1](5777;'”;’7)?7

o
rl

Il Il I
N N
s
= 3 o
S il
g \
:
Q

where as o is defined in (3.12).
In the other hand of (3.13) by the Cauchy product we have

’I"

WZHS[“1(£+1n,u7 Z%ZHE[alfmuv)
r=0 r=0 r=0

o0 ,,‘

WHE"‘”(£+177,U7 Z
=0

min(r,a—1)
0

r o z"
Z ( >H‘€r—s[ 1 (5777,%’7)*,
— S r

O

- min(r,a—1)

[a—1] N r [a—1] o
v aETT €+ Lnuy) oy~ > (S)HE (& musy)

s=0

r
|

0

~z
I
=)

'

comparing the coefficients of Z—' on (3.13) and (3.15) gives the desired result.
r!

11

(3.12)

(3.13)

(3.14)

(3.15)

Theorem 3.5 The following implicit summation formula for the generalized Hermite based Apostol type

Frobenius-Fuler polynomials holds true

s,l

a—1,v S l rTn a—1,v
aEa T w g uwy) = Y (T> (n> (W= &) yEasi—r—n U E+ Y, mius ).

r,n=0

Proof: From (3.1), we have

(1 _ u)oc . 22 > a—1,v ¢
S A A ](§+y7n;u;w)g7

'yez—uz% =0

(3.16)
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substituting z by z + a in above equation, we obtain

v

1 _ [e3
( a’li)l ( )l ef(z+a)ey(z+a)en(z+a)2 Z 0E, [a—1,v] (f + oy, '7) ( + Cl)
z+a r=0
z+a) __
1=0
Now, using the following formula [15, p.52]
- E+y)" y
> s =S st 0 317
N=0
we get
(1- “)“ y(eta) n(z4a)® _ —E(=4a) N [a—1,] 2*a!
e e =e > g€t (§+y777;uw)w-
fye(era —u Z Z + CL s,0=0 o

Replacing ¢ by w in the above equation and equating the resultant equation to the above equation, we
obtain

(w-)(s+a) §- fa1,] a5 fa—1,4] 2t
e Y aEad Tty ) e = D nEan T w g wn) T
s,1=0 s,0=0
= Z + (I) = l[a—1,v] z*d = [a—1,v] z%a!
> (=" = > e Tty ) T = D mEen T w g )
N=0 5,1=0 5,1=0
(3.18)
Recalling (3.17), the left-hand side of (3.18) becomes
oS N oo sl
N (z+a) 1.y 2%a
(w—=¢) NT Z a7 " ](54‘3/’77;”;7)@
N=0 s,l=0
= 2a" — z%al
= > (W= e 7 wEen T ey )
rin si!
r,n=0 s,1=0
0o s,l r+n s 1
w—§ a—1luv z2%a
I et e
rin! (s =)l —n)!
s,l=0r,n=0
> 2L s\ (1 zsal
- Z ( ) ( ) (w — g)r-i-n HEst1—r— n - V](f + Y, us )
r)\n sl
s,l=0r,n=0
Comparing coefficients, we get the assertion (3.16). O

Proposition 3.2 The following identity holds for the generalized Hermite-based Apostol-type Frobenius-
FEuler polynomials:

r min(j,a—1) (

Qu-1)>" >
j=0  s=0

r ' [a— a—
]) (])ng 7 1](u§ ’V) ngfs[ 1](5777; 1- ’LL7’Y)

= u® g &LNE nusy) — (1 —w)® &L m1 —u;v). (3.19)
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Proof: We begin by considering the identity

!
(20— (1~ et T 2

(wez—uzlol,)(vez—< >Z?01j,)

1 — u)%u® £2+4mz2 1 — u)¥u® E2+4nmz2
:( u)*ue B (1 —u)*u%e (320
a—1 Z a—1%
—u i, i —(L=u) >, m
On the left-hand side of (3.20), we expand the generating functions:
2 a—1 Zl
0 e S
2 2 a—1 Z
e *UZZO )\ -1 =u) 3, i
a—1 o0 m
_ e z [a—1] 1 NE
min(j,a—1) j o
27_[,—]_ ZZ< >H€T J 71](“‘77) Z < >ngs[a1](€vn;1_u;7)|'
r=0 j=0 s=0 5 -
For the right-hand side of (3.20), we expand:
(1 —u)auo‘efz+"22 (- u) oy etz =
a—1 Z a—1 Z
u o i ver — (1 —u) 35, l'
o— Zr
=u ZHE §n,uv)*—(1—u Zm‘?[ (g, m1 —uY) oy
— e !
o B o
Z (u wEL TN E s y) — (1= w)*u &L (€ ms 1 - uw)) o]
By comparing the coeflicients of % on both sides, we obtain the desired identity (3.19). O

4. Distribution of Zeros and Graphical Representation

We present graphical representations of selected zeros for parametric families of generalized Hermite-
based Apostol-type Frobenius-Euler polynomials, denoted by & eVl (&,m;u;7). Additionally, we uti-

lize Wolfram Mathematica to provide illustrative examples that further support the existence and struc-
ture of these polynomial families.

For any n € Ng, and « =2, u = 2, v = 2 and v = 4, the first few generalized Hermite based Apostol
type Frobenius-Euler polynomials of order v and level « are:
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n&MA(E,m24) = i,

ale 2y = 16-3,

n&MI(Em24) = 352—€+%n+1,

&I m2:4) = i& 52 (3+2n)5—3n—;

HENAE24) = €1 =26+ (6+INE — (104 120)6 + 3P + 120+ =,
W02 = S s ) - 526+ 6n) + D€ (104 200 1 67)

—2(23+ 2577 +157%) .

Subsequently, we present numerical values of the zeros of these polynomial families, obtained by
assigning specific values to the parameters. These computations allow us to illustrate their behavior and
distribution. The corresponding graphical representations of & LoVl Enu;y) =0 fora =7, u =
2, v =2, v=4 and n = 3 are provided in Figurel.

°
.
6
10 4
4 - L
]
24 5 ¢
.
0 ® 0 2 .
_2_ °
o -5 .
-4 4
°
64 -10 A
L] L]
: T : T T T T T : : ! ! T T . T T
0 1 2 3 4 5 ] 7 0 1 2 3 4 5 6 7 8

204

10 4

-10 4

—204

In Figure 1, we set « =7, u =2, v = 2, v = 4 and n = 3 while varying the order of the polynomial to
examine the behavior of its zeros. Specifically, we considered different values of r: in the top-left panel, we

(a) (a) Zeros of w1 (€,3;2;4) =0

30

20+

10

-10 -

—204

-30 4

(b) (b) Zeros of #E10!%?(€,3;2;4) =0

00000 %0 g q 0

T T T T T T T
-4 -2 0 2 4 6 8

(c) (c) Zeros of &2 (€,3;2;4) =0

10

T T T T T
=10 -5 Q 5 10

(d) (d) Zeros of rE30®?(€,3;2;4) =0

Figure 1: Zeros of 5&,2(¢,3:2;4) =0, for n = 5,10, 20, 30
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set 7 = 5; in the top-right panel, » = 10; in the bottom-left panel, r = 20; and in the bottom-right panel,
r = 30. This allows us to observe how the distribution of zeros evolves as the degree of the polynomial

increases.

Figure 2 illustrates the evolution of the zeros’ behavior as the polynomial order increases, specifically
for &1V (&, n;u;y) = 0 with 0 < r < 30, considering different values of the parameters «, u, v, ¥

and 7.
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| 10 I °
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° 8
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4 ke
3 35 ¢ 5 B
308 2 -
2 - 4
c
1 257 3
8 2.0 5
1.5 4.0 1
5.0
6.90 . 10 5560
6.95 6.5 -
Rey. 700 ot € Retp) 075 n
(o) 7.05 _g '
(a) Data  visualization of  zeros of (b) Data  visualization  of  zeros of
6,2 6,2
nE07(€,3,2;4) =0 mE1097(€,3;2;4) =0
200
25
20 17.5
15 | F15.0 20
[=
0 | F125 ¢ 15 ¢
g 2
10.0 3 £
5 =
£ 10
o W75
20 5.0 5
25
-6
20
Re, 5
Rer) * 6 8 —20 () 10 30
10
(c) Data  visualization of  zeros of (d) Data  visualization  of  zeros of
6,2 L 9. _ 6,2 . 9. —
1207 (€,3;2;4) = 0 1E307(€,3;2;4) = 0

Figure 2: Data visualization of zeros of &6 (£,3;2;4) =0, for n € [0, 30]

In Figure 2, we vary r from 0 to 50 while adjusting the parameters a, u, v, v and 7 to analyze the
behavior of zeros in 3D. This setup allows us to examine how the distribution of zeros evolves as the

degree of the polynomial increases.

We then calculated an approximate solution of the generalized Hermite-based Apostol-type Frobenius-
Euler polynomials y&, 11 (&,m;u;7). The results are given in Table 1
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Order r 13
1 7
2 7 — 2.44949i, 7 4 2.44949¢
3 7 —4.242643, 7+ 4.242643, 7
4 7 —5.71812¢, 7+ 5.71812¢, 7 — 1.81743¢, 7+ 1.81743:
5 6.98327 — 3.32067%, 6.98327 + 3.320677, 7.00377 — 6.99813¢, 7.00377 4 6.998134,
7.02592
6 6.95087 — 4.61914, 6.95087 + 4.61914%, 7.01459 — 8.14435:, 7.01459 + 8.144354,

7.03454 — 1.528851, 7.03454 + 1.528851

7 6.90851 — 5.765057, 6.90851 + 5.765057, 7.01432 — 2.87157, 7.01432 + 2.87153,
7.03457 — 9.194141, 7.03457 + 9.19414¢, 7.08519

8 6.86416 — 6.788051, 6.86416 + 6.788057, 6.9633 — 4.075781, 6.9633 + 4.075784,
7.06443 — 10.17284, 7.06443 + 10.1728¢, 7.10811 — 1.363787, 7.10811 + 1.36378¢

9 6.82838 — 7.70748:, 6.82838 + 7.707487, 6.8795 — 5.167313, 6.8795 + 5.167311,
7.09977 — 2.60677%, 7.09977 + 2.60677¢, 7.10338 — 11.09861, 7.10338 + 11.0986¢,
7.17793
10 6.75836 — 6.156941, 6.75836 + 6.15694¢ 6.81485 — 8.54%, 6.81485 4 8.541,

7.06097 — 3.75788¢z, 7.06097 + 3.757884%, 7.14941 — 11.98473, 7.14941 + 11.9847+,
7.21641 — 1.253677, 7.21641 + 1.25367%

Table 1: Values of £ for different generalized Hermite-based Apostol-type Frobenius-Euler polynomials
g &Y€ nyus ) order 7.

5. Conclusion

This study presents an innovative class of generalized Hermite-based Apostol-type Frobenius-Euler
polynomials. It comprehensively examines their structural and analytical properties through the lens
of generating function techniques. The paper successfully formulates an associated differential equation
that governs this new family of polynomials by leveraging the factorisation approach. In addition, a
recurrence relation is meticulously derived, offering a recursive framework for efficient computation and
further theoretical exploration.

One of the key contributions of this work lies in establishing interconnection formulas, which reveal
intricate correlations between the proposed family and well-known classical polynomials, including Bern-
stein, Fubini, and Hermite polynomials. These relationships not only enhance the theoretical richness of
the study but also lay the groundwork for broadening the applicability of such polynomials in various
branches of mathematical analysis.

Looking ahead, the results obtained in this paper open up promising avenues for future investigations.
Potential directions include exploring orthogonality properties, zero distributions and constructing opera-
tional rules associated with these polynomials. Furthermore, the generalized Hermite-based Apostol-type
Frobenius-Euler polynomials may find meaningful applications in approximation theory, analytic number
theory, combinatorics, quantum mechanics, and solutions to partial differential equations. The analyt-
ical tools and relationships established herein are a robust foundation for extending this framework to
multivariable or g-analogue settings, thereby enriching the ongoing development in the theory of special
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functions and mathematical physics.
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