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Abstract: There are at least two types of s-convex functions. This article will only discuss the properties
related to the first type of s-convex function, consist of the geometric meaning, monotonicity, continuity,
inclusion properties, and Jensen’s inequality. The novelties of this research are the geometric meaning of first
type s-convex function, the continuity at 0, inclusion properties of two s-convex function classes on an interval,
and necessary and sufficient condition for Jensen’s type equality. All the properties will be proved analitically.
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1. Introduction

The s-convex function is a generalization of the classical convex function. There are at least two known
types of s-convex function: the first and the second type. Hudzik et al. [1] and Pinheiro [2, 3] examined
the fundamental properties of these types, and provide examples of functions that satisfy both or that
do not satisfy one of them. Ole [4] provided a geometric meaning and some properties of second type
s-convex function. One of the well-known inequalities related to convex functions is Jensen’s inequality.
Several articles that provide further studies on Jensen’s inequality for convex or strongly convex functions
include [5–11]. Meanwhile, several researchers examined the validity of Jensen’s inequality related to the
second type of s-convex function, including [12]. Pinheiro [13] proved that the first type s-convex function
satisfied Jensen’s inequality, although the proof is not provided in detail, we will provide it at Section 4.
In addition, we provide the condition so that the equality holds.

Moreover, we provide the monotonicity and continuity of the first type s-convex function at Section
2, the novelty is that if a first type s-convex function defined on an interval containing a neighborhood
of zero, then it is continuous at zero.

∗ The project is partially supported by UPI Research Grant 2025
† Corresponding author

Submitted May 23, 2025. Published August 12, 2025
2010 Mathematics Subject Classification: 26A30, 26B35.

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.77015


2 S. A. Hazmy and A. A. Masta

We also examine the inclusion properties between two first type s-convex function classes at Section 3.
Our analysis is inspired by the study of function classes with geometric and convexity-related properties,
such as strongly close-to-convex functions, which have been explored in [14].

At this Section 1, we start to understand the geometric meaning of the first type s-convex function.

Definition 1.1 [1–3, 13] Suppose that I is an interval on R, and s ∈ (0, 1]. A function f : I → R is
called the first type s-convex function if for any x, y ∈ I and α, β ∈ [0, 1], which as + bs = 1, satisfy

f(αx+ βy) ≤ αsf(x) + βsf(y). (1.1)

The set of all first type s-convex functions on I is denoted by K1,s(I).
Let s = 1, then a function f ∈ K1,1(I) if and only if f is a convex function on I. On the other hand,

let 0 < s < 1 and f ∈ K1,s(I). If x ∈ I, x ̸= 0 and α = β = 2−
1
s , then

f
(
2(1−

1
s )x
)
≤ f(x). (1.2)

Since x is arbitrary,

f
(
2n(1−

1
s )x
)
≤ f(x)

for any n ∈ N. Since 2n(1−
1
s )x → 0 when n → ∞, then f should be identifiable at infinitely many points

near 0. To overcome this, it is reasonable that the interval I, discussed in this article, is an interval that
satisfies

I ⊇ (0, r) or I ⊇ (−r, 0) (1.3)

for some r > 0.
Let s ∈ (0, 1), and α, β ∈ [0, 1] such that αs + βs = 1. Define

gx,y(α) = αx+ βy. (1.4)

By observing its first derivative on (0, 1), that is

g′x,y(α) = x−
(
1− αs

αs

) 1−s
s

y,

we consider the following two cases.

(i) If both x, y either greater or less than 0, then

g′x,y(α) = 0 ⇐⇒ 1− αs

αs
=

(
x

y

) s
1−s

(1.5)

on (0, 1). Notice that 0 < x
y < ∞, limα→1

1−αs

αs = 0, and limα→0
1−αs

αs = ∞. Since 1−αs

αs is strictly

decreasing continuous function on (0, 1), by intermediate value theorem, there is a unique ᾱ ∈ (0, 1)
such that (1.5) holds. In case 0 < x ≤ y, g′x,y < 0 on (0, ᾱ), and g′x,y > 0 on (ᾱ, 1). It means gx,y(α)
strictly decreasing on (0, ᾱ) and strictly increasing on (ᾱ, 1), therefore

gx,y(ᾱ) = min {αx+ βy | α ∈ [0, 1], αs + βs = 1}.

Similarly, if y ≤ x < 0, then g′x,y > 0 on (0, ᾱ), and g′x,y < 0 on (ᾱ, 1). It means gx,y(α) strictly
increasing on (0, ᾱ) and strictly decreasing on (ᾱ, 1). Therefore

gx,y(ᾱ) = max {αx+ βy | α ∈ [0, 1], αs + βs = 1}. (1.6)

Furthermore, in case 0 < x < y (case y < x < 0 is similar), we have

gx,y(0) > x > gx,y(ᾱ).

By intermediate value theorem, there is a unique α̂ ∈ (0, ᾱ) such that gx,y(α̂) = x = gx,y(1).
Therefore, αsf(x) + βsf(y) takes at most two different values for each α ∈ [α̂, 1], and exactly a
value for each α ∈ [0, α̂).
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(ii) If x < 0 < y, then gx,y(α) < 0 on (0, 1), so that gx,y strictly decreasing on [0, 1]. Therefore
αsf(x) + βsf(y) takes exactly a value for each α ∈ [0, 1].

Cases (i) and (ii) are the arguments to describe the first type s-convex function geometrically, see
Figure 1.

(a) Case 0 < x < y (b) Case y < x < 0

(c) Case x < 0 < y

Figure 1: Illustration of the first type s-convex function

Theorem 1.1 Let s ∈ (0, 1), and I is an interval satisfying condition (1.3). If f ∈ K1,s(I) and c ∈ R,
then g, defined as g(x) = f(x) + c on I, is also element of K1,s(I).

Proof: Let x, y ∈ I and α, β ∈ [0, 1] such that αs + βs = 1. then

g (αx+ βy) = f (αx+ βy) + c

≤ (αsf(x) + βsf(y)) + c

= αs (f(x) + c) + βs (f(y) + c)

= αsg(x) + βsg(y).

It shows that g ∈ K1,s(I). 2

Theorem 1.1 states that translation along y-axis preserves s-convexity. Another trivial consequences
of Definition 1.1 are addition and scalar multiplication also preserving s-convexity. Theorem 6 at [1]
shows that for a certain condition the composition of first and second type s-convex function could be a
first type s-convex function.

Definition 1.2 Let I be an interval that contains 0, and s ∈ (0, 1]. The set of all first type s-convex
functions on I, which are continuous at 0, is denoted by K0

1,s.
It is obvious that K0

1,s(I) ⊆ K1,s(I). These two classes may or may not be equal.
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2. Monotonicity and Continuity

Theorem 2.1 Let s ∈ (0, 1) and f ∈ K1,s (I).

1. If an interval I ′ ⊆ (0,∞) ∩ I then f is nondecreasing on I ′.

2. If an interval I ′ ⊆ (−∞, 0) ∩ I then f is nonincreasing on I ′.

Proof: It is enough to prove 1, the rest is similar. Suppose that I ′ ⊆ (0,∞) ∩ I. Let x, y ∈ I ′, x < y,
and α, β ∈ (0, 1) which αs + βs = 1. If f ∈ K1,s(I), then

f(αx+ βy) ≤ αsf(x) + βsf(y) ⇐⇒
f(αx+ βy)− f(x) ≤ βs (f(y)− f(x)) . (2.1)

Observe that

αx+ βy = x ⇐⇒ αx+ (1− αs)
1
s y = x ⇐⇒ 1− αs

(1− α)
s =

(
x

y

)s

. (2.2)

Since 0 < x < y, then 0 <
(

x
y

)s
< 1. Suppose that g(α) = 1−αs

(1−α)s . Since limα→1 g(α) = 0, limα→0 g(α) =

1, and g is continuous on (0, 1), by intermediate value theorem, there is an a0 ∈ (0, 1) such that

g(α0) =
xs

ys
.

By (2.2) and (2.1), we have α0x+ β0y = x which β0 = (1− αs
0)

1
s , and

0 = f (α0x+ β0y)− f(x) ≤ βs
0 (f(y)− f(x)) .

Since 0 < β0 < 1, then f(y)− f(x) ≥ 0. Since x < y is arbitrary on I ′, then f is nondecreasing on I ′. 2

As a consequence of Theorem 2.1, both limx→0+ f(x) and limx→0− f(x) must be exist or −∞. But,
the following lemma states that it is impossible to have divergent limit.

Lemma 2.1 Let s ∈ (0, 1) and I = (0, r) (or I = (−r, 0)). If f ∈ K1,s(I) then limx→0+ f(x) (or
limx→0− f(x)) exists.

Proof: Let f ∈ K1,s(I) which s ∈ (0, 1) and I = (0, r). By contradiction, suppose that limx→0+ f(x) =
−∞. Let r > y > x > 0. Observe that

2−1 (f(x) + f(y)) → −∞ as x → 0+

Therefore, there is some x0 ∈ (0, y) such that

f
(
2−

1
s y
)
> 2−1 (f(x0) + f(y))

By Theorem 2.1, f is nondecreasing. As consequence, f
(
2−

1
s (x0 + y)

)
≥ f

(
2−

1
s y
)
. Therefore,

f
(
2−

1
s (x0 + y)

)
> 2−1 (f(x0) + f(y)), contradict with f ∈ K1,s(I).

2

Lemma 2.2 Let s ∈ (0, 1) and I be an interval that contains a neighborhood of 0. If f ∈ K1,s(I) then
limx→0+ f(x) = limx→0− f(x).
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Proof: Lemma 2.1 ensures the existence of limx→0− f(x) and limx→0+ f(x). By contradiction, sup-
pose that limx→0+ f(x) ̸= limx→0− f(x). Without loss of generality, suppose that limx→0+ f(x) >
limx→0− f(x). Let y > 0, and let (xn) be an increasing sequence of negative numbers that converges to
0. Also, let a pair αn, βn ∈ [0, 1], which αs

n + βs
n = 1, is a solution of

αnxn + βny = 0.

Since
xn + βny < αnxn + βny < βny,

by taking limit to the both sides, then
lim
n→∞

βny = 0.

As consequence,
lim
n→∞

βn = 0 and lim
n→∞

αn = 1.

Since f ∈ K1,s(I), then f(0) = f (αnxn + βny) ≤ αnf (xn) + βnf (y) for each n ∈ N. Let n → ∞, we
have

f(0) ≤ lim
n→∞

(αs
nf(xn) + βs

nf(y))

= lim
n→∞

f(xn)

= lim
x→0−

f(x)

< lim
y→0+

f(y).

Let f(0) < c < limy→0+ f(y). By Theorem 2.1, f(y) > c for any y ∈ (0,∞) ∩ I. Therefore

1s · f(0) + 0 · f(y) = f(0) < c < 0s · f(0) + 1s · f(y).

Since αsf(0)+βsf(y) continuous for any α ∈ [0, 1], by intermediate value theorem, there exists α ∈ (0, 1)
such that

αs
0f(0) + βs

0f(y) = c. (2.3)

On the other hand, α0 · 0 + β0y = β0y > 0, then f (α0 · 0 + β0y) > c. Together with (2.3),

f (α0 · 0 + β0y) > αs
0f(0) + βs

0f(y).

Contradict with f ∈ K1,s(I). 2

Theorem 2.2 Let s ∈ (0, 1) and I be an interval containing a neighborhood of 0. If f ∈ K1,s(I), then f
is continuous at 0. Consequently, f(x) ≥ f(0) for any x ∈ I.

Proof: Observe that

f(0) = f
(
2−

1
s (−x) + 2−

1
s x
)
≤ 1

2
(f(−x) + f(x)) .

By taking limit to both sides and Lemma 2.2, we have f(0) ≤ limx→0 f(x). Next, it will be shown that
f(0) = limx→0 f(x). By contradiction, suppose that f(0) < limx→0 f(x). The same argument, as last
10 lines at Lemma 2.2 proof, shows that this is impossible. So, f is continuous at 0. As consequence of
Theorem 2.1, we have f ≥ f(0). 2

Remember that any interval I must meet the condition (1.3), so 0 must be a limit point of I. So, we
can generalize Lemma 2.1.

Corollary 2.1 Let s ∈ (0, 1) and an interval I satisfies the condition (1.3). If f ∈ K1,s(I) then
limx→0 f(x) exists.
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Proof: Direct consequence of Theorem 2.2 and Lemma 2.1. 2

Theorem 2.3 Let s ∈ (0, 1), I be an interval containing a neighborhood of 0, and f ∈ K1,s (I).

1. If an interval I ′ ⊆ (0,∞) ∩ I then f(x)−f(0)
xs is nondecreasing on I ′.

2. If an interval I ′ ⊆ (−∞, 0) ∩ I then f(x)−f(0)
(−x)s is nonincreasing on I ′.

Proof: It is enough to prove (1), the rest is similar. Let x, y ∈ I ′, x < y, and choose β = x
y and α ∈ (0, 1)

such that αs + βs = 1. Since f ∈ K1,s(I), then

f(x) = f(α · 0 + βy) ≤ αsf(0) + βsf(y).

This implies

f(x)− f(0) ≤ βs (f(y)− f(0)) =
xs

ys
(f(y)− f(0)) .

This shows that
f(x)− f(0)

xs
≤ f(y)− f(0)

ys
.

Since x < y is arbitrary on I ′, the conclusion is obtained. 2

Remark 2.1 Suppose that s ∈ (0, 1] and f(x) = |x|s defined on R. It will be shown that f ∈ K1,s (R).
Let α, β ∈ [0, 1] such that αs + βs = 1, and x, y ∈ R. Observe that

ps + (1− p)s ≥ 1

for any p ∈ [0, 1]. If |x| ̸= |y|, then α|x|+ β|y| > 0. Therefore(
α |x|

α |x|+ β |y|

)s

+

(
β |y|

α |x|+ β |y|

)s

≥ 1.

As consequence,

f (αx+ βy) = |αx+ βy|s ≤ (α |x|+ β |y|)s

≤ αs |x|s + βs |y|s

= αsf(x) + βsf(y).

If |x| = |y|, then

f(αx+ βy) = |αx+ βy|s ≤ (α |x|+ β |y|)s

= (α+ β)
s |x|s

≤ (αs + βs)|x|s

= αsf(x) + βsf(y).

It shows the desired conclusion. It can also be verified that f satisfies the conclusions of Theorems
2.1, 2.2, and 2.3.

Remark 2.2 Let s ∈ (0, 1), and g : [0,∞) → (0,∞) which

g(x) =

{
xs x > 0

1 x = 0

Similar to Remark 2.1, for any x, y > 0, the function g satisfies (1.1). On the other hand,

f(α · 0 + βy) = f(βy) = βsys ≤ αsf(0) + βsf(y)

for any α, β ∈ [0, 1], αs + βs = 1, and y ≥ 0. This shows that f ∈ K1,s([0,∞)). Since f is
discontinous at 0, then f /∈ K0

1,s ([0,∞)). So, K0
1,s ([0,∞)) ⊊ K1,s ([0,∞)).
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Remark 2.3 For 0 < s < 1, a function f ∈ K1,s(I) may not be continuous on I ∩ (0,∞), see example
2 at [1].

Theorem 2.4 Let s ∈ (0, 1).

1. If f : (0,∞) → R is nondecreasing on (0,∞), and satisfies

f(z)− f(x)

(z − x)
s ≤ f(y)− f(x)

(y − x)
s

for any x < z < y, then f ∈ K1,s ((0,∞)).

2. If f : (−∞, 0) → R is nonincreasing on (−∞, 0), and satisfies

f(x)− f(z)

(x− z)
s ≥ f(x)− f(y)

(x− y)
s ,

for any x > z > y, then f ∈ K1,s ((−∞, 0)).

Proof: We only need to prove part 1, the rest is similar. Let 0 < x < y, and α, β ∈ [0, 1] such that
αs + βs = 1.

• If αx+ βy ≤ x, then

f(αx+ βy) ≤ f(x) = (αs + βs) f(x) ≤ αsf(x) + βsf(y).

• If x < αx+ βy < y, suppose that z = αx+ βy, then

z − x = (α+ β − 1)x+ β(y − x)

≤ (αs + βs − 1)x+ β(y − x)

= β(y − x).

Therefore,

f(z)− f(x) ≤
(
z − x

y − x

)s

(f(y)− f(x)) ≤ βs (f(y)− f(x))

=⇒ f(z) ≤ αsf(x) + βsf(y).

We conclude that f ∈ K1,s ((0,∞)). 2

Lets denote the restriction of function f : A → R on B as f |B .

Theorem 2.5 Let s ∈ (0, 1), and f : R → R. If

• f |(0,∞) ∈ K1,s ((0,∞)) and f |(−∞,0) ∈ K1,s ((−∞, 0)), and

• f is continuous at 0,

then f ∈ K1,s (R).

Proof: We only need to prove that (1.1) holds for x < 0 < y and α, β ∈ [0, 1] which αs + βs = 1. By
Theorem 2.1 and continuity of f at 0, we have f(z) ≥ f(0) for any z ∈ R. Define h(z) = f(z)− f(0) on
R. By Theorem 1.1, h|(0,∞) ∈ K1,s ((0,∞)) and h|(−∞,0) ∈ K1,s ((−∞, 0)). Let 0 < z < y, by Theorem
2.1,

h(βy) ≤ h(αz + βy) ≤ αsh(z) + βsh(y).

By taking limit z → 0, we have h(βy) ≤ αsh(0) + βsh(y) = βsh(y). Similarly, h(αx) ≤ αsh(x). Since
x < 0 < y, then x < αx+ βy < y. By Theorem 2.1,

h(αx+ βy) ≤ sup{h(αx), h(βy)}.

Since h(z) ≥ 0 on R, then sup{h(αx), h(βy)} ≤ h(αx) + h(βy). Therefore

h(αx+ βy) ≤ h(αx) + h(βy) ≤ αsh(x) + βsh(y).

This is equivalent to f(αx+ βy) ≤ αsf(x) + βsf(y). 2
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3. Inclusion Properties

In this section, we present the necessary and sufficient conditions for the inclusion property between
K1,s1 and K1,s2 where s1, s2 ∈ (0, 1). The results established in the preceding sections enable us to
identify the key parameters governing the inclusion properties of these spaces.

Theorem 3.1 If s ∈ (0, 1), and I be an interval that contains a neighborhood of 0, then K1,s(I) =
K0

1,s(I).

Proof: Direct consequence of Theorem 2.2. 2

Theorem 3.2 For any s ∈ (0, 1), there is no inclusion between K1,s(I) and K1,1(I).

Proof: Observe that |x|s ∈ K1,s(I)/K1,1(I), and exponential function e−x or ex ∈ K1,1(I)/K1,s(I) . 2

Theorem 3.3 Let I is an interval that satisfies condition (1.3). If 0 < s1 < s2 < 1, then K1,s1(I) ̸⊆
K1,s2(I).

Proof: By Remark 2.1, f(x) = |x|s1 ∈ K1,s1(I). Let α, β ∈ (0, 1) such that αs1 + βs1 = 1, and
0 < |x| < |y| < 1. Observe that

lim
x→0

f(αx+ βy) = lim
x→0

|αx+ βy|s1

= βs1 |y|s1

> βs2 |y|s2

= lim
x→0

(αs2 |x|s2 + βs2 |y|s2)

= lim
x→0

(αs2f(x) + βs2f(y)) .

This shows that f /∈ K1,s2(I). So, K1,s1(I) ̸⊆ K1,s2(I). 2

Theorem 3.4 Let an interval I satisfies exactly one of the conditions (1.3). If 0 < s1 < s2 < 1 then
K1,s2(I) ⊂ K1,s1(I).

Proof: Let I ⊇ (0, r) but I ̸⊇ (−r, 0) for some r > 0 (another case is similar), and f ∈ K1,s2(I), it will
be shown that f ∈ K1,s1(I). Suppose that α, β ∈ [0, 1] which αs1 + βs1 = 1, and x, y ∈ I. Since(

α
s1
s2

)s2
+
(
β

s1
s2

)s2
= 1,

then

f
(
α

s1
s2 x+ β

s1
s2 y
)
≤
(
α

s1
s2

)s2
f(x) +

(
β

s1
s2

)s2
f(y) = αs1f(x) + βs1f(y). (3.1)

Since p ≤ p
s1
s2 for any p ∈ [0, 1], then αx + βy ≤ α

s1
s2 x + β

s1
s2 y. If αx + βy > 0, by monotonicity of f

(Theorem 2.1), then f (αx+ βy) ≤ f
(
α

s1
s2 x+ β

s1
s2 y
)
. Combine with (3.1),

f(αx+ βy) ≤ αs1f(x) + βs1f(y). (3.2)

If αx+ βy = 0, then there are three cases.

• If x = y = 0, then f(α · 0 + β · 0) = f(0) = αs1f(0) + βs1f(0).

• If x = β = 0, then α = 1 and f(1 · 0 + 0 · y) = f(0) = 1sf(0) + 0s1f(1).

• If α = y = 0, then β = 1 and f(0 · x+ 1 · 0) = f(0) = 0s1f(x) + 1s1f(0).
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We conclude that f ∈ K1,s1(I). Since f is arbitrary, then K1,s2(I) ⊆ K1,s1(I). By Theorem 3.3,
K1,s2(I) ⊂ K1,s1(I). 2

Theorem 3.5 Let 0 < s1 < s2 < 1 and I is an interval that satisfies condition (1.3), then K1,s2(I) ⊂
K1,s1(I).

Proof: It is enough to prove when I satisfying both conditions at (1.3) (otherwise, it has been proved at
Theorem 3.4). Let function f be any element of K1,s2(I). Define h(x) = f(x)− f(0) on I. By Theorem
1.1, h ∈ K1,s2(I), and it is trivial that restriction h|(I∩[0,∞)) ∈ K1,s2 (I ∩ [0,∞)), and h|(I∩(−∞,0]) ∈
K1,s2 (I ∩ (−∞, 0]), respectively. By Theorem 3.4,

h|(I∩[0,∞)) ∈ K1,s1 (I ∩ [0,∞)) and h|(I∩(−∞,0]) ∈ K1,s1 (I ∩ (−∞, 0]) .

Next, let x, y be any elements on I.

• Case 1 : x, y ∈ I ∩ [0,∞). Since h|(I∩[0,∞)) ∈ K1,s1 (I ∩ [0,∞)) then

h(αx+ βy) ≤ αs1h(x) + βs1h(y) (3.3)

for any α, β ∈ [0, 1], αs1 + βs1 = 1.

• Case 2 : x, y ∈ I ∩ (−∞, 0]. Similarly, since

h|(I∩(−∞,0]) ∈ K1,s1 (I ∩ (−∞, 0]) ,

then (3.3) also holds.

• Case 3 : x, y ∈ I, x < 0 < y. Since h|(I∩[0,∞)) ∈ K1,s1 (I ∩ [0,∞)) and h|(I∩(−∞,0]) ∈
K1,s1 (I ∩ (−∞, 0]), then

h(αx) = h(αx+ β · 0) ≤ αs1h(x),

and

h(βy) = h(α · 0 + βy) ≤ βs1h(y)

for any α, β ∈ [0, 1], αs1 +βs1 = 1. Since h(0) = 0 and h ∈ K1,s2(I), by Theorem 2.2, then h(x) ≥ 0
on I. Therefore

sup {h(αx), h(βy)} ≤ h(αx) + h(βy) ≤ αs1h(x) + βs1h(y).

Since αx ≤ αx + βy ≤ βy, by monotonicity of h (Theorem 2.1), we have
f(αx+ βy) ≤ sup {h(αx), h(βy)}. Therefore, h holds (3.3).

We conclude that

h(αx+ βy) ≤ αs1h(x) + βs1h(y)

⇐⇒ f(αx+ βy)− f(0) ≤ αs1 (f(x)− f(0)) + βs1 (f(x)− f(0))

= αs1f(x) + βs1f(x)− f(0)

⇐⇒ f(αx+ βy) ≤ αs1f(x) + βs1f(y)

for any α, β ∈ [0, 1], αs1 + βs1 = 1. Since x, y ∈ I are arbitraries, then f ∈ K1,s1(I). 2

Remark 3.1 Theorem 3.5 generalize Theorem 4(c) at [1], and the inclusion K1,s2(I) ⊂ K1,s1(I) is
properly.
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4. Jensen’s Inequality

In this section, the sufficient and necessary conditions for the equality of Jensen’s inequality will be
given as one of the novelty of this research.

Theorem 4.1 (Jensen’s Inequality) Suppose that n ∈ N/{1}, s ∈ (0, 1], and I is an interval that
satisfies condition (1.3). If f ∈ K1,s(I) then

f

(
n∑

i=1

αixi

)
≤

n∑
i=1

αs
i f(xi) (4.1)

for any αi ∈ (0, 1),
∑n

i=1 α
s
i = 1 and xi ∈ I.

Proof: It will be proved by using strong induction. If n = 2, then inequality (4.1) is trivial. Suppose

that inequality (4.1) holds for n = 2, 3, · · · , k. Let α1, · · · , αk+1 ∈ (0, 1) which
∑k+1

i=1 αs
i = 1, and

x1, · · · , xk+1 ∈ I. Observe that,

k+1∑
i=1

αs
i =

(
k−1∑
i=1

αs
i

)
+
(
αs
k + αs

k+1

)
=

(
k−1∑
i=1

αs
i

)
+ βs,

which β = (αs
k + αs

k+1)
1
s . On the other hand,

k+1∑
i=1

αixi =

(
k−1∑
i=1

αixi

)
+ (αkxk + αk+1xk+1)

=

(
k−1∑
i=1

αixi

)
+ β

(
αk

β
xk +

αk+1

β
xk+1

)

=

(
k−1∑
i=1

αixi

)
+ βyk,

which yk = αk

β xk+
αk+1

β xk+1. Since
∑k−1

i=1 αs
i+βs = 1 and

(
αk

β

)s
+
(

αk+1

β

)s
= 1, by induction hypothesis,

then

f

(
k+1∑
i=1

αixi

)
= f

((
k−1∑
i=1

αixi

)
+ βyk

)

≤

(
k−1∑
i=1

αs
i f (xi)

)
+ βsf (yk)

=

(
k−1∑
i=1

αs
i f (xi)

)
+ βsf

(
αk

β
xk +

αk+1

β
xk+1

)

≤

(
k−1∑
i=1

αs
i f (xi)

)
+ βs

(
αs
k

βs
f (xk) +

αs
k+1

βs
f (xk+1)

)

≤

(
k+1∑
i=1

αs
i f (xi)

)
.

This shows that (4.1) holds for n = k + 1. So, (4.1) holds for any n ∈ N/{1}. 2

Theorem 4.2 Suppose that n ∈ N/{1}, s ∈ (0, 1), and I be an interval that satisfies condition (1.3). If
f ∈ K1,s(I), then equality (4.1) holds for any such αi, xi at Theorem 4.1 if and only if f is constant.
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Proof: Clearly, only the necessity part needs an argument. Let (4.1) holds, and x ∈ I is arbitrary.

Choose αi = n− 1
s and xi = x for each i, then

f
(
n1− 1

s x
)
= f(x) =⇒ f

(
nm(1− 1

s )x
)
= f(x) for any m ∈ N.

Since nm(1− 1
s )x → 0 as m → ∞, by Corollary 2.1, then

lim
x→0

f(x) = lim
m→∞

f
(
nm(1− 1

s )x
)
= f(x).

This shows that f is constant. 2

5. Conclusions

• Section 1.

– If s ∈ (0, 1), 0 < x < y and α, β ∈ [0, 1] which αs + βs = 1, then there is unique stationary
point ᾱ of gx,y(α) = αx+ βy, such that ᾱx+ β̄y ≤ x and ᾱx+ β̄y ≤ αx+ βy ≤ y. Also, there

is a unique α̂ ∈ (0, ᾱ) such that α̂x+ β̂y = x. As consequence, αsf(x) + βsf(y) takes at most
two different values for each α ∈ [α̂, 1] and takes exactly a value for each α ∈ [0, α̂). Based on
these observations, first type s-convex function can be illustrated as figure 1.

– First type s-convex function is translation invariant along y-axis.

• Section 2.

– If s ∈ (0, 1) and f ∈ K1,s(I), then f is nondecreasing on I ∩ (0,∞) and non increasing on
I∩ (−∞, 0). If I contains a neighborhood of 0, then f is continuous at 0, but it still can be not

continuous at another point. Also, f(x)−f(0)
|x|s is nondecreasing on I ∩ (0,∞) and nonincreasing

on I ∩ (−∞, 0).

– Sufficient conditions for f ∈ K1,s ((0,∞)) are f is nondecreasing on (0,∞) and

f(z)− f(x)

(z − x)
s ≤ f(y)− f(x)

(y − x)
s

for any 0 < x < z < y. On the other hand, sufficient condition for f ∈ K1,s ((−∞, 0)) are f is
nonincreasing on (0,∞) and

f(x)− f(z)

(x− z)
s ≥ f(x)− f(y)

(x− y)
s

for any 0 > x > z > y. Furthermore, when f |(0,∞) ∈ K1,s ((0,∞)), f |(−∞,0) ∈ K1,s ((−∞, 0)),
and f is continuous at 0, then f ∈ K1,s (R).

• Section 3.

– If s ∈ (0, 1) and interval I containing neighborhood of 0, then K1,s(I) = K0
1,s(I).

– For any s ∈ (0, 1), there is no inclusion between K1,s and K1,1.

– For any 0 < s1 < s2 < 1, the inclusion K1,s2 ⊂ K1,s1 occured.

• Section 4.

– If s ∈ (0, 1], then Theorem 4.1 shows that Jensen’s Inequality holds for any f ∈ K1,s(I). If
0 < s < 1, Theorem 4.2 says that the equality holds only for constant functions.

6. Application for Further Research

The properties of s-convex function in this article will be used as a foundation to generalize Orlicz
Space. A way to do this is by changing Young’s function with first type s-Young’s function. We believe
that this idea can contribute to developing the results that have been obtained at [15–23].



12 S. A. Hazmy and A. A. Masta

7. Acknowledgement

This research was funded by UPI Research Grant 2025.

References

[1] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Mathematicae, vol.
48, pp. 100–111, 8, (1994).

[2] I. M. R. Pinheiro, Second note on the definition of S1-convexity , Adv. Pure Math., vol. 05, no. 03,
pp. 127–130, (2015).

[3] M. R. Pinheiro, Exploring the concept of s-convexity, Aequationes mathematicae, vol. 74, pp. 201-
209, 12, (2007).

[4] Y. P. D. Ole, S. A. Hazmy, and A. A. Masta, Geometric interpretation of s-convex function on real
numbers, in IConMAA 2022: Analysis, Uncertainty, and Optimization, AIP Publishing, (2024).

[5] Y. Sayyari, H. Barsam, and L. Ciurdariu, A new refinement of jensen-type inequality with respect
to uniformly convex functions with applications in information theory, Journal of Mathematical
Inequalities, pp. 1311-1322, (2023).

[6] Y. Sayyari and H. Barsam, Jensen-mercer inequality for uniformly convex functions with some ap-
plications, Afrika Matematika, vol. 34, p. 38, 9,(2023).

[7] F. P. Mohebbi, M. Hassani, M. E. Omidvar, H. R. Moradi, and S. Furuichi, Further jensen–mercer’s
type inequalities for convex functions, Journal of Mathematical Inequalities, pp. 719–737, (2024).

[8] H. R. Moradi, M. E. Omidvar, M. A. Khan, and K. Nikodem, “Around jensen’s inequality for
strongly convex functions,” Aequationes mathematicae, vol. 92, pp. 25–37, 2, (2018).

[9] I. Nikoufar and D. Saeedi, An operator version of the jensen inequality for s-convex functions, Com-
plex Analysis and Operator Theory, vol. 15, p. 92, 7, (2021).

[10] M. A. Khan, S. I. Bradanovi´c, and H. A. Mahmoud, New improvements of the jensen–mercer
inequality for strongly convex functions with applications, Axioms, vol. 13, p. 553, 8, (2024).

[11] S. Simic and B. Almohsen, Some generalizations of jensen’s inequality, Contemporary Mathematics,
12, (2020).

[12] M. A. Khan, M. Hanif, Z. A. H. Khan, K. Ahmad, and Y.-M. Chu, Association of jensen’s inequality
for s-convex function with csisz´ar divergence, Journal of Inequalities and Applications, vol. 2019,
p. 162, 12, (2019).

[13] I. M. R. Pinheiro, Jensen’s inequality in detail and s-convex functions, International Journal of
Mathematical Analysis, vol. 3, pp. 95–98, (2009).

[14] R. K. Raina, P. Sharma, and J. Sokol, A class of strongly close-to-convex functions, Bol. Soc. Parana.
Mat. (3), vol. 38, pp. 9–24, May (2019).

[15] Dasep, S. Fatimah, C. Kustiawan, E. Sumiaty, and A. A. Masta, An inclusion properties of gener
alized orlicz sequence spaces, in IConMAA 2022:: Analysis, Uncertainty, and Optimization, AIP
Publishing, (2024).

[16] R. Dermawan, S. Fatimah, S. A. Hazmy, A. A. Masta, and C. Kustiawan, Generalization of young’s
function, in AIP Conference Proceedings, vol. 2734, p. 080005, AIP Publishing, (2023).

[17] R. Dermawan, A. A. Masta, E. Sumiaty, S. Fatimah, C. Kustiawan, and S. A. Hazmy, An inclusion
properties of generalized orlicz space, in IConMAA 2022: Analysis, Uncertainty, and Optimization,
AIP Publishing, (2024).



First Type S-convex Function Properties and Its Interpretation 13

[18] S. Fatimah, R. Dermawan, S. A. Hazmy, and A. A. Masta, Generalized orlicz spaces, in AIP Con-
ference Proceedings, vol. 2734, p. 080004, AIP Publishing, (2023).

[19] C. Kustiawan, A. A. Masta, D. Dasep, E. Sumiaty, S. Fatimah, and S. A. Hazmy, Generalized orlicz
sequence spaces, Barekeng J. Ilmu Mat. dan Terap., vol. 17, pp. 0427–0438, Apr. (2023).

[20] A. A. Masta, H. Gunawan, and W. Setya-Budhi, On inclusion properties of two versions of or-
licz–morrey spaces, Mediterranean Journal of Mathematics, vol. 14, p. 228, 12, (2017).

[21] S. Fatimah, S. A. Hazmy, and A. A. Masta, “Necessary condition for boundedness of stein-weiss
operator on orlicz spaces, Journal of Engineering Science and Technology, vol. 16, pp. 3792–3800,
(2021).

[22] S. S. Fatimah, A. A. Masta, S. A. Hazmy, C. Kustiawan, and I. Rukmana, Discrete orlicz-morrey
spaces and their inclusion properties, Journal of Engineering Science and Technology, vol. 16, pp.
2018–2027, (2021).

[23] S. A. Hazmy, S. Fatimah, and M. A. A. Masta, Some notes about boundedness of fractional integral
on orlicz spaces, in AIP Conference Proceedings, vol. 2734, p. 080002, AIP Publishing, 2023.l. 16,
pp. 2018–2027, (2021).

Sofihara Al Hazmy,

Mathematics Study Program,

Universitas Pendidikan Indonesia,

Indonesia.

E-mail address: sofiharaalhazmy@upi.edu

and

Al Azhary Masta,

Mathematics Study Program,

Universitas Pendidikan Indonesia,

Indonesia.

E-mail address: alazhari.masta@upi.edu


	Introduction
	Monotonicity and Continuity
	Inclusion Properties
	Jensen's Inequality
	Conclusions
	Application for Further Research
	Acknowledgement
	References

