

(3s.) **v. 2025 (43)** : 1–6. ISSN-0037-8712 doi:10.5269/bspm.76550

Some Remarks on Pseudocompactness

Sheetal Luthra*, Divya and Harsh V.S. Chauhan

ABSTRACT: In this paper, we introduced the notion of d_G -pseudocompactness of topological spaces with respect to some metric space (G,d) and we gave characterization for a topological space to be d_G -pseudocompact with respect to some metric group (G,d). We investigated the relationship of d_G -pseudocompactness with other types of compactness and found some conditions under which the notion of d_G -pseudocompactness becomes equivalent to pseudocompactness.

Key Words: d_G -pseudocompact, μ_G -space, G-regular, G^* -regular, G^{**} -regular.

Contents

1 Introduction 1
2 Main Results 3

1. Introduction

A topological space X is pseudocompact if f(X) is a bounded subset of \mathbb{R} for all continuous real valued function f on X. X is feebly compact if every locally finite family of non-empty open subsets of X is finite. Both pseudocompactness and feebly compactness have been studied explicitly in [3,4]. It is shown that a Tychonoff space is pseudocompact if and only if it is feebly compact [1]. In this paper we introduced the notion of d_G -pseudocompactness of topological spaces with respect to some metric space/metric group (G,d). Our work includes several results on d_G -pseudocompactness. Our main result is to test when the notion of d_G -pseudocompactness becomes equivalent to pseudocompactness. In addition, we found the relationship of d_G -pseudocompactness with other types of compactness.

In notation and terminology, we follow [2] if not stated otherwise. Throughout the paper, (X, τ) , or simply X, denotes a topological space and (Y,d) (resp. (G,d)) denotes a metric space (resp. metric group) with metric d, unless stated otherwise. All metric spaces/metric groups are assumed to be unbounded. By a 'space', we always mean a 'topological space'. The symbol $\mathbb R$ denotes the space of all real numbers with the usual topology, $\mathbb N$ denotes the space of all natural numbers with the discrete topology and $\omega = \mathbb N \cup \{0\}$. C(X,Y) denotes the set of all continuous functions from space X to space Y. For a subset A of (X,τ) , $\bar A$ denotes the closure of A in (X,τ) and (A,τ_A) denotes the subspace of (X,τ) with subspace topology τ_A on A. For $A \subseteq Y \subseteq X$, $cl_Y(A)$ denotes the closure of A in subspace Y of X. The letter e denotes the identity of metric group G.

Definition 1.1 Let (Y, d) be a metric space. A subset A of Y is bounded if $\sup\{d(x, y) : x, y \in A\}$ is finite.

It is clear that a subset of a bounded set is bounded and finite union of bounded sets is again bounded. Also, the closure of a bounded set is bounded as $\sup\{d(x,y):x,y\in A\}=\sup\{d(x,y):x,y\in \bar{A}\}$.

Theorem 1.2 In a metric space (Y, d), a set $A \subseteq Y$ is bounded if and only if $\sup \{d(x, y_0) : x \in A\}$ is finite, where y_0 is some fixed element of Y.

^{*} Corresponding author. 2010 Mathematics Subject Classification: Primary 54D30, Secondary 54C05, 54E35, 54H11. Submitted April 26, 2025. Published September 23, 2025

Proof: Let $A \subseteq Y$ be bounded and $y_0 \in Y$ be fixed. Then by Definition 1.1, $\sup\{d(x,y): x,y \in A\}$ is finite, say k. Let $x \in A$ be arbitrary. By Triangle's inequality, we have $d(x,y_0) \leq d(x,x_0) + d(x_0,y_0)$ for some $x_0 \in A$. This gives that $d(x,y_0) \leq d(x_0,y_0) + k$. Thus, $\sup\{d(x,y_0): x \in A\}$ is finite. Conversely, let us suppose that $\sup\{d(x,y_0): x \in A\}$ is finite, say k_1 and let $x,y \in A$. Then by Triangle's inequality, we have $d(x,y) \leq d(x,y_0) + d(y_0,y) \leq 2k_1$. Thus, $\sup\{d(x,y): x,y \in A\}$ is finite and hence, A is a bounded subset of Y.

Corollary 1.3 In a metric group (G,d), a set $A \subseteq G$ is bounded if and only if $\sup\{d(x,e) : x \in A\}$ is finite, where e is the identity of G.

Definition 1.4 Let (X,τ) be a topological space and (Y,d) be a metric space. X is said to be d_Y -pseudocompact if for each continuous function $f:(X,\tau)\to (Y,d)$, f(X) is a bounded subset of Y.

Definition 1.5 A subset A of a space (X, τ) is said to be d_Y -pseudocompact if for each continuous function $f: (A, \tau_A) \to (Y, d)$, f(A) is a bounded subset of (Y, d), where (Y, d) is a metric space.

Theorem 1.6 Let (X, τ) be a topological space and (Y, d) be a metric space. Then the following statements hold:

- (i) Closure of a d_Y -pseudocompact set is d_Y -pseudocompact.
- (ii) Finite union of d_Y -pseudocompact sets is d_Y -pseudocompact.
- (iii) Every compact subset of X is d_Y -pseudocompact.

Theorem 1.7 Let $f:(X,\tau)\to (Z,\sigma)$ be a continuous function between spaces X and Z. If X is d_Y -pseudocompact, then f(X) is d_Y -pseudocompact, where (Y,d) is a metric space.

Definition 1.8 Let (X, τ) be a space. A Family $\alpha \subseteq P(X)$ is centered if $\cap \beta \neq \emptyset$ for any finite $\beta \subseteq \alpha$.

Theorem 1.9 If for every centered family $\{U_n : n \in \omega\}$ of open subsets of X, the intersection $\bigcap \{\bar{U}_n : n \in \omega\} \neq \emptyset$ then the space X is d_G -pseudocompact.

Proof: Let us suppose that X is not d_G -pseudocompact. Then there exists an unbounded G-valued continuous function on X, say f. For $n \geq 1$, consider $A_n = \{g \in G : d(g,e) > n\}$. Clearly $A_n = \phi^{-1}(n,\infty)$, where $\phi = d \circ \psi \circ \xi$, $\xi : G \to G \times \{e\}$ defined by $\xi(g) = (g,e)$ and ψ is the inclusion map. Since all the maps d, ψ and ξ are continuous, therefore the map ϕ is also continuous. It is observed that $A_n > 0$ is a decreasing sequence of non-empty open subsets of G. Also $A_{n+1} = \{g \in G : d(g,e) \geq n+1\} \subseteq \{g \in G : d(g,e) > n\} = A_n$. For each $n \in \mathbb{N}$, let $U_n = f^{-1}(A_n)$. Since $A_n = 0$ is a decreasing sequence, so it is centered and $A_n = 0$ for all $A_n = 0$. This implies that $A_n = 0$ for all $A_n = 0$. A contradiction.

Theorem 1.10 If Y is a dense d_G -pseudocompact subspace of a topological space X, then X is d_G -pseudocompact.

Proof: Let f be a G-valued continuous map on X. Then $f(X) = f(\overline{Y}) \subseteq \overline{f(Y)}$. Since Y is d_{G} -pseudocompact, f(Y) is a bounded subset of G. Since closure of a bounded set is bounded, f(X) is a bounded subset of G. Thus, X is d_{G} -pseudocompact.

Definition 1.11 A topological space X is μ_G -space if every countable subset of X is discrete and every G-valued continuous function on each countable subset of X can be extended continuously to the whole of X.

Theorem 1.12 Let X be a μ_G -space. If X is d_G -pseudocompact, then every subset of X is finite. In particular, X is finite.

Proof: Let us suppose, if possible, that there exists a countable infinite subset of X, say A. Let $A = \{a_n : n \in \mathbb{N}\}$. Define a function $f : A \to G$ by $f(a_n) = g_n$ such that $d(g_n, e) > n$. Since X is μ_G -space, A is a discrete subset of X. So f is a continuous function on A and can be extended continuously to X. Let $F : X \to G$ be a continuous extension of f. Clearly F is not a bounded function. A contradiction to the given hypothesis that X is d_G -pseudocompact. Thus, every subset of X is finite. \Box

2. Main Results

Our Main question is,

- (a). Given a metric group (G, d), for which family of topological spaces the notion of d_G -pseudo-compactness is equivalent to pseudocompactness?
- (b). Given a topological space X, for which family of metric groups the notion of d_G -pseudocompactness is equivalent to pseudocompactness?

For this, firstly we recall some definitions and then we shall give characterization for a topological space to be d_G -pseudocompact.

Definition 2.1 [5] Let G be a non-trivial topological group with identity element e. A topological space X is called

- (a). G-regular if for each closed set $F \subseteq X$ and every point $x \in X \setminus F$, there exist $f \in C(X,G)$ and a point $g \in G \setminus \{e\}$ such that f(x) = g and $f(F) \subseteq \{e\}$.
- (b). G^* -regular if there exists a point $g \in G \setminus \{e\}$ such that for every closed set $F \subseteq X$ and each point $x \in X \setminus F$, there exists $f \in C(X,G)$ such that f(x) = g and $f(F) \subseteq \{e\}$.
- (c). $G^{\star\star}$ -regular provided that, whenever F is a closed subset of $X, x \in X \setminus F$ and $g \in G \setminus \{e\}$, there exists $f \in C(X,G)$ such that f(x) = g and $f(F) \subseteq \{e\}$.

It is clear that X is $G^{\star\star}$ -regular $\Longrightarrow X$ is G^{\star} -regular $\Longrightarrow X$ is G-regular.

Theorem 2.2 Let G be a topological group containing at least three elements. Then arbitrary product of $G^{\star\star}$ -regular spaces is $G^{\star\star}$ -regular.

Proof: Let $\{X_{\alpha}: \alpha \in I\}$ be a family of $G^{\star\star}$ -regular spaces, where I is any arbitrary index set. Let $X = \prod_{\alpha \in I} X_{\alpha}$. Let $b \in X$ and F be a closed subset of X such that $b \in X \setminus F$. Then there exists a basic open set $U \subseteq X$ such that $b \in U \subseteq X \setminus F$, where $U = \prod_{\alpha \in I} U_{\alpha}$ such that $U_{\alpha} = X_{\alpha}$ for all except finitely many indices. Let $U_{\alpha} \neq X_{\alpha}$ for $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $g \in G \setminus \{e\}$. Then g can be written as $g = g_{\alpha_1} g_{\alpha_2} \ldots g_{\alpha_n}$, where $g_{\alpha_i} \in G \setminus \{e\}$ for all $i = 1, 2, \ldots, n$. Since $b_{\alpha_i} \in U_{\alpha_i}$ and $g_{\alpha_i} \in G \setminus \{e\}$ for all $i = 1, 2, \ldots, n$, there exists $f_i \in C(X, G)$ such that $f_i(b_{\alpha_i}) = g_{\alpha_i}$ and $f_i(X_{\alpha_i} \setminus U_{\alpha_i}) = \{e\}$. Now define $h_i : X \to G$ by $h_i(x) = f_i(\pi_{\alpha_i}(x))$, where $\pi_{\alpha_i} : X \to X_{\alpha_i}$ is a projection on X_{α_i} . Clearly each h_i is continuous and $h_i(x) = e$ for all $x \in X \setminus \pi_{\alpha_i}^{-1}(U_{\alpha_i})$. Now the function $f : X \to G$ defined by $f(x) = h_1(x)h_2(x) \ldots h_n(x)$ is a continuous function such that f(b) = g and $f(X \setminus F) = \{e\}$. Hence, X is $G^{\star\star}$ -regular.

Definition 2.3 A family $\sigma = \{A_i : i \in I\}$ of subsets of a space X is locally finite if for each $x \in X$ there exists a neighborhood of x which intersects with finitely many members of σ .

Definition 2.4 A family $\sigma = \{A_i : i \in I\}$ of subsets of a space X is star finite if every member of σ intersects with finitely many members of σ .

It is obvious that every star finite open covering is locally finite.

Theorem 2.5 Let (G,d) be a metric space. If X is feebly compact, then X is d_G -pseudocompact.

Proof: Let f be a G-valued continuous function on X and $h \in G$ be fixed. Consider $A_0 = \{g \in G : 0 \le d(g,h) < 1\}$ and for $n \ge 1$, $A_n = \{g \in G : n-1 < d(g,h) < n+1\}$. Clearly each A_n is open in G and $G = \bigcup_{n \in \omega} A_n$. This implies that $X = \bigcup_{n \in \omega} f^{-1}(A_n)$. Since f is continuous, $\{f^{-1}(A_n) : n \in \omega\}$ is an open cover of X and each $f^{-1}(A_n)$ does not meet $f^{-1}(A_i)$ for $i \ne n-1, n, n+1$. Therefore, the covering $\{f^{-1}(A_n) : n \in \omega\}$ becomes star finite. Since X is feebly compact, every locally finite family of non-empty open subsets of X is finite. Therefore, every star finite open cover of X has a finite subcover. Let $X = \bigcup_{i=1}^m f^{-1}(A_{n_i})$ for some $m \in \mathbb{N}$. Then $f(X) \subseteq \bigcup_{i=1}^m A_{n_i}$. Let $M = \operatorname{Max}\{n_1, n_2, \dots, n_m\}$. Then d(g,h) < M+1 for all $g \in f(X)$. Thus, f(X) is a bounded subset of G and hence, X is d_G -pseudocompact.

Corollary 2.6 Every countably compact space is d_G -pseudocompact.

Proof: The proof follows as every countably compact space is feebly compact.

Corollary 2.7 Let X be a Tychonoff space. If X is pseudocompact, then X is d_G -pseudocompact.

Proof: In Tychonoff spaces, the pseudocompactness is equivalent to feebly compactness [1]. Therefore, the proof follows by Theorem 2.5.

The following theorems give an answer to our main question.

Theorem 2.8 For a G^{**} -regular space X, X is d_G -pseudocompact if and only if X is feebly compact.

Proof: Let X be d_G -pseudocompact but not feebly compact. Then there exist a locally finite family $\sigma = \{A_i : i \in I\}$ of non-empty open subsets of X which is not finite. Let $\mathcal{A} = \{A_n : n \in \mathbb{N}\}$ be a countable subfamily of σ . To each A_n , associate a point $a_n \in A_n$. Since X is G-regular, there exists $f_1 \in C(X, G)$ and a point $b_1 \in G \setminus \{e\}$ such that $f_1(a_1) = b_1$ and $f(X \setminus A_1) = \{e\}$. Also G is an unbounded metric group, for each $n \geq 2$, so we can find $b_n \in G$ such that $d(e, b_{n+1}) \geq d(e, b_n) + 1$ for all $n \in \mathbb{N}$. Since X is $G^{\star\star}$ -regular, there exists $f_n \in C(X, G)$ such that $f_n(a_n) = b_n$ and $f_n(X \setminus A_n) = \{e\}$ for all $n \geq 2$. Since A is locally finite, $A_x = \{A_n : x \in A_n\}$ is finite for every $x \in X$. Define $f: X \to G$ by $f(x) = \prod_{x \in A_n} f_n(x)$ if $A_x \neq \emptyset$ and f(x) = e otherwise. Clearly f is well defined. To see that f is continuous, let $x \in X$ and W be an open neighborhood of f(x). Let $f(x) \in G$ be an open neighborhood of $f(x) \in G$. Therefore, $f(x) \in G$ is an open function of $f(x) \in G$ is an open neighborhood of $f(x) \in G$ is an

Theorem 2.9 For a $G^{\star\star}$ -regular space X, X is d_G -pseudocompact if and only if X is pseudocompact.

Proof: In Tychonoff spaces, the pseudocompactness is equivalent to feebly compactness [1]. Therefore, the proof follows by Theorem 2.8.

Proposition 2.10 $\sqrt{5}$

- (i) If topological group G is pathwise connected, then X is $G^{\star\star}$ -regular.
- (ii) If X is zero-dimensional, then X is $G^{\star\star}$ -regular.

Thus, we have the following:

- (i) For a family of zero-dimensional topological spaces, the notion of d_G -pseudocompactness is equivalent to pseudocompactness for any metric group (G, d).
- (ii) For a family of pathwise connected metric group, the notion of d_G -pseudocompactness is equivalent to pseudocompactness for any topological space X.
- (iii) For a family of countable regular topological spaces, the notion of d_G -pseudocompactness is equivalent to pseudocompactness for any metric group (G, d) because every countable regular space is zero-dimensional.

Theorem 2.11 For a $G^{\star\star}$ -regular space X, the following statements are equivalent:

- (a) X is d_G -pseudocompact.
- (b) For every decreasing family $\{U_n : n \in \omega\}$ of non-empty open subsets of X the intersection $\bigcap \bar{U}_n \neq \emptyset$.
- (c) For every countable family $\{V_n : n \in \omega\}$ of open subsets of X which has the finite intersection property, the intersection $\bigcap \bar{V}_n \neq \emptyset$.

Proof: The proof follows by Theorem 3.10.23 [2] and Theorem 2.9.

Theorem 2.12 Let U be an open subset of a $G^{\star\star}$ -regular d_G -pseudocompact space X. Then \bar{U} is d_G -pseudocompact.

Proof: Let X be a $G^{\star\star}$ -regular d_G -pseudocompact space and U be an open subset of X. Let $\sigma = \{U_n : n \in \omega\}$ be a decreasing family of non-empty open subsets of \bar{U} . Then $\sigma_U = \{U_n \cap U : n \in \omega\}$ is also a decreasing family of non-empty open subsets of X. Since X is d_G -pseudocompact, $\bigcap \{\bar{U}_n \cap \bar{U} : n \in \omega\} \neq \emptyset$ (By Theorem 2.11). Thus, $\bigcap \{cl_{\bar{U}}(U_n) : n \in \omega\} \neq \emptyset$. Hence, \bar{U} is d_G -pseudocompact. \Box

Theorem 2.13 Let X and Y be $G^{\star\star}$ -regular spaces such that X is d_G -pseudocompact and Y is d_G -pseudocompact k-space. Then $X \times Y$ is d_G -pseudocompact.

Proof: By Theorem 2.2, $X \times Y$ is $G^{\star\star}$ -regular as G is an unbounded metric group. So the proof follows by Theorem 3.10.26 [2].

Corollary 2.14 Let X and Y be $G^{\star\star}$ -regular spaces such that X is d_G -pseudocompact and Y is compact. Then $X \times Y$ is d_G -pseudocompact.

Proof: We know that every compact space is d_G -pseudocompact (Theorem 1.6) and every compact space is k-space [2]. So, the proof follows by Theorem 2.13.

Corollary 2.15 Let X and Y be $G^{\star\star}$ -regular spaces such that X is d_G -pseudocompact and Y is a d_G -pseudocompact sequential space. Then $X \times Y$ is d_G -pseudocompact.

Proof: Since every sequential space is k-space [2], the proof follows by Theorem 2.13.

Theorem 2.16 Let X and Y be $G^{\star\star}$ -regular spaces such that X is d_G -pseudocompact and Y is sequentially compact. Then $X \times Y$ is d_G -pseudocompact.

Proof: Let $f: X \times Y \to G$ be an unbounded cotinuous function. Then there exist points $z_i = (x_i, y_i) \in X \times Y$ such that $d(f(z_i), e) \geq i$ for each $i \in \mathbb{N}$. Let $\langle y_{n_k} \rangle$ be a subsequence of $\langle y_n \rangle$ that converge to a point $y \in Y$. Then the subspace $F = \{y, y_{n_1}, y_{n_2}, \ldots\}$ is compact and hence, $X \times F$ is d_G -pseudocompact by Corollary 2.14. But the function $f \mid X \times F : X \times F \to G$ is not bounded. Hence, $X \times Y$ is d_G -pseudocompact.

References

- R. W. Bagley, E. H. Connell and J. D. McKnight Jr., On properties characterizing pseudocompact spaces, Proc. Amer. Math. Soc. 9, 500–506 (1958).
- 2. R. Engelking, General topology, translated from the Polish by the author, second edition, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin (1989).
- 3. L. Gillman and M. Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, NJ (1960).
- 4. J. R. Porter and R. G. Woods, Extensions and absolutes of Hausdorff spaces, Springer-Verlag, New York (1988).
- 5. D. Shakhmatov and J. Spěvák, Group-valued continuous functions with the topology of pointwise convergence, Topology Appl. 157, 1518–1540 (2010).

Sheetal Luthra

Department of Mathematics,

Pt. Chiranji Lal Sharma Govt. College, Karnal, Haryana,

India.

 $E ext{-}mail\ address: premarora550@gmail.com}$

and

Divya

Department of Mathematics,

Pt. Chiranji Lal Sharma Govt. College, Karnal, Haryana,

India.

E-mail address: mittaldivya775@gmail.com

and

Harsh V.S. Chauhan

Department of Mathematics,

Gaya College, Gaya, Magadh University, Bihar,

India.

 $E ext{-}mail\ address: harsh.chauhan111@gmail.com}$