
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) 1 : 1–7.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.76636

Hybrid Chaos: A Novel 3D Strange Attractor in a Coupled Tinkerbell-Duffing-Jerk
System with External Forcing

Wafaa Hadi Abdul Suhib

abstract: The purpose of this study is to find hybrid nonlinear dynamical system, combining elements
of systems such as Tinkerbell, Duffing, and Jerk, with the addition of periodic external excitation terms
(cos(ωt), sin(ωt)). The system was analysed using chaos theory tools, such as: fixed points and stability
analysis (Newton-Raphson method). phase space and a strange attractor were used to clarify the fractal
structure. Correlation dimension (D) and Lyapunov indices were used to evaluate complexity and sensitivity
to initial conditions. Nonlinear interactions such as (x2

n, x
3
n, 2xnyn) were the main factor in shaping the

dynamic distortions and complexity of the attractor. Periodic external excitations enhanced instability and
increased the sensitivity of the system, contributing to a higher D. The system can be used to generate secure
random keys and to model natural phenomena, such as fluctuations in environmental or financial systems.
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1. Introduction

In 1963, the famous Lorenz attractor was discovered, which was one of the key turning points that
led to the explosion of chaos research [4]. Revolutionary advances in chaos synchronization, control,
and chaos-based applications emerged . At the same time, a paradigm shift took place in the scientific
understanding of chaos. Instead of carelessly stifling chaotic behavior, researchers began investigating
systematic ways to induce chaos. Of particular interest was the evolution of chaotic attractors in au-
tonomous ordinary differential equations in three dimensions. Since then, numerous canonical systems
with chaotic attractors have been found, as is well known [5,6]. By examining the system’s bifurcation,
Wei et al. tried to ascertain the fundamental mechanism of the multiple attractors [7].

Because chaos systems have applications in engineering, ecology, and security, the scientific commu-
nity has been closely examining them, and the most practical applications are in communications and
cryptology. Chaotic systems provide the mixing and spreading properties required for encryption because
of their initial sensitivity and varied dynamic features [1,2,9].
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2. Mathematical Model and Methodology

The hybrid system I presented is a nonlinear dynamical system consisting of three continuous differ-
ential equations (x, y, z) with time-dependent terms such as cos(ωt) and sin(ωt). This type of system
is often used to describe complex physical or biological phenomena, and may have applications in chaos
theory and nonlinear dynamical systems.

xn+1 = x2
n − y2n + axn + byn + α

(
−δyn − β3xn + γ cos (ωt)

)
yn+1 = 2xnyn + cxn + dyn + β (−δyn − αxn + γ cos (ω(t)))

zn+1 = zn+ ∈ (−AZn −BYn − Cxn −D sin(ω(t))

Where xn, yn, zn : System variables at time step n
a, b, c, d:Tinkerbell map coefficients.
α, β, γ, δ: Control coefficients for map merging.
A,B,C,D: Jerk map coefficients
(ω): System frequency in nonlinear analysis,
fixed point theory is one of the most effective and powerful instruments. Additionally, the fixed point

can be found by an iterative process on a computer [3].

Proposition 2.1. The fixed point of Hybrid system isx
y
z

 =

 0.0083
0.0447
−0.0117


Proof: The

xn = x2
n − y2n + axn + byn + α

(
−δyn − β3xn + γ cos (ωt)

)
yn = 2xnyn + cxn + dyn + β (−δyn − αxn + γ cos (ω(t)))

zn = zn+ ∈ (−AZn −BYn − Cxn −D sin(ω(t))

Solve the third equation to find

zn+ ∈ (−AZn −BYn − Cxn −D sin(ω(t)) = 0,

z =
ϵ(−By ∗ −Cx ∗+D sin(ωt))

1+ ∈ A

We substitute it in the first and second equations. The two nonlinear equations depend on only x and y,

x2
n − y2n + axn + byn + α

(
−δyn − β3xn + γ cos (ω(t))

)
= 0

2xnyn + cxn + dyn + β (−δyn − αxn + γ cos (ω(t))) = 0

The system contains nonlinear terms (x2, y2, x3), which make an analytical solution difficult or impossible
therefore the system is solved numerically using Newton-Raphson.

J =

∣∣∣∣∣∣∣
σF
σx

σF
σy

σF
σz

σG
σx

σG
σy

σG
σz

σH
σx

σH
σy

σH
σz

∣∣∣∣∣∣∣ any and we use iterate

∣∣∣∣∣∣
xn+1

yn+1

zn+1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
xn

yn
zn

∣∣∣∣∣∣− J−1

∣∣∣∣∣∣
F(Xn

, yn ,zn)
G(Xn

, yn ,zn)
H(Xn

, yn ,zn)

∣∣∣∣∣∣.
Iterate until convergence is achieved (i.e., the changes in x, y, z become very small). 2

Example 2.1. Suppose we have the following system of equations:

H1(p, q) = p2 + q2 − 25 = 0

H2(p, q) = p2 + q2 − 5 = 0
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We choose a starting point, let it bep0 =

(
3
3

)
then H =

(
−7
1

)
, J =

(
6 6
6 −1

)
therefore J−1 =

(−1
42−8
7

)
When the law is applied, we get: P1 ≈

(
3.0238
4.1429

)
The process can be repeated to achieve the desired accuracy.

Remark 2.1. Convergence is checked using the condition ∥∆∥ < 1, where ∆ is the change in x, y, z.
By using matlab program we get the fixed point of hybrid system is

Table 1: Complex eigenvalues indicate the presence of fluctuations in the system. The negative part
(-0.5000) indicates that this fluctuation decreases with time. The positive true eigenvalue (0.2000)
indicates that its disturbances increase with time Therefore, the point is unstable.

Fixed point (x, y, z) λ1 λ2 λ3

(0.0083,0.0447,-0.0117) -0.5000 + 0.3000i -0.5000 - 0.3000i 0.2000

2.1. Phase Space

Systems behavior in the space of variables has been represented graphicall y · x, y, z.
Figure 1 show each state variable’s time series in 3D phase space, along with the other 2D plane of

the system variables. Figure 1 depicts the chaotic response in three dimensions. Figure 2a shows the
harmonic phase in the y − z projection. Figure 2b shows the harmonic phase in the x − y projection.
Figure 2c shows the harmonic phase in the x− z projection.

2.2. Strange Attractor

In phase space, a strange attractor is a collection of points that display chaotic behavior while drawing
in neighbouring paths This type of attractor is common with nonlinear systems.

Figure 1: phase space (x, y, z): a= 0.9; b= 3.6; c = 0.9; d=-1.5; alpha= 0.9; beta= 0.5; gamma= 0.6;
delta= 3.9; omega = 0.9; A= 14.2; B= -6.2; C=-1.1; D= 5.5; epsilon= 8.1; and (0.1,0.1,0.1).
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(a) (b)

(c) (d)

(e)

Figure 2: Phase space (x, y, z), (a) The harmonic phase in the projection of y − z, (b) The harmonic
phase in the projection of x− y, (c) The harmonic phase in the projection of x− z, (d) a= 0.9; b= 3.6;
c= 0.9; d =-1.5; alpha= 0.9; beta= 0.5; gamma= 0.6; delta= 3.9; omega= 0.9; t = 0.8; A= 14.2; B=
-6.2; C= -1.1; D= 5.5; epsilon= 8.1; initial condition (0.1,0.1,0.1).It exhibits an irregular distribution
with overlapping regions of stretching and folding, a key feature of strange attractors, (e) Time series for
Hybrid system.

2.3. Comparison with Classical Attractors

Lorenz attractor: It has two rotating wings and larger coordinates (such as x ∈ [−20, 20]), and it does
not match the data here.
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2.4. Rössler attractor

It has a simple spiral structure with smaller coordinates, but it does not resemble the enclosed distri-
bution.

Henon attractor: It is two-dimensional with overlapping loops, but its coordinate range is wider
(x ∈ [−1.5, 1.5]).

2.5. Lyapunov exponent

The average exponential rate at which adjacent trajectories diverge or converge in phase space is
measured by Lyapunov exponents. The tiny initial differences between orbits in systems with rapidly
exponential divergence between them, which may be nearly imperceptible, explode quickly, making the
system unpredictable over time. When a system has at least one positive Lyapunov exponent, its dynamics
degenerate into unpredictable, random behavior .By Table 1, then ∥λ3∥ = 2 therefore the system has
positive Lyapunov exponent If an attractor has a dense orbit with a positive Lyapunov exponent, it is
considered strange [8].

2.6. Bifurcations

In nonlinear dynamic systems, bifurcation is a phenomenon where a slight alteration in a control
parameter causes a significant shift in the system’s qualitative behavior. Bifurcation is considered a
turning point that reshapes the dynamics of the system.

Figure 3: The main control parameter is ”a”, whose value ranges from 0.1 to 0.9

Also, L1= -0.5000+0.3000i, L2= -0.5000-0.3000i and L3= 0.2000, respectively. Now, by a= 0.9; b=
3.6; c= 0.9; d= -1.5; alpha = 0.9; beta= 0.5; gamma= 0.6; delta= 3.9; omega= 0.9; t= 0.8; A= 14.2; B=
-6.2; C= -1.1; D= 5.5; epsilon= 8.1; initial condition (0.1,0.1,0.1), the Kaplan-Yorke dimension expressed
as:

Dl = m+

∑m
n=1 λn

|λm+1|

The largest integer m that meets the following requirements

m∑
n=1

λn ≥ 0

and
m∑

n=1

λn ≤0.
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Then
1∑

n=1

λn = 0.2 ≥ 0

and
2∑

n=1

λn = 0.2 + (−0.5) = −0.3 <0.

Therefore Dl = 2 + 0.2
|−0.5| = 2.4 Dl = 2.4 indicates that the system has a complex spatial structure,

which corresponds to a positive Lyapunov exponent of one (0.2), indicating chaotic behaviour.

2.7. Correlation Dimension

A measure of the ”complexity” of the distribution of points in phase space, especially in chaotic
systems. This means calculating the probability of points being within a distance of r of each other.
Mathematical formula:

C(r) ∝ rD

Where C(r): correlation function (number of pairs of points within a distance of r, D: correlation
dimension (estimated from the logarithmic slope of C(r) versus r

Figure 4: a= 0.9; b= -0.6; c= 2.0; d= 0.5; alpha = 0.1; beta= 0.1; gamma= 0.5; delta= 0.1; A = 1.0;
B= 1.0; C= 1.0; D= 0.5; epsilon= 0.1; omega= 1.0, (0.1, 0.1,0.1)

we getD ≈ 2.05. This value indicates that the strange attractor in system has a more complex fractal
structure compared to classical systems such as Lorenz (D ≈ 2.05) or Rössler (D ≈ 2.01). Nonlin-
ear interactions: This complexity is due to interactions between variables (x, y, z) and external terms
(cos(ωt), sin(ωt)) in the system’s equations Compared to classical systems

System Dimension of the connection (D) Main reason
Hybrid 2.4 Complex nonlinear interactions + external excitation
Lorenz ∼2.05 three-variable interaction
Rossler ∼2.01 simple helical structure
Henon ∼1.25 two-dimensional system
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3. Conclusions

The developed hybrid system represents a dynamic model rich in nonlinear interactions and external
excitations, making it a strong candidate for advanced studies in chaos and its applications. The high
correlation dimension (D ≈ 2.4) underscores its uniqueness compared to classical systems and opens up
new avenues for research and applications.
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