
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) : 1–8.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.77011

Cofinitely δss-Supplemented Modules

Emı̇ne Önal Kır

abstract: This paper explores the class of cofinitely δss-supplemented modules introduced as a natural
extension of δss-supplemented modules. The primary aim is to investigate structural and closure properties of
this broader class. It has been verified that the collection of cofinitely δss-supplemented modules retains the
same property under both arbitrary sums and the construction of factor modules. Furthermore, a module P is
characterized as amply cofinitely δss-supplemented precisely when each maximal submodule A of P such that
P/A is singular possesses ample δss-supplements within P . Left δss-perfect rings have been characterized via
cofinitely δss-supplemented modules and this characterization has been presented as equivalent conditions.
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1. Introduction

In this text, we represent an associative ring with identity element by S and all unitary left S-modules
by P . The expression A ≤ P indicates that A is a submodule of P . A ≤ P is named cofinite, if the
factor module P/A is a finitely generated module (refer to [1]). A ≤ P is termed small in P , written
as A ≪ P , provided for each proper submodule B of P , the submodule A + B does not equal to P .
Dually, A ≤ P is named essential in P , written A ⊴ P , provided A ∩K ̸= 0 for each nonzero K ≤ P .
P is said to be singular in case P ∼= B/A for some module B and for its essential submodule A. Soc(P )
and Rad(P ) are the socle and the radical of a module P , respectively (see [9]). Zhou introduced the
submodule δ(P ) = ∩{A ≤ P | P/A is singular and simple} in [10]. Within the same study A ≤ P is
named δ-small in P , indicated by A ≪δ P , provided for each proper submodule B of P satisfying that
P/B is singular, the submodule A + B does not equal to P . Each small submodule and non-singular
semisimple submodule of P satisfies the δ-small condition. [10, Lemma 1.5] provides that δ(P ) equals the
sum of all δ-small submodules of P . In Zhou and Zhang’s paper the submodule Socs(P ) =

∑
{A ≪ P | A

is simple} is defined (refer to [11]). Accordingly, Nişancı Türkmen and Türkmen proposed the notion of
Socδ(P ) =

∑
{A ≪δ P | A is simple} in [6].

A module P which does not equal to zero is termed local in case there exists a proper submodule
of P which contains whole proper submodules of P . This notion naturally extends to rings: a ring S is
called local whenever S is a local module as a module SS (see [9, 41.3]). The condition for a module
to be local can also be characterized by the behavior of its radical, specifically, for a module P to be
local is equivalent to its radical Rad(P ) being both maximal and a small submodule in P (see [9, 41.4]).
An enhanced form of local module was introduced by Kaynar et al., who defined a module as strongly
local when it satisfies the local condition and, in addition, it has a semisimple radical. If the module SS
adheres to this stronger version, then the ring S is described strongly local (see [3]).

Büyükaşık and Lomp proposed a different generalization known as δ-locality. In this context, a module
P is classified as δ-local when the submodule δ(P ) is both δ-small and is maximal submodule in P (refer
to [2]). Whereby, this notion was refined further: a module P is named strongly δ-local if it satisfies
δ-locality and its submodule δ(P ) is included in the socle of P , denoted by δ(P ) ≤ Soc(P ) (refer to
[6]). As demonstrated in [6, Lemma 2.2] this is equivalent to δ(P ) being semisimple and being maximal
submodule in P .
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Let P denote a module and suppose A is a submodule of P . A submodule B is named a supplement of
A in P provided it is a minimal element (with respect to inclusion) among all submodulesK ≤ P for which
the equality P = A+K holds. This is equivalent to the requirement that P = A+B and the intersection
A ∩ B is small in B, denoted by A ∩ B ≪ B. A module P is classified as supplemented provided each
submodule has at least one supplement in P . Moreover, P is described as amply supplemented provided
that for all submodules A and B of P with P = A + B, there exists a supplement of A included in B
(refer to [9, Section 41] for additional information).

According to the definition provided in [3], a submodule B qualifies as an ss-supplement of A in a
module P provided the equality P = A + B holds and the inclusion A ∩ B ≤ Socs(B) is satisfied. As
established by [3, Lemma 3] this is equivalent to the condition that P = A + B and A ∩ B is both
semisimple and is a small submodule in B, that is A ∩ B ≪ B. An alternative formulation of the same
condition is stated that P = A+B and A∩B ≤ Rad(B) and A∩B is semisimple. A module P is named
ss-supplemented when each submodule within it possesses an ss-supplement. Furthermore, provided for
all submodules A and B of P with P = A + B, an ss-supplement of A exists within B, then P is
named amply ss-supplemented. In [5] the concept of cofinitely ss-supplemented modules is introduced as
follows: a module P is a this type of module if each of its cofinite submodules possesses an ss-supplement.
Moreover, P is named amply cofinitely ss-supplemented provided that, for any cofinite submodule A of
P satisfying P = A+B for some B ≤ P , A possesses an ss-supplement included in B.

The notion of δss-supplemented module, as detailed in [6], refers to a module P for which each
submodule A possesses a δss-supplement B in P , i.e. P = A+B and A∩B ≤ Socδ(B). In this context,
P is further called amply δss-supplemented when for any equality P = A + B with B ≤ P , there exists
a δss-supplement of A that is entirely included in B. According to [6, Lemma 3.3], the condition that
B is a δss-supplement of A in P is an equivalent condition where P = A+ B, A ∩ B is semisimple, and
A∩B ≪δ B. This is also equivalent to the alternative characterization in which P = A+B, A∩B ≤ δ(B)
and A ∩ B is a semisimple submodule. Additionally, [6, Theorem 5.3] introduces the notion of left δss-
perfect rings as those rings S for which each left S-module satisfies (amply) δss-supplemented property.
δss-supplemented R-modules are classified in the specialized form with the help of an ideal of the ring S
in [7].

In this study, we broaden the concept of δss-supplemented modules by introducing and examining
the more inclusive class of cofinitely δss-supplemented modules. We show that this property is preserved
under taking both factor modules, and arbitrary sums: that is if a module is cofinitely δss-supplemented,
then so are its factor modules and arbitrary sums of cofinitely δss-supplemented submodules of a module
is again cofinitely δss-supplemented. Since in finitely generated modules each submodule is cofinite, it
immediately follows that for such a module P with a cofinite submodule δ(P ), the factor module P/δ(P ) is
semisimple. Furthermore, we establish a characterization involving singular factors: a cofinite submodule
A of P where P/A is singular, possesses a δss-supplement in P if and only if P/Locδ(P ) has not a maximal
submodule C/Locδ(P ) with P/C singular. Here Locδ(P ) denotes the sum of all submodules of P that
are strongly δ-local. Additionally, we prove that a ring S satisfies the condition that each left S-module
is cofinitely δss-supplemented if and only if each such module is expressible as a sum of all strongly
δ-local submodules or all projective semisimple ones. Furthermore, we give a main characterization for
left δss-perfect rings in terms of cofinitely δss-supplemented modules.

2. Cofinitely δss-Supplemented Modules

Definition 2.1 We call a module P cofinitely δss-supplemented module in case for each cofinite sub-
module A of P , there exists a submodule B of P such that P = A + B, A ∩ B ≪δ B and A ∩ B is
semisimple.

We also call a module P amply cofinitely δss-supplemented module in case each cofinite submodule A
of P with P = A+B for some B ≤ P , A has a δss-supplement in P contained in B.

Proposition 2.1 Let P be a (an amply) cofinitely δss-supplemented module. Then each homomorphic
image of P is a (an amply) cofinitely δss-supplemented module.

Proof: Suppose that h : P → T is a homomorphism and A is a cofinite submodule of h(P ). Then
P/h−1(A) ∼= (P/Ker(h))/(h−1(A)/Ker(h)) such that P/Ker(h) ∼= h(P ) and h−1(A)/Ker(h) ∼= A.
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Therefore, P/h−1(A) is finitely generated. By the assumption, there exists a submodule B such that
P = h−1(A) + B, h−1(A) ∩ B ≪δ B and h−1(A) ∩ B is semisimple. Thus, h(P ) = h(h−1(A)) + h(B)
and h(h−1(A)) = A as A is a submodule of h(P ). It follows that h(P ) = A + h(B). Also, we infer
from h−1(A) ∩ B ≪δ B that h(h−1(A)) ∩ h(B) ≪δ h(B) by [10, Lemma 1.3(2)]. This means that
A∩h(B) ≪δ h(B). Moreover, as h−1(A)∩B is semisimple, then A∩h(B) is semisimple by [4, Corollary
8.1.5]. Hence h(P ) is a cofinitely δss-supplemented module.

By modifying this method, we can prove that if P is an amply cofinitely δss-supplemented module,
then h(P ) is an amply cofinitely δss-supplemented module. 2

Corollary 2.1 If P is a (an amply) cofinitely δss-supplemented module, then this property is inherited
by all factor modules of P .

Lemma 2.1 Let P be a finitely generated module. Then P is a cofinitely δss-supplemented module if and
only if P is a δss-supplemented module.

Proof: The sufficiency is clear. To prove the necessity, suppose that A is any submodule of P . Since P
is a finitely generated module, then each submodule of P is cofinite. Thus A has a δss-supplement in P ,
by assumption. Consequently P is a δss-supplemented module. 2

Proposition 2.2 Suppose that P is a cofinitely δss-supplemented module such that δ(P ) is a cofinite
submodule of P . Then the factor module P/δ(P ) is a semisimple module.

Proof: By Corollary 2.1, P/δ(P ) is a cofinitely δss-supplemented module. By assumption and Lemma
2.1, P/δ(P ) is a δss-supplemented module. Thus P/δ(P ) is a δ-supplemented module. Since δ(P/δ(P )) =
0, then P/δ(P ) has no nonzero δ-small submodules. Hence P/δ(P ) is a semisimple module. 2

Lemma 2.2 Assume A and B are submodules of a module P with A being cofinitely δss-supplemented and
B cofinite submodule of P . If A+B possesses a δss-supplement in P , then B also has a δss-supplement
in P .

Proof: Let us consider W as a δss-supplement of A+B in P . Then we obtain

A/A ∩ (W +B) ∼= (A+W +B)/(W +B) = P/(W +B)

is a finitely generated module as P/B is finitely generated. By assumption, A has a submodule Y
which is a δss-supplement of the submodule A ∩ (W + B). Thus P = A + B + W = (A ∩ (W +
B) + Y ) + B + W = B + W + Y and Y ∩ (A ∩ (W + B)) = Y ∩ (W + B). Therefore we infer that
B ∩ (W + Y ) ≤ W ∩ (B + Y ) + Y ∩ (B +W ) ≤ W ∩ (A + B) + Y ∩ (B +W ). Here we conclude that
B ∩ (W + Y ) ≪δ W + Y by [10, Lemma 1.3] and B ∩ (W + Y ) is semisimple by [4, Corollary 8.1.5].
Hence W + Y is a δss-supplement of B in P . 2

Proposition 2.3 An arbitrary sum of cofinitely δss-supplemented submodules of a module P so is.

Proof: Assume that Pi is a family of cofinitely δss-supplemented submodules of P for each i ∈ I where I is
any index set such that T =

∑
i∈I Pi. Let A be a cofinite submodule of T . Since T/A is finitely generated,

any element t+A of T/A has the form t+A = s1t1 + ...+ sntn +A where {t1 +A, t2 +A, ..., tn +A} is a
generating set of P/A. Moreover, t is an element of P such that t = ki1 +ki2 + ...+kih(i)

, where kiw is an
element of some Piw for each iw ∈ I. Therefore, t = s1(k11+...+k1h(1)

)+...+sn(kn1
+...+knh(n)

)+a, where
a ∈ A. Then T =

∑
j∈J Pj + A for a finite set J = {11, ..., 1h1 , 21, ..., nh(n)}. Thus T =

∑
j∈J Pj + A =

P11 +
∑

j∈J−{11} Pj +A. Here P11 is a cofinitely δss-supplemented module and P11 +
∑

j∈J−{11} Pj +A
possesses 0 δss-supplement. Since J is finite, this iterative method allows us to conclude from Lemma
2.2 that A has a δss-supplement within T . 2

A module P is T -generated provided that there is an epimorphism g : T (I) → P for any index set I.
Now we conclude the following result of Proposition 2.3 and Corollary 2.1.
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Corollary 2.2 If P is a cofinitely δss-supplemented module, then each P -generated module inherits this
property.

Proposition 2.4 Let P be a cofinitely δss-supplemented module. Then each cofinite submodule of P/δ(P )
is a direct summand.

Proof: P/δ(P ) has cofinite submodules formed by A/δ(P ), where A is a cofinite submodule of P . Thus
there exists a submodule B of P such that P = A+B, A∩B ≪δ B and A∩B is semisimple. Note that
A ∩ B ≤ δ(P ). Hence we infer P/δ(P ) = (A/δ(P ))⊕ (B + δ(P )/δ(P )) meaning that A/δ(P ) is a direct
summand of P/δ(P ). 2

From now on, we shall use Cofδss(P ) and Locδ(P ) to indicate the sum of all cofinitely δss-supplemented
submodules of P and the sum of all strongly δ-local submodules of P , respectively. Observe from [6,
Lemma 4.1] that strongly δ-local modules are cofinitely δss-supplemented.

Theorem 2.1 Let P be a module. Then the conditions stated below are all equivalent:

1. Each cofinite submodule A of P with singular P/A has a δss-supplement in P .

2. Each maximal submodule A of P with singular P/A has a δss-supplement in P .

3. P/Locδ(P ) does not include a maximal submodule C/Locδ(P ) with singular P/C.

4. P/Cofδss(P ) does not include a maximal submodule C/Cofδss(P ) with singular P/C.

Proof: (1) =⇒ (2) Obvious.
(2) =⇒ (3) Assume that A is a maximal submodule of P with singular P/A. Then P has a submodule

B such that P = A+B, A∩B ≪δ B and A∩B is semisimple. Note that P/A = (A+B)/A ∼= B/(A∩B).
So A∩B is a maximal submodule of B with singular B/(A∩B). Thus A∩B = δ(B) and δ(B) ≤ Soc(B).
Therefore, B is a strongly δ-local submodule of P . Hence B ≤ Locδ(P ), and so Locδ(P ) is not a
submodule of A. Consequently, P/Locδ(P ) does not include a maximal submodule as desired.

(3) =⇒ (4) Assume contrary that P/Cofδss(P ) includes a maximal submodule C/Cofδss(P ) with sin-
gular P/C. Consider the epimorphism h : P/Locδ(P ) → P/Cofδss(P ). Following this way,
h−1(C/Cofδss(P )) is a maximal submodule of P/Locδ(P ) with singular(P/Locδ(P ))/(h−1(C/Cofδss(P ))).
This is a contradiction. So the claim holds.

(4) =⇒ (1) Assume that A is a cofinite submodule of P with singular P/A. Thus a finitely generated
factor module P/(A + Cofδss(P )) = (P/A)/(A + Cofδss(P )/A) is singular. Then by (4) P = A +
Cofδss(P ). Here since P/A is finitely generated, then P = A+P1 +P2 + ...+Pk where Pi is a cofinitely
δss-supplemented submodule for each k ∈ Z+ (1 ≤ i ≤ k). Thus A has a δss-supplement in P from
Lemma 2.2 and Proposition 2.3. 2

In what follows we denote by M(A) the collection of maximal submodules W of a module P which
includes the submodule A with singular P/W . For instance, M(P ) = ∅ and M(0) means that the collec-
tion of all maximal submodules W of P with singular P/W (this set could be also empty). Accordingly,
let β denotes a relation defined by AβB if and only if M(A) = M(B) on the set of submodules of P . β
is an equivalence relation on the collection of submodules of P .

Recall from [8] that for a module P the submodule Socp(P ) =
∑

{A ≤ P | A is simple and projective}
is defined and it is clearly observed that Socp(P ) is the largest projective semisimple submodule of P .

Theorem 2.2 Let P be a module. Then the conditions stated below are all equivalent:

1. P is an amply cofinitely δss-supplemented module.

2. Each submodule A of P has ample δss-supplements in P with cyclic P/A.

3. Each maximal submodule A of P with singular P/A has ample δss-supplements in P .
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4. Aβ(Locδ(A) ∪ Socp(A)) for each submodule A of P .

5. (Sp)β(Locδ(Sp) ∪ Socp(Sp)) for each p ∈ P − δ(P ).

Proof: The implications (1) =⇒ (2) =⇒ (3) are clear.
(3) =⇒ (1) Assume that A is a cofinite submodule of P . If A = P , then A has ample δss-supplements

in P . Thus we suppose that A ̸= P . Let X be an intersection of all essential maximal submodules
of P including the submodule A. This means that X/A = δ(P/A). Since P/A is finitely generated,
X/A ≪δ P/A by [10, Lemma 1.5]. Let M be any essential maximal submodule of P such that X
is included in M . By assumption, there exists a δss-supplement K of M in P , i.e. P = M + K,
M ∩ K ≪δ K and M ∩ K is semisimple. Thus, we have P/X = (M/X) ⊕ ((K + X)/X), because
(M/X)∩ ((K +X)/X) ≪δ P/X and (M/X)∩ ((K +X)/X) = 0. Thus P/X is a finitely generated and
semisimple module, and so X is a finite intersection of maximal essential submodules of P . Therefore X
has ample δss-supplements in P by Lemma 2.2. Now assuming that P = A+B for some submodule B of
P , we obtain that P = X+B. Then B has a submodule T such that P = X+T , X ∩T ≪δ T and X ∩T
is semisimple. Here P/A is singular since i−1(X) = A is an essential submodule of P for the inclusion
map i : A −→ X by [9, 17.3(3)]. Thus we infer from P/A = X/A+ (T + A)/A that P/A = (T + A)/A,
and so P = T +A. Since A∩ T ≤ X ∩ T , then A∩ T ≪δ T and A∩ T is semisimple by [10, Lemma 1.3]
and [4, Corollary 8.1.5]

(3) =⇒ (4) Let A be a submodule of P and B be a maximal submodule of P such that B does not
include A and P/B is singular. Then P = A+B. By (3), A has a submodule X such that P = B +X,
B ∩X ≪δ X and B ∩X is semisimple. According to [6, Proposition 3.4] X is either a strongly δ-local
or a projective semisimple module. Moreover, X is not a submodule of B. Thus B does not include
Locδ(A) ∪ Socp(A). Hence Aβ(Locδ(A) ∪ Socp(A)).

(4) =⇒ (5) Obvious.
(5) =⇒ (3) Assume that A is any maximal submodule of P with singular P/A and B is a submodule

of P such that P = A + B. Then B has an element b such that A does not include b. Thus Sb is
not included in A. Therefore, Locδ(Sb) ∪ Socp(Sb) is not included in A as (Sb)β(Locδ(Sb) ∪ Socp(Sb)).
Suppose that X is a strongly δ-local submodule of Sb and so of B such that X is not included in A.
Therefore, P = A +X, A ∩X ≪δ X and A ∩X is semisimple, implying that X is a δss-supplement of
A in P . If X is a projective semisimple submodule of Sb and so of B, then X is not included in A. This
leads us once more to the conclusion that X is a δss-supplement of A in P . As a result, A possesses
ample δss-supplements in P . 2

Corollary 2.3 Let P be a module such that for all submodules A of P Aβ(Locδ(A) ∪ Socp(A)). Then
each maximal submodule A of P with singular P/A has ample δss-supplements in P .

Lemma 2.3 Assume that P = P1 +P2 is a module where each of the submodules P1, P2 possesses ample
δss-supplements in P . Then the intersection P1 ∩ P2 possesses ample δss-supplements in P .

Proof: Assuming that P = (P1∩P2)+A for any submodule A of P , then we deduce P = P1+P2 = P1+
(P2∩P ) = P1+(P2∩((P1∩P2)+A)) = P1+(P1∩P2)+(P2∩A) = P1+(P2∩A), and with similar arguments
we also deduce P = P2 + (P1 ∩A). Thus, by the assumption, there exist a δss-supplement B1 of P1 in P
with B1 ≤ P2 ∩ A and a δss-supplement B2 of P2 in P with B2 ≤ P1 ∩ A. Therefore, we conclude that
P = (B2+B1)+(P1∩P2) and (B2+B1)∩(P1∩P2) ≤ B2∩(P1∩P2)+B1∩(P1∩P2) ≤ (B2∩P2)+(B1∩P1).
Thus (B2 + B1) ∩ (P1 ∩ P2) ≪δ B2 + B1 by [10, Lemma 1.3]. Moreover, since B2 ∩ P2 and B1 ∩ P1 are
semisimple modules, then (B2 +B1)∩ (P1 ∩P2) is semisimple by [4, Corollary 8.1.5]. Hence P1 ∩P2 has
a δss-supplement B2 +B1 that is included in A in P . 2

A ring S is defined left max when each nonzero left S-module possesses at least one maximal sub-
module. A module P is called as coatomic when each submodule that is not equal to P itself is included
in some maximal submodules of P (see [12]).

Lemma 2.4 Suppose that S is a ring. Each left S-module is cofinitely δss-supplemented if and only if
each left S-module is the sum of all strongly δ-local submodules or all projective semisimple submodules.
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Proof: (=⇒) By the assumption, the left S-module SS is cofinitely δss-supplemented, and so by Lemma
2.1 SS is δss-supplemented. Based on [6, Theorem 5.3], we conclude that S is a left δss-perfect ring.
[6, Proposition 5.5] implies that S is a left max ring. Notably, each left S-module is coatomic, so [6,
Proposition 4.10] provides that each such module is the sum of its strongly δ-local submodules or its
projective semisimple submodules.

(⇐=) For any left S-module P , the assumption together with [6, Proposition 4.10] ensures that P is
coatomic, and each cofinite submodule of P possesses a δss-supplement in P . 2

Theorem 2.3 Consider a ring S. Then the conditions stated below are all equivalent:

1. SS is an (amply) cofinitely δss-supplemented module.

2. S is a left δss-perfect ring.

3. Each projective left S-module is (amply) cofinitely δss-supplemented.

4. Each left S-module is (amply) cofinitely δss-supplemented.

5. Each left S-module is the sum of all strongly δ-local submodules or all projective semisimple sub-
modules.

6. SS is a finite sum of all strongly δ-local submodules or all projective semisimple submodules.

7. Each maximal left ideal J of S with singular S/J has ample δss-supplements in S.

Proof: (1) =⇒ (2) Since SS is finitely generated amply cofinitely δss-supplemented module, then by
Lemma 2.1 we conclude that SS is a δss-supplemented module. Thus S is a left δss-perfect ring according
to [6, Theorem 5.3].

(2) =⇒ (3) By [6, Theorem 5.3].
(3) =⇒ (4) By Proposition 2.1 and [9, 18.6].
(4) =⇒ (5) By Lemma 2.4.
(5) =⇒ (6) Obvious.
(6) =⇒ (7) By [6, Corollary 4.11].
(7) =⇒ (1) By Theorem 2.2. 2

Lemma 2.5 Let P be a module, Ai be a strongly δ-local submodule or projective semisimple submodule
of P for each i = 1, 2, ...,m and B be a submodule of P such that B+A1+ ...+Am has a δss-supplement
X in P . Then there is a subset I of {1, 2, ...,m} (may possible be empty) such that X +

∑
i∈I Ai is a

δss-supplement of B in P .

Proof: Let m = 1. Then for the submodule W = (B + X) ∩ A1 of A1, if W = A1, then 0 is a δss-
supplement of W in A1 and we obtain that X = X + 0 is a δss-supplement of B in P by the proof of
Lemma 2.2. When W ̸= A1, A1 is a δss-supplement of W in A1, and so X + A1 is a δss-supplement of
B in P by using again the proof of Lemma 2.2. Hence the proof of the case m = 1 is completed. Let
m > 1. By induction on m, we reach at the conclusion that there is a subset J of {2, ...,m} such that
X +

∑
j∈J Aj is a δss-supplement of B + A1 in P . Hence we conclude from the case m = 1 that either

X +
∑

j∈J Aj or X +A1 +
∑

j∈J Aj is a δss-supplement of B in P . 2

Theorem 2.4 For any ring S and for any S-module P , the conditions stated below are all equivalent:

1. P is an amply cofinitely δss-supplemented module.

2. Each maximal submodule A of P with singular P/A has ample δss-supplements in P .

3. Given any submodule A and any cofinite submodule B of P satisfying P = A+B, there exist either
strongly δ-local or projective semisimple submodules A1, ..., Am ≤ A such that P = B+A1+ ...+Am

for each m ∈ Z+.
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4. M(A) = M(Locδ(A) ∪ Socp(A)) for each submodule A of P .

5. M(Sp) = M(Locδ(Sp) ∪ Socp(Sp)) for any element p of P − δ(P ).

Proof: The implications (1) =⇒ (2) and (4) =⇒ (5) are obvious.
(3) =⇒ (1) By Lemma 2.5.
(2) =⇒ (4) Let A be any submodule of P and B be a maximal submodule of P which does not include

A with singular P/B. Then P = A + B. By the assumption, A has a submodule X such that X is a
δss-supplement of B in P . By [6, Proposition 3.4] X is a strongly δ-local or a projective semisimple
module. This implies that Locδ(A) ∪ Socp(A) is not a submodule of B and (4) holds.

(2) =⇒ (3) Assume that P has a cofinite submodule B such that P = B + X for some X ≤ P
and P ̸= B + Y for each submodule Y of X where Y is a finite sum of strongly δ-local or projective
semisimple submodules. By Γ, we signify the collection of submodules C of P such that B ≤ C and
P ̸= C+Y for each submodule Y of X where Y is a finite sum of strongly δ-local or projective semisimple
submodules. Using Zorn’s Lemma, Γ includes a maximal element M . Since M is a cofinite submodule
of P and P ̸= M , then P has a maximal submodule D such that M ≤ D. Obviously, it implies that
P = D +X. Here by the assumption, X has a submodule X ′ such that X ′ is a δss-supplement of D in
P . That is P = X ′ + D and X ′ ∩ D ≪δ X ′ with semisimple X ′ ∩ D. By [6, Proposition 3.4] X ′ is a
strongly δ-local or a projective semisimple submodule of P . X ′ is obviously not a submodule of D, and
also of M , i.e. M ̸= M +X ′. Since M is a maximal element of Γ, there exists a submodule W of X such
that P = (M +X ′) +W and W is a finite sum of strongly δ-local or projective semisimple submodules.
However, X ′+W is a finite sum of strongly δ-local or projective semisimple submodules and a submodule
of X. So that, P = M + (X ′ +W ). This is a contradiction. Thus (3) holds.

(5) =⇒ (2) Suppose that A is a maximal submodule of P with singular P/A and B is a submodule
of P such that P = A + B. Then there exists b ∈ B such that b /∈ A, and so P = A + Sb. Note that
b ∈ P − δ(P ). Thus since b ∈ P − δ(P ), by the hypothesis A /∈ M(Sb) = M(Locδ(Sb) ∪ Socp(Sb)). By
[6, Proposition 3.4] Sb has a submodule X which is a strongly δ-local or projective semisimple module
such that X is not a submodule of A. Therefore, P = A+X, A∩X ≪δ X with semisimple A∩X. Then
X is a δss-supplement of A in P . This provides (2). 2

Before concluding the text, let us show with the next example that the modules defined in this paper
is a proper generalization of cofinitely ss-supplemented modules.

Example 2.1 (See [6, Example 4.4.(1)]) Consider the non-noetherian commutative ring R =
∏

i≥1 Z2

and the subring S = ⟨
⊕

i≥1 Z2, 1R⟩ of R. Let P = SS. Then P is a (an amply) cofinitely δss-supplemented
module but not a (an amply) cofinitely ss-supplemented module.
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