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abstract: In this manuscript, efficient numerical technique called the fractional homotopy perturbation
transform method (FHPTM) is used for solving linear and nonlinear systems. Caputo fabrizio derivative
(CFD) is used to define fractional operator in this class to get approximate solution for four cases of the
homogeneous linear system and inhomogeneous nonlinear system of equation. The FHPTM is used with the
Laplace transform technique in this work. To demonstrate the capabilities and efficiency of the FHPTM
approach, several applicable problems from various domains of Science and Engineering, such as Physics and
Biology, are presented. We exhibit various two and three dimensional figures to demonstrate, these solutions
have wave-like features.
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1. Introduction

Despite its origins in Newton’s time, the theory and applications of arbitrary order derivatives have
recently piqued the interest of many young Scientists. Fractional calculus(FC) had attracted the consid-
eration of a large number of academics from numerous professions in fresh decades. The fractional deriva-
tives have been found to be very useful for modelling a variety of problems, including computational fluid
dynamics, Statistics, plasma Physics, Astrophysics, Chemistry, Physics, Mechanics, Quantum theory ,
Molecular Biology, hydro-dynamics, nonlinear optics, optics fibres, stratum water wave, bio-sciences, Eco-
nomics, Geology, Probability, Chemical Physics,control theory of dynamical systems, material viscoelastic
theory, dynamics of earthquakes, electromagnetic theory, engineering sciences, & so on [1- 4]. The data
that there are several different type of fractional operator makes dealing with this calculus appealing.
Due to the variety of fractional operators available, it is possible to select the most suited operator for
achieving better outcomes. The most well-known fractional operators are the CF, the (R-L) fractional
integrals & operators,the Caputo Fabrizio derivative, [5- 6]. However, the CF, which has a close relation-
ship with fractional differentiation (RL), is used to simulate various physical difficulties. There are other
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fractional derivatives that resemble the (R-L) and Caputo Fabrizio derivative ones [7- 8]. Singular ker-
nels are present in all of the above-mentioned derivative, which may prevent superior results from being
obtained when they are applied. Scientists have sensed the necessity for fractional derivative along with
non-singular kernel for this reason. In data, few researchers have been able to show fractional operators
with nonsingular kernels [9- 11]. The homotopy perturbation method[12], Sine-Gordon expansion method
[13], [14] Integral transform method [15], rational sine–cosine and rational sinh–cosh methods [16], Con-
formable Derivative [17],[18], Hybrid B-spline differential quadrature [19, 20], the additive formalism [21],
the design method [22], the computer algebra method [23], the q-homotopy analysis transform method
[24], [25], the natural transform iterative method [26]. Furthermore, the method’s versatility allows it
to be used in a wide range of analytical and numerical applications. Systems of PDEs has received a
significant amount of attention.
Consider that the non-linear system of equations is given as follows [4]:

Ltu + ℜ1(u, v, w) + ℘1(u, v, w) =ℑ1,

Ltv + ℜ2(u, v, w) + ℘2(u, v, w) =ℑ2,

Ltw + ℜ3(u, v, w) + ℘3(u, v, w) =ℑ3,

(1.1)

with initial conditions
u(x, 0) =ℵ1(x),

v(x, 0) =ℵ2(x),

w(x, 0) =ℵ2(x),

(1.2)

Generalizing the considered model Eq. (1) to fractional order with the aid of novel Caputo-Fabrizio
fractional derivative. Hence, the generalised system of the considered model i.e. the nonlinear fractional
PDEs model in the sense of Caputo-Fabrizio fractional derivative

CF
0  Lα

t u + ℜ1(u, v, w) + ℘1(u, v, w) =ℑ1,
CF
0  Lα

t v + ℜ2(u, v, w) + ℘2(u, v, w) =ℑ2,
CF
0  Lα

t w + ℜ3(u, v, w) + ℘3(u, v, w) =ℑ3,

(1.3)

such that
u(x, 0) =ℵ1(x),

v(x, 0) =ℵ2(x),

w(x, 0) =ℵ2(x),

(1.4)

Where CF
0  Lα

t is Caputo fabrizio fractional operator ℜj , 1 ≤ j ≤ 3, stands for linear differential opera-
tor ℘j , 1 ≤ j ≤ 3, for nonlinear differential operator, and ℑ1,ℑ2 and ℑ3 for source terms. The major
steps of He’s FHPTM in dealing with erudite and technical challenges are outlined below. In serval
physical system, such as turbulent mixing, soil water, traffic flow, wave propagation,and nuclear fusion
reactors, this equation retains the linear and nonlinear characteristics of the governing equations. Be-
cause most complex phenomena are formally modelled by systems of equations, analytical and numerical
solutions for linear and non-linear differential equation of arbitrary order are crucial. [27]. The semi
analytical solutions to NPDEs with stochastic [28].The novel approximation formula connected fractional
order PDEs [29]. To validate the technique, a variety of test problems have been included. The present
article (i) the brief introduction and few basic term of FC is relevant in section 2, (ii) the (FHPTM) is
discussed in section 3, (iii) the solution for system of equation using Caputo fabrizio fractional operator
by FHPTM is given in section 4, (iv) We used 2D and 3D graphics to give a physical and graphical
representation of some of the solutions we found. in section 5. Finally, we have presented the detailed
conclusion in section 6.

2. Preliminaries

Some fundamental definitions of the Riemann-Liouville (R-L) fractional differentiation, Laplace trans-
form (LT) and FCD are presented [2-3].
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Definition 2.1 For α > 0 left (R-L) order fractional integral of α is defined as [2]

a Iαt u(t) =
1

Γ(α)

∫ t

a

(t− ξ)α−1u(ξ)dξ, (2.1)

Definition 2.2 For 0 < α < 1 left (R-L) order fractional integral of α is given as [2]

(a Dα
t u)(t) =

d

dt
(a Iαt u)(t) =

d
dt

Γ(1 − α)

∫ t

a

(t− ξ)−αu(ξ)dξ, (2.2)

Definition 2.3 For Caputo derivative is define for α ≥ 0 & n ∈ N ∪ 0 is define as follows [2]

C
a Dα

t u(t) =
1

Γ(1 − α)

∫ t

a

(t− ξ)
dn

dtn
u(ξ)dξ, (2.3)

Definition 2.4 Consider u be a function u ∈ H1(a1, b1), b1 > 0, 0 < α < 1. Then, the fractional
Caputo-fabrizio factional operator is define as [2]

CF
0 Dα

t u(t) =
λ(α)

1 − α)

∫ t

0

exp[−α(1 − ξ)

1 − α
]u′(ξ)dξ, t ≥ 0, 0 < α < 1, (2.4)

with a normalize functions λ(α) which is depend on α ∈ λ(0) = λ(1) = 1.
Definition 2.5 for CFD for integer order of 0 < α < 1. is given by [2]

CF
0 Dα

t u(t) =
2(1 − α)

λ(α)(2 − α)
u(t) +

2α

λ(α)(2 − α)

∫ t

0

u(ξ)dξ, t ≥ 0, (2.5)

where CF
0 Dα

t u(t) = 0, if u is a constant function.
Definition 2.6 Laplace transform (LT) for the (CFD) of order 0 < α < 1. and m ∈ N is gives by [2]

L
[
CF
0 D

(m+α)
t u(t)

]
(s) =

1

1 − α
L [um+1(t)]L

[
exp

(
−α

(1 − α)
t

)]
=
sm+1L [u(t)] − smu(0) − sm−1u′(0) . . .− um(0)

s + α(1 − s)

(2.6)

In particular, we have

L
[
CF
0 D

(m+α)
t u(t)

]
(s) =

sL (u(t))

s + α(1 − s)
, m = 0,

L
[
CF
0 D

(m+α)
t u(t)

]
(s) =

s2L (u(t)) − su(o) − u′(0)

s + α(1 − s)
, m = 1.

3. General description system of FHPTM using Caputo-Fabrizio type operator:

Let’s as considering the following system of equation [2-3]

CF
0 D

(m+α)
t u(x, t) + βu(x, t) + φu(x, t) = k(x, t), n− 1 < α + m ≤ n,

CF
0 D

(m+α)
t v(x, t) + av(x, t) + bv(x, t) = y(x, t), n− 1 < α + m ≤ n,

CF
0 D

(m+α)
t w(x, t) + cw(x, t) + dw(x, t) = z(x, t), n− 1 < α + m ≤ n,

(3.1)

such that
∂lu(x, 0)

∂tl
= fl(x), l = 0, 1, 2, . . . n− 1,

∂lv(x, 0)

∂tl
= gl(x), l = 0, 1, 2, . . . n− 1,

∂lw(x, 0)

∂tl
= ℏl(x), l = 0, 1, 2, . . . n− 1.

(3.2)



4 Ashok Kumar Badsara, Shilpi Jain, Praveen Agarwal and Virendra Singh Chouhan

Taking Laplace transform’s on both side’s of Eqs. (3.1), we get

L [u(x, t)] = Θ(x, s) −
(
s + α(1 − s)

sn+1

)
L [βu(x, t) + φu(x, t)].

L [v(x, t)] = Ω(x, s) −
(
s + α(1 − s)

sn+1

)
L [av(x, t) + bv(x, t)].

L [w(x, t)] = Ξ(x, s) −
(
s + α(1 − s)

sn+1

)
L [cw(x, t) + dw(x, t)].

(3.3)

where

Θ(x, s) =
1

sm+1
[smf0(x) + sm−1f1(x) + . . . + fm(x)] +

s + α(1 − s)

sn+1
k̃(x, s).

Ω(x, s) =
1

sm+1
[smg0(x) + sm−1g1(x) + . . . + gm(x)] +

s + α(1 − s)

sn+1
Φ(x, s).

Ξ(x, s) =
1

sm+1
[smg0(x) + sm−1g1(x) + . . . + gm(x)] +

s + α(1 − s)

sn+1
Ψ(x, s).

(3.4)

Taking the inverse Laplace transformation the Eq.(3.3) we have

u(x, t) = Θ(x, s) − L −1

[(
s + α(1 − s)

sn+1

)
L [βu(x, t) + φu(x, t)]

]
,

v(x, t) = Ω(x, s) − L −1

[(
s + α(1 − s)

sn+1

)
L [av(x, t) + bv(x, t)]

]
,

w(x, t) = Ξ(x, s) − L −1

[(
s + α(1 − s)

sn+1

)
L [cw(x, t) + dw(x, t)]

]
,

(3.5)

Θ(x, s), Ω(x, s), Ξ(x, s) is the term that arises from the source term, and it specifies the initial conditions.
The solution u(x, t), v(x, t), w(x, t) may be extended into an infinite sequence using the regular HPTM
as follows:

u(x, t) =

∞∑
m=0

pmum(x, t),

v(x, t) =

∞∑
m=0

qmvm(x, t),

w(x, t) =

∞∑
m=0

rmwm(x, t).

(3.6)

where um(x, t), vm(x, t), wm(x, t) are known functions, we have

φu(x, t) =

∞∑
m=0

pmHm(x, t),

cv(x, t) =

∞∑
m=0

qmIm(x, t),

dw(x, t) =

∞∑
m=0

rmJm(x, t).

(3.7)
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The poly. Hm(x, t), Im(x, t), Jm(x, t) are define as [12]

Hm(u0, u1, u2, . . . um) =
1

n!

∂m

∂pm

[( ∞∑
m=0

piui

)]
p=0

, m = 0, 1, 2, . . . ;

Im(v0, v1, v2, . . . vm) =
1

n!

∂m

∂qm

[( ∞∑
m=0

qivi

)]
q=0

, m = 0, 1, 2, . . . ;

Jm(w0, w1, w2, . . . wm) =
1

n!

∂m

∂rm

[( ∞∑
m=0

riwi

)]
r=0

, m = 0, 1, 2, . . . ;

(3.8)

substitute Eqs.(3.8- 3.7) into Eq.(3.6) we are getting

∞∑
m=0

um(x, t) = Θ(x, s) − pL −1

[(
s + α(1 − s)

sm+1

)
L

[
β

∞∑
m=0

zmum(x, t) +

∞∑
m=0

zmHm

]]
,

∞∑
m=0

vm(x, t) = Ω(x, s) − qL −1

[(
s + α(1 − s)

sm+1

)
L

[
a

∞∑
m=0

qmvm(x, t) +

∞∑
m=0

qmIm

]]
,

∞∑
m=0

wm(x, t) = Ξ(x, s) − rL −1

[(
s + α(1 − s)

sm+1

)
L

[
c

∞∑
m=0

rmwm(x, t) +

∞∑
m=0

rmJm

]]
.

(3.9)

Comparing the coefficients of p0, p1, p2, p3, q0, q1, q2, q3, and r0, r1, r2, r3we get
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p0 : u0(x, t) = Θ(x, s),

q0 : v0(x, t) = Ω(x, s),

r0 : w0(x, t) = Ξ(x, s),

p1 : u1(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [βu0(x, t) + H0(u)]

]
,

q1 : v1(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [av0(x, t) + I0(v)]

]
,

r1 : w1(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [cv0(x, t) + J0(v)]

]
,

p2 : u2(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [βu1(x, t) + H1(u)]

]
,

q2 : v2(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [av1(x, t) + I1(v)]

]
,

r2 : u2(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [cw1(x, t) + J1(w)]

]
,

p3 : u3(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [βu2(x, t) + H2(u)]

]
,

q3 : v3(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [av2(x, t) + H2(v)]

]
,

r3 : w3(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [cw2(x, t) + H2(w)]

]
,

...

pm+1 : um+1(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [βum+1(x, t) + Hm+1(u)]

]
,

qm+1 : vm+1(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [avm+1(x, t) + Im+1(v)]

]
,

rm+1 : wm+1(x, t) = −L −1

[(
s + α(1 − s)

sm+1

)
L [cwm+1(x, t) + Jm+1(w)]

]
.

(3.10)

As a result, approximate solutions is

u(x, t) =

∞∑
m=0

um(x, t),

v(x, t) =

∞∑
m=0

vm(x, t),

w(x, t) =

∞∑
m=0

wm(x, t).

(3.11)

Equation (19) represents series solution, which converges very fast.

4. Numerical experiments

Some basic terminology and terms are included to help the reader comprehend the technique and
make the article more readable.
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4.1. Homogeneous linear system

We first considering homogeneous linear system is given by [4]

CF
0 uα

t − vx + (u + v) = 0,
CF
0 vαt − ux + (u + v) = 0,

(4.1)

such that initial condition (I.C)

u(x, 0) = sinhx, v(x, 0) = coshx. (4.2)

Laplace transformation for Eq. (4.1), we have

L [u(x, t)] =
1

s
u(x, 0) +

(
s + α(1 − s)

s

)
L

[
∂v

∂x
− (u + v)

]
,

L [v(x, t)] =
1

s
v(x, 0) +

(
s + α(1 − s)

s

)
L

[
∂u

∂x
− (u + v)

]
,

(4.3)

Apply the inverse Laplace transform for Eq.(4.3)

u(x, t) = sinhx + L −1

[(
s + α(1 − s)

s

)
L

[
∂v

∂x
− (u + v)

]]
,

v(x, t) = coshx + L −1

[(
s + α(1 − s)

s

)
L

[
∂u

∂x
− (u + v)

]]
.

(4.4)

Now, we applying FHPTM

∞∑
m=0

um(x, t) = sinhx + pL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

pmvm(x, t)

)
x

− (u + v)

]]
,

∞∑
m=0

vm(x, t) = coshx + qL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

qmum(x, t)

)
x

− (u + v)

]]
,

(4.5)

Firmly facing the above conditions, we get

p0 : u0(x, t) = sinhx,

q0 : v0(x, t) = coshx,

u1(x, t) = −(1 − α + tα)coshx,

v1(x, t) = −(1 − α + tα)sinhx,

p2 : u2(x, t) =

(
−1 + 2α− α2 − t2α2

2
+ 2t

(
−α + α2

))
sinhx,

q2 : v2(x, t) =

(
1 − 2α + α2 +

t2α2

2
− 2t

(
−α + α2

))
coshx,

p3 : u3(x, t) =

(
−1 + 3α− 3α2 + α3 − t3α3

6
− 3t

(
α− 2α2 + α3

)
+

3

2
t2
(
−α2 + α3

))
sinhx,

q3 : v3(x, t) =

(
−1 + 3α− 3α2 + α3 − t3α3

6
− 3t

(
α− 2α2 + α3

)
+

3

2
t2
(
−α2 + α3

))
coshx,

(4.6)
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...
we can get the remaining components of the iteration formula by continuing in this manner.
As a result, approximate solutions is follows

u(x, t) =

∞∑
m=0

um(x, t)

v(x, t) =

∞∑
m=0

vm(x, t)

(4.7)

4.2. Inhomogeneous linear system

Let’s considering inhomogeneous linear system is given as [4]

CF
0 uα

t − vx − (u− v) = −2,
CF
0 vαt + ux − (u− v) = −2,

(4.8)

such that initial condition

u(x, 0) = 1 + ex, v(x, 0) = −1 + ex. (4.9)

Laplace transformation on both sides Eq. (4.8) , we get

L [u(x, t)] =
1

s
u(x, 0) +

(
s + α(1 − s)

s

)[
−2

s

]
+

(
s + α(1 − s)

s

)
L

[
∂v

∂x
+ (u− v)

]
,

L [v(x, t)] =
1

s
v(x, 0) +

(
s + α(1 − s)

s

)[
−2

s

]
−
(
s + α(1 − s)

s

)
L

[
∂u

∂x
+ (u− v)

]
,

(4.10)

Apply the inverse Laplace transform for Eq.(4.10)

u(x, t) = u(x, 0) − 2(1 − α + tα) + L −1

[(
s + α(1 − s)

s

)
L

[
∂v

∂x
+ (u− v)

]]
,

v(x, t) = v(x, 0) − 2(1 − α + tα) − L −1

[(
s + α(1 − s)

s

)
L

[
∂u

∂x
+ (u− v))

]]
,

(4.11)

Now, we apply FHPTM

∞∑
m=0

um(x, t) = u(x, 0) − 2(1 − α + tα) + pL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

pmvm(x, t)

)
x

+ (u− v)

]]
,

∞∑
m=0

vm(x, t) = v(x, 0) − 2(1 − α + tα) − qL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

qmum(x, t)

)
x

+ (u− v))

]]
,

(4.12)
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Firmly facing the above conditions, we get

p0 : u0(x, t) =1 + ex − 2(1 − α + tα),

q0 : v0(x, t) = − 1 + ex − 2(1 − α + tα),

p1 : u1(x, t) = (2 + ex) (1 − α + tα),

q1 : v1(x, t) = − (2 + ex) (1 − α + tα),

p2 : u2(x, t) =
1

2
(4 + ex)

(
2 − 4α + 4tα + 2α2 − 4tα2 + t2α2

)
,

q2 : v2(x, t) = − 3

2
(2 + ex)

(
2 − 4α + 4tα + 2α2 − 4tα2 + t2α2

)
,

p3 : u3(x, t) =
1

2
(4 + ex)

(
t3α3

3
− 2

(
−1 + 3α− 3α2 + α3

)
+ 6t

(
α− 2α2 + α3

)
− 3t2

(
−α2 + α3

))
,

q3 : v3(x, t) =5 (2 + ex) (−1 + α)3 − 15 (2 + ex) t(−1 + α)2α +
15

2
(2 + ex) t2(−1 + α)α2 − 5

6
(2 + ex) t3.

...
(4.13)

we can get the remaining components of the iteration formula by continuing in this manner.
As a result, approximate solutions is follows

u(x, t) =

∞∑
m=0

um(x, t)

v(x, t) =

∞∑
m=0

vm(x, t)

(4.14)

4.3. Inhomogeneous nonlinear system

We now considering inhomogeneous nonlinear system as follow [4]

CF
0 uα

t + vux + u = 1,
CF
0 vαt − uvx − v = 1,

(4.15)

such that Initial Condition
u(x, 0) = ex, v(x, 0) = e−x. (4.16)

Laplace transformation on both sides Eq. (4.15) , we get

L [u(x, t)] =
1

s
u(x, 0) +

(
s + α(1 − s)

s

)[
1

s

]
−
(
s− α(1 − s)

s

)
L

[
v
∂u

∂x
+ u

]
,

L [v(x, t)] =
1

s
v(x, 0) +

(
s + α(1 − s)

s

)[
1

s

]
+

(
s + α(1 − s)

s

)
L

[
u
∂v

∂x
+ v

]
.

(4.17)

Inverse Laplace transform for Eq.(4.17)

u(x, t) = u(x, 0) + (1 − α + tα) − L −1

[(
s + α(1 − s)

s

)
L

[
v
∂u

∂x
+ u

]]
,

v(x, t) = v(x, 0) + (1 − α + tα) + L −1

[(
s + α(1 − s)

s

)
L

[
u
∂v

∂x
+ v)

]]
.

(4.18)

Now, we apply FHPTM

∞∑
m=0

um(x, t) = u(x, 0) + (1 − α + tα) − pL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

pmHm(x, t)

)
+ u

]]
,

∞∑
m=0

vm(x, t) = v(x, 0) + (1 − α + tα) + qL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

qmIm(x, t)

)
+ v

]]
,

(4.19)



10 Ashok Kumar Badsara, Shilpi Jain, Praveen Agarwal and Virendra Singh Chouhan

where
∞∑

m=0

pmHm(x, t) = vux

∞∑
m=0

qmIm(x, t) = uvx.

Homotopy polynomials’ first few components are written as

H0(u) = v0
∂uo

∂x
,

I0(v) = u0
∂vo
∂x

,

H1(u) = v0
∂u1

∂x
+ v1

∂uo

∂x
,

I1(v) = u0
∂v1
∂x

+ u1
∂vo
∂x

.

...

(4.20)

Firmly facing the above conditions, we get

p0 : u0(x, t) =ex + (1− α+ tα),

q0 : v0(x, t) =e−x + (1− α+ tα),

p1 : u1(x, t) =− 1

2
(1 + ex) t2α2 − e−x(−1 + α)

(
−1− ex − 2e2x + exα+ e2xα

)
+ e−xtα

(
−1− 2ex − 3e2x + 2exα+ 2e2xα

)
,

q1 : v1(x, t) =
1

2
e−x (−1 + ex) t2α2 + e−xtα

(
−1 + 2ex + e2x + 2α− 2exα

)
− e−x(−1 + α)

(
ex + e2x + α

)
,

p2 : u2(x, t) =
1

8
ext4α4 +

1

2
e−xt2(−1 + α)α2 (1− 15e2x + 8e2xα

)
− 1

6
e−xt3α3 (1− 11e2x + 8e2xα

)
+ e−xtα

(
−1 + ex + 10e2x − e3x + α− 3exα− 23e2xα+ e3xα− α2 + 2exα2

+17e2xα2 − 4e2xα3)
)

− e−x(−1 + α)
(
−1 + ex + 3e2x − e3x + α− 3exα− 6e2xα+ e3xα− α2 + 2exα2

+4e2xα2 − e2xα3) ,
q2 : v2(x, t) =

1

6
e−xt3

(
5 + e2x − 8α

)
α3 +

1

8
e−xt4α4

− 1

2
e−2xt2α2 (−1− 4ex − 5e2x − 4e3x + 11exα+ 4e2xα+ 3e3xα− 8exα2)

− e−x(−1 + α)
(
−1 + e2x + α+ α2 − α3)

+ e−2xtα
(
1 + ex + 5e2x + 4e3x − α− 5exα− 9e2xα− 5e3xα+ 8exα2 + 4e2xα2 + 2e3xα2) .

...
(4.21)

we can get the remaining components of the iteration formula by continuing in this manner.
As a result, approximate solutions is follows

u(x, t) =

∞∑
m=0

um(x, t)

v(x, t) =

∞∑
m=0

vm(x, t)

(4.22)
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4.4. Homogeneous nonlinear system

Let’s considering homogeneous nonlinear system as follow [4]

CF
0 uα

t + uxvx + uyvy + u = 0,
CF
0 vαt + vxwx − vywy − v = 0,

CF
0 wα

t + wxux + wyuy − w = 0,

(4.23)

such that initial condition

u(x, y, 0) = ex+y, v(x, y, 0) = ex−y, w(x, y, 0) = e−x+y. (4.24)

Laplace transformation on both sides Eqs. (4.23) , we get

L [u(x, y, t)] =
1

s
u(x, 0) −

(
s− α(1 − s)

s

)
L [uxvx + uyvy + u] ,

L [v(x, y, t)] =
1

s
v(x, 0) +

(
s + α(1 − s)

s

)
L [vxwx − vywy + v] ,

L [w(x, y, t)] =
1

s
w(x, 0) −

(
s + α(1 − s)

s

)
L [wxux + wyuy + w] .

(4.25)

Applying inverse Laplace transform for Eq.(4.25)

u(x, y, t) = u(x, 0) − L −1

[(
s + α(1 − s)

s

)
L [uxvx + uyvy + u]

]
,

v(x, y, t) = v(x, 0) + L −1

[(
s + α(1 − s)

s

)
L [vxwx − vywy + v]

]
,

w(x, y, t) = w(x, 0) − L −1

[(
s + α(1 − s)

s

)
L [wxux + wyuy + w]

]
.

(4.26)

Now, we apply the FHPTM

∞∑
m=0

um(x, y, t) = u(x, 0) + (1 − α + tα) − pL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

pmHm(x, t)

)
+ u

]]
,

∞∑
m=0

vm(x, y, t) = v(x, 0) + (1 − α + tα) + qL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

qmIm(x, t)

)
+ v

]]
,

∞∑
m=0

wm(x, y, t) = w(x, 0) + (1 − α + tα) + rL −1

[(
s + α(1 − s)

s

)
L

[( ∞∑
m=0

rmJm(x, t)

)
+ w

]]
,

(4.27)
where

∞∑
m=0

pmHm(x, t) = uxvx + uyvy,

∞∑
m=0

qmIm(x, t) = vxwx − vywy,

∞∑
m=0

rmJm(x, t) = wxux + wyuy.
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Homotopy polynomials’ first few components are written as

H0(u) = v0(u0)x(v0)x + (u0)y(v0)y,

I0(v) = u0(v0)x(w0)x − (v0)y(w0)y,

J0(w) = w0(w0)x(u0)x + (w0)y(u0)y,

H1(u) = v0(u1)x(v0)x + (u0)x(v1)x + (u1)y(v0)y + (u0)y(v1)y,

I1(v) = u0(v1)x(w0)x + (v0)x(w1)x − {(v1)y(w0)y + (v0)y(w1)y}
J1(v) = u0(w1)x(u0)x + (w0)x(u1)x + (w1)y(u0)y + (w0)y(u1)y

...

(4.28)

Firmly facing the above conditions, we get

p0 : u0(x, y, t) = ex+y,

q0 : v0(x, y, t) = ex−y,

r0 : w0(x, y, t) = e−x+y,

p1 : u1(x, y, t) = − ex+y(1 − α + tα),

q1 : v1(x, y, t) = ex−y(1 − α + tα),

r1 : w1(x, y, t) =e−x+y(1 − α + tα)

p2 : u2(x, y, t) = ex+y

(
1 − 2α + α2 +

t2α2

2
− 2t

(
−α + α2

))
,

q2 : v2(x, t) = ex−y

(
1 − 2α + α2 +

t2α2

2
− 2t

(
−α + α2

))
r2 : w2(x, t) = − e−x+y

(
1 − 2α + α2 +

t2α2

2
− 2t

(
−α + α2

))
p3 : u3(x, y, t) = − ex+y

(
1 − 3α + 3α2 − α3 +

t3α3

6
+ 3t

(
α− 2α2 + α3

)
− 3

2
t2
(
−α2 + α3

))
q3 : v3(x, y, t) =ex−y

(
1 − 3α + 3α2 − α3 +

t3α3

6
+ 3t

(
α− 2α2 + α3

)
− 3

2
t2
(
−α2 + α3

))
r3 : w3(x, y, t) =e−x+y

(
1 − 3α + 3α2 − α3 +

t3α3

6
+ 3t

(
α− 2α2 + α3

)
− 3

2
t2
(
−α2 + α3

))
.

...

(4.29)

we can get the remaining components of the iteration formula by continuing in this manner.
As a result, approximate solutions is follows

u(x, t) =

∞∑
m=0

um(x, t)

v(x, t) =

∞∑
m=0

vm(x, t)

w(x, t) =

∞∑
m=0

wm(x, t)

(4.30)
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Table 1: Numerically study regard to u(x, t) by FHPTM along with Caputo-Fabrizio derivative for system
of equation (4.1) with diverse x, t as well as its separate values as α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 -0.845818 -0.523989 -0.24726 -0.00697252

0.4 -0.931392 -0.669015 -0.433717 -0.224945
0.6 -1.01865 -0.819476 -0.62946 -0.454193
0.8 -1.10762 -0.975575 -0.83517 -1.92876

0.4 0.2 -0.925581 -0.469008 -0.104443 0.185775
0.4 -1.05016 -0.664879 -0.33484 -0.0589182
0.6 -1.17819 -0.871841 -0.584183 -0.326614
0.8 -1.3097 -1.0903 -0.853859 -0.620597

0.6 0.2 -1.04249 -0.432849 0.0341818 0.385979
0.4 -1.21108 -0.687427 -0.249402 0.104744
0.6 -1.38501 -0.959195 -0.562352 -0.212143
0.8 -1.56434 -1.24879 -0.906815 -0.569776

0.8 0.2 -1.20124 -0.414063 0.174179 0.601673
0.4 -1.42061 -0.737565 -0.173973 0.27261
0.6 -1.64741 -1.08505 -0.563089 -0.106186
0.8 -1.88177 -1.45739 -0.996166 -0.541821

Table 2: Numerically study regard to v(x, t) by FHPTM along with Caputo-Fabrizio derivative for system
of equation (4.1) with diverse x, t as well as its separate values as α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 0.991267 1.04955 1.03746 0.998841

0.4 0.966706 1.04608 1.05966 1.01026
0.6 0.938703 1.03547 1.08072 1.04615
0.8 0.90713 1.0167 1.09719 1.09837

0.4 0.2 0.89265 0.993899 1.02055 1.0191
0.4 0.856752 0.970481 1.01448 0.991726
0.6 0.817205 0.939496 1.00719 0.990295
0.8 0.773875 0.899862 0.995039 1.00616

0.6 0.2 0.829858 0.978132 0.0341818 1.08026
0.4 0.781182 0.933829 1.01001 1.013
0.6 0.728504 0.881228 0.974085 0.954332
0.8 0.800371 0.819143 0.932822 0.671678

0.8 0.2 0.736963 1.00162 1.11059 1.18478
0.4 0.669041 0.934654 1.04608 1.07492
0.6 0.669041 0.858326 0.980071 0.997162
0.8 0.596438 0.771299 0.908043 0.940802
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(a) (b)

Figure 1: Comparison of approximate solution u(x, t) & v(x, y) for separate values of α = 0.25, α =
0.5, α = 0.75 and α = 1 for 4.1.

(a) (b)

(c) (d)

Figure 2: Surface show the 3D wave function u(x, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.
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(a) (b)

(c) (d)

Figure 3: Surface show the 3D wave function u(x, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.
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Table 3: Numerically study regard to u(x, t) by FHPTM along with Caputo-Fabrizio derivative for system
of equation (4.2) with diverse x, t as well as its separate values as α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 1.18072 1.18846 1.11908 0.995969

0.4 1.11337 1.1503 1.12395 1.31699
0.6 1.0064 1.04012 1.00466 1.20624
0.8 0.85473 0.838169 0.765124 0.840033

0.4 0.2 1.8562 1.66124 1.47107 1.24642
0.4 1.8481 1.68736 1.54652 1.71883
0.6 1.80229 1.64397 1.48374 1.68489
0.8 1.71363 1.5118 1.29184 1.34194

0.6 0.2 2.81425 2.32852 1.9613 1.58829
0.4 2.89124 2.44974 2.14254 2.27525
0.6 2.93355 2.50592 2.16857 2.36
0.8 2.93595 2.47855 2.05555 2.06714

0.8 0.2 4.18282 3.27752 2.65006 2.05953
0.4 4.38276 3.53966 2.9897 3.05273
0.6 4.5527 3.74429 3.15372 3.31955
0.8 4.68737 3.87415 3.16789 3.12024

Table 4: Numerically study regard to v(x, t) by FHPTM along with Caputo-Fabrizio derivative for system
of equation (4.2) with diverse x, t and separate values of α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 -18.3285 -9.68712 -4.15435 -1.03764

0.4 -20.848 -12.9099 -6.91269 -2.8121
0.6 -23.4861 -16.5031 -10.269 -5.23085
0.8 -26.2451 -20.4829 -14.2776 -8.42273

0.4 0.2 -19.481 -10.1477 -4.1841 -0.839329
0.4 -22.2035 -13.6242 -7.1488 -2.72917
0.6 -25.0548 -17.5023 -10.7617 -5.31738
0.8 -28.037 -21.7994 -15.0816 -8.74363

0.6 0.2 -20.8886 -10.7103 -4.22043 -0.597113
0.4 -23.8592 -14.4968 -7.43719 -2.62788
0.6 -26.9707 -18.7227 -11.3634 -5.42308
0.8 -30.2255 -23.4073 -16.0636 -9.13558

0.8 0.2 -22.6078 -11.3975 -4.26481 -0.30127
0.4 -25.8814 -15.5625 -7.78943 -2.50417
0.6 -29.3108 -20.2134 -12.0984 -5.55217
0.8 -32.8986 -25.3713 -17.2631 -9.61431
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Figure 4: Comparison of approximate solution u(x, t),&v(x, y) for separate values of α = 0.25, α =
0.5, α = 0.75 and α = 1 for 4.2.

(a) (b)

(c) (d)

Figure 5: Surface show the 3D wave function u(x, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.
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(a) (b)

(c) (d)

Figure 6: Surface show the 3D wave function u(x, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.



Dynamics of the nonlinear Systems in the Frame of the Caputo-Fabrizio Fractional Derivative19

Table 5: Numerically study regard to u(x, t) by FHPTM along with Caputo-Fabrizio derivative for system
of equation (4.3) with diverse x, t and separate values of α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 -0.233168 -0.165227 0.256011 0.80924

0.4 -0.166093 -0.282008 -0.0937316 0.334405
0.6 -0.0737442 -0.341694 -0.396668 -0.171544
0.8 0.0452078 -0.335638 -0.630311 -0.671188

0.4 0.2 -0.150615 -0.0300356 0.467924 1.08087
0.4 -0.0507517 -0.128971 0.114349 0.604855
0.6 0.0812357 -0.153649 -0.172995 0.10497
0.8 0.247012 -0.0931781 -0.365531 -0.370443

0.6 0.2 -0.255543 0.0126551 0.663385 1.38865
0.4 -0.128665 -0.0853809 0.280701 0.886737
0.6 0.0385772 -0.0886147 -0.0127652 0.368842
0.8 0.24825 0.0165262 -0.1812 -0.10383

0.8 0.2 -0.632294 -0.0755065 0.836885 1.74494
0.4 -0.488098 -0.19623 0.39364 1.19136
0.6 -0.293578 -0.197401 0.0670816 0.630661
0.8 -0.0461838 -0.06222 -0.0983003 0.139352

Table 6: Numerically study regard to v(x, t) by FHPTM along with Caputo-Fabrizio derivative for system
of equation (4.3) with diverse x, t as well as its separate values as α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 4.22198 3.62816 2.76111 1.74739

0.4 4.78497 4.49035 3.7681 2.82413
0.6 5.37454 5.43028 4.89726 4.04497
0.8 5.9912 6.45059 6.15306 5.40986

0.4 0.2 4.57674 3.81364 2.80398 1.67938
0.4 5.18818 4.75396 3.90028 2.84381
0.6 5.82752 5.77746 5.12929 4.16428
0.8 6.49524 6.8868 6.49632 5.64469

0.6 0.2 5.05335 4.11024 2.93613 1.67023
0.4 5.72825 5.15353 4.15354 2.95953
0.6 6.43312 6.28774 5.51804 4.42205
0.8 7.16843 7.51563 7.03601 6.0658

0.8 0.2 5.67023 4.52887 3.16197 1.71922
0.4 6.4254 5.70295 4.53586 3.17449
0.6 7.21341 6.97806 6.07525 4.82539
0.8 8.03473 8.35724 7.78784 6.68433
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Figure 7: Comparison of approximate solution u(x, t),&v(x, t) for separate values of α = 0.25, α =
0.5, α = 0.75 and α = 1 for 4.3.

(a) (b)

(c) (d)

Figure 8: Surface show the 3D wave function u(x, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.
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(a) (b)

(c) (d)

Figure 9: Surface show the 3D wave function u(x, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.
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(a) (b)

(c)

Figure 10: Comparison of approximate solution u(x, y, t), v(x, y, t) & w(x, y, t) for separate values of
α = 0.25, α = 0.5, α = 0.75 and α = 1 for 4.4.
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(a) (b)

(c) (d)

Figure 11: Surface show the 3D wave function u(x, y, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.
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(a) (b)

(c) (d)

Figure 12: Surface show the 3D wave function u(x, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.
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(a) (b)

(c) (d)

Figure 13: Surface show the 3D wave function u(x, t) for (a) α = 0.25, (b) α = 0.5, (c) α =
0.75 and (d) α = 1.
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Table 7: Numerically study regard to u(x, y, t) by FHPTM along with Caputo-Fabrizio derivative for
system of equation (4.4) with diverse x, y, t and separate values of α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 1.80458 2.99607 3.80987 4.48134

0.4 1.45310 2.53809 3.26999 3.66389
0.6 1.08316 2.04178 2.72397 2.97783
0.8 0.694051 1.50169 2.15331 2.37934

0.4 0.2 2.20412 3.65941 4.65338 5.47352
0.4 1.77483 3.10003 3.99399 4.47509
0.6 1.32297 2.49384 3.32707 3.63713
0.8 0.847716 1.83416 2.63006 2.90614

0.6 0.2 2.69211 4.46962 5.68365 6.68537
0.4 2.16778 3.78638 4.87827 5.46589
0.6 1.61588 3.04598 4.06369 4.44239
0.8 1.03540 2.24025 3.21237 8.16553

0.8 0.2 3.28816 5.45920 6.94203 6.67605
0.4 2.64773 4.62469 5.95833 6.67605
0.6 1.97364 3.72037 4.96340 5.42596
0.8 1.26464 2.73625 3.92359 4.33544

Table 8: Numerically study regard to v(x, y, t) by FHPTM along with Caputo-Fabrizio derivative for
system of equation (4.4) with diverse x, y, t as well as its separate values as α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 0.84732 0.65616 0.50493 0.38190

0.4 0.89991 0.73756 0.602329 0.49346
0.6 0.95409 0.82359 0.70616 0.60938
0.8 1.00992 0.91452 0.81735 0.73183

0.4 0.2 1.03492 0.80144 0.616727 0.466463
0.4 1.09915 0.90086 0.735687 0.602719
0.6 1.16534 1.00594 0.862511 0.74429
0.8 1.23352 1.11700 0.998322 0.89387

0.6 0.2 1.26406 0.978884 0.753272 0.56974
0.4 1.34251 1.10031 0.89857 0.736162
0.6 1.42335 1.22865 1.05347 0.90909
0.8 1.50663 1.36431 1.21935 1.09178

0.8 0.2 1.54393 1.19561 0.920048 0.695882
0.4 1.63975 1.34393 1.09752 0.89915
0.6 1.73848 1.50068 1.28671 1.11036
0.8 1.84020 1.66637 1.48932 1.33349
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Table 9: Numerically study regard to w(x, y, t) by FHPTM along with Caputo-Fabrizio derivative for
system of equation (4.4) with diverse x, y, t as well as its separate values as α.

x t α = 0.25 α = 0.5 α = 0.75 α = 1
0.2 0.2 1.36892 1.19053 1.06869 0.968162

0.4 1.42154 1.25910 1.14952 1.09055
0.6 1.47693 1.33341 1.23127 1.19326
0.8 1.53519 1.41427 1.31671 1.28287

0.4 0.2 1.12078 0.974726 0.616727 0.792664
0.4 1.16386 1.03087 0.874972 0.892865
0.6 1.20921 1.091701 0.941148 0.976962
0.8 1.25691 1.15791 1.00808 1.05032

0.6 0.2 0.917616 0.798038 0.716366 0.648978
0.4 0.952889 0.844001 0.770547 0.731016
0.6 0.990017 0.89381 0.825346 0.799869
0.8 1.02907 0.948013 0.882617 0.859933

0.8 0.2 0.75128 0.653378 0.586511 0.531338
0.4 0.78016 0.69101 0.630871 0.598505
0.6 0.810557 0.73179 0.675736 0.654878
0.8 0.842529 0.776168 0.722625 0.704053

5. Results and discussion

In this section, using the homotopy perturbation transform technique and using the initial condition
(1) and (2), we solved the fractional order system of equation (1). By setting 0 < α ≤ 1. For x = π

2 ,
Fig.1 provides a comparison of third-order approximate solutions for separate value of α = 0.25, α =
0.5, α = 0.75, and α = 1. Fig.(2, 3) (a)- (d) shows the profile of the third order approximation solution
for homogeneous linear system. Here the numerical results obtained by FHPTM, table.(1,2) at different
valve x, t and α = 1. For x = π

2 ,Fig.4 provides a comparison of third-order approximate solutions for
separate value of α = 0.25, α = 0.5, α = 0.75, and α = 1. Fig.(5, 6) (a)- (d) shows the profile of the third
order approximation solution for inhomogeneous linear system. Here the numerical results obtained by
FHPTM, table.(3,4) at different valve x, t and α = 1. For x = 1, Fig.7 provides a comparison of third-
order approximate solutions for separate value of α = 0.25, α = 0.5, α = 0.75,and α = 1. Fig.(8, 9)(a)-(d)
shows the profile of the third order approximation solution for inhomogeneous non-linear system. Here
the numerical results obtained by FHPTM, Table.(5,6) at different valve x, t and y = 1.5, α = 1. For
x = 1, y = 1.5, Fig.10 provides a comparison of third-order approximate solutions for separate value of
α = 0.25, α = 0.5, α = 0.75, and α = 1. Fig.(11, 12, 13) (a)- (d) shows the profile of the third order
approximation solution for inhomogeneous non-linear system. Here the numerical results obtained by
FHPTM, table.(7, 8, 9) at separate valve x, t and y = 0.05 α = 1. It’s also worth noting that the solution
is Caputo Fabrizio derivative dependent. Increasing the number of iterations can improve accuracy and
efficiency.

6. Conclusion

In this article, we introduced a homotopy perturbation transform method to solve Fractional dif-
ferential equations with dynamic analysis for a nonlinear system in this paper. Using initial condition,
this approach produces an approximation solution to the problem. The findings show that FHPTM is
an effective and computationally appealing method for investigating nonlinear fractional models. As a
result, FHPTM can be consumed to solve a variety of linear and nonlinear fractional models that arise
in science and engineering.
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