(3s.) **v. 2025 (43)** : 1–10. ISSN-0037-8712 doi:10.5269/bspm.77073

A New Perspective on Discrete Orlicz Spaces with its Natural 2-Norm

Muh Nur

ABSTRACT: In this paper, we introduce the discrete Orlicz space equipped with a 2-norm, which serves as a generalization of its usual norm. We construct a norm derived from this 2-norm and demonstrate that the resulting space is complete, thereby forming a 2-Banach space. We use this fact to prove the fixed point theorem for the discrete Orlicz space that is equipped with a 2-norm.

Key Words: Discrete Orlicz space, 2-norm, complete, fixed point.

Contents

1	Introduction	1
_	Main Result 2.1 $\ell_{\Phi}(\mathbb{Z})$ as 2-normed space	2 2
	2.2 $\ell_{\Phi}(\mathbb{Z})$ as a 2-Banach space	6
3	An Application	9

1. Introduction

In 2024, Nur et al. [1] showed that the Orlicz space (continuous version) can be equipped with a 2-norm. Let X be a real vector space of dimension $2 \le d < \infty$. A 2-norm is a mapping $\|\cdot, \cdot\| : X \times X \to \mathbb{R}$ which satisfies the following four conditions:

- 1. ||x,y|| = 0 if and only if x, y are linearly dependent;
- 2. ||x,y|| = ||y,x|| for every $x, y \in X$;
- 3. $\|\alpha x, y\| = |\alpha| \|x, y\|$ for every $x, y \in X$ and for every $\alpha \in \mathbb{R}$;
- 4. $||x, y + z|| \le ||x, y|| + ||x, z||$ for every $x, y, z \in X$.

The pair $(X, \|\cdot, \cdot\|)$ is called a 2-normed space. Using this definition, we have $\|x, y\| \ge 0$ and $\|x, y\| = \|x, y + \alpha x\|$ for any $x, y \in X$ and $\alpha \in \mathbb{R}$.

The concept of 2-normed spaces was first introduced by Gähler [2] in the mid 1960's with its generalization outlined in [3,4,5]. Since then, numerous researchers have examined the structures of these spaces, with recent findings available in [6,7,8,9,10,11].

Let $(X, \|\cdot, \cdot\|)$ be the 2-normed space. A sequence (x_n) in X is said to be *converge* to an $x \in X$ (in 2-norm) if $\lim_{n\to\infty} \|x_n - x,y\| = 0$ for any $y \in X$. Next, a sequence (x_n) is said to be *Cauchy sequence* in X (in 2-norm) if $\lim_{n,m\to\infty} \|x_n - x_m,y\| = 0$ for any $y \in X$. If every Cauchy sequence (x_n) in X converges to an x in X then X is said to be *complete*. A complete 2-normed space is called a 2-Banach space.

Let $\Phi: [0,\infty) \to [0,\infty)$ be a Young function (that is, Φ is convex, left-continuous, $\Phi(0) = 0$, and $\lim_{t\to\infty} \Phi(t) = \infty$), we define the discrete Orlicz space $\ell_{\Phi}(\mathbb{Z})$ to be the set of all sequences $X := (x_k) : \mathbb{Z} \to \mathbb{R}$ such that $\sum_k \Phi\left(\frac{|x_k|}{\alpha}\right) < \infty$ for some $\alpha > 0$. The discrete Orlicz space $\ell_{\Phi}(\mathbb{Z})$ is a Banach space with respect to the usual norm

$$||x||_{\ell_{\Phi}(\mathbb{Z})} := \inf \left\{ b > 0 : \sum_{k} \Phi\left(\frac{|x_{k}|}{b}\right) \le 1 \right\}$$

2010 Mathematics Subject Classification: 46B20, 46B30, 46B35. Submitted May 28, 2025. Published September 17, 2025

(see [12,13]). Note that, if if $\Phi(t) := t^p$ for some $1 \le p < \infty$, then $\ell_{\Phi}(\mathbb{Z}) = \ell_p(\mathbb{Z})$. Thus, the discrete Orlicz space $\ell_{\Phi}(\mathbb{Z})$ can be viewed as a generalization of the space of p-summable sequences $\ell_p(\mathbb{Z})$. To keep the following writing simple, we denote $\ell_p(\mathbb{Z}) = \ell_p$ and $\ell_{\Phi}(\mathbb{Z}) = \ell_{\Phi}$. On the space ℓ^p for $1 \le p < \infty$, the following 2-norm $\|\cdot,\cdot\|_{\ell_p}$ was defined by Gunawan [14]

$$||x,y||_{\ell_p} = \left[\frac{1}{2} \sum_{j} \sum_{k} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right|^p \right]^{\frac{1}{p}}.$$
 (1.1)

In this note, we introduce the discrete Orlicz space ℓ_{Φ} equipped with the 2-norm, which can be seen as a generalization of the standard norm. Furthermore, we define a norm derived from the 2-norm and demonstrate that ℓ_{Φ} is the 2-Banach space with respect to its 2-norm. Using this result, we establish a fixed point theorem for this space.

2. Main Result

2.1. $\ell_{\Phi}(\mathbb{Z})$ as 2-normed space

Let ℓ_{Φ} be the discrete Orlicz space where $\Phi:[0,\infty)\to[0,\infty)$ be a Young function. We define the mapping $\|\cdot,\cdot\|_{\ell_{\Phi}}$ on $\ell_{\Phi}\times\ell_{\Phi}$ by

$$||x,y||_{\ell_{\Phi}} := \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{1}{b} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) \le 1 \right\}.$$
 (2.1)

where $x := (x_j), y := (y_j) \in \ell_{\Phi}$. Next, we will show that the mapping in (2.1) defines a 2-norm on ℓ_{Φ} . To do so, we use the following lemmas.

Lemma 2.1 If
$$0 < \|x,y\|_{\ell_{\Phi}} < \infty$$
 then $\frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{1}{\|x,y\|_{\ell_{\Phi}}} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) \le 1$.

Proof: Take any $x := (x_j)$ and $y := (y_j) \in \ell_{\Phi}$ such that $0 < \|x, y\|_{\ell_{\Phi}} < \infty$. Write

$$\mathbb{B} = \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array}\right) \right| \right) \leq 1 \right\}.$$

As consequence $||x,y||_{\ell_{\Phi}} = \inf \mathbb{B}$. For any $\epsilon > 0$, there exists $b_{\epsilon} \in \mathbb{B}$ such that $||x,y||_{\ell_{\Phi}} \leq b_{\epsilon} \leq ||x,y||_{\ell_{\Phi}} + \epsilon$. Hence

$$\frac{\left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right|}{\|x, y\|_{\ell_{\Phi}} + \epsilon} \le \frac{\left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right|}{b_{\epsilon}}.$$

By using the properties of Young function, we obtain

$$\frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{\left| \det \begin{pmatrix} x_{j} & x_{k} \\ y_{j} & y_{k} \end{pmatrix} \right|}{\|x, y\|_{\ell_{\Phi}} + \epsilon} \right) \leq \frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{\left| \det \begin{pmatrix} x_{j} & x_{k} \\ y_{j} & y_{k} \end{pmatrix} \right|}{b_{\epsilon}} \right) \leq 1.$$

Therefore $\frac{1}{2}\sum_{j}\sum_{k}\Phi\left(\frac{1}{\|x,y\|_{\ell_{\Phi}}+\epsilon}\left|\det\begin{pmatrix}x_{j} & x_{k}\\y_{j} & y_{k}\end{pmatrix}\right|\right) \leq 1$. Since $\epsilon>0$ is arbitrary, we have

$$\frac{1}{2} \underset{j}{\sum} \underset{k}{\sum} \Phi \left(\frac{1}{\|x,y\|_{\ell_{\Phi}}} \left| \det \left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array} \right) \right| \right) \leq 1,$$

as desired. \Box

Lemma 2.2
$$||x,y||_{\ell_{\Phi}} = 0$$
 if and only if $\frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{\epsilon} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) \le 1$ for every $\epsilon > 0$.

Proof: (\Leftarrow) It is obvious that $\frac{1}{2}\sum_{j}\sum_{k}\Phi\left(\frac{1}{\epsilon}\left|\det\left(\begin{array}{cc}x_{j} & x_{k}\\y_{j} & y_{k}\end{array}\right)\right|\right)\leq 1$ then $\|x,y\|_{\ell_{\Phi}}=0$.

 (\Rightarrow) Suppose, on the contrary, that there is $\epsilon_0 > 0$ such that

$$\frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{1}{\epsilon_{1}} \left| \det \left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array} \right) \right| \right) > 1.$$

Next, write $\mathbb{B} = \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array}\right) \right| \right) \le 1 \right\}$. As consequence $\|x, y\|_{\ell_{\Phi}} = \inf \mathbb{B}$. Take arbitrary $b \in \mathbb{B}$, we obtain $\epsilon_{1} \neq b$. We consider two cases

Case I: $b < \epsilon_1$. By using the properties of Young function, we have

$$\frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{\epsilon_{1}} \left| \det \begin{pmatrix} x_{j} & x_{k} \\ y_{j} & y_{k} \end{pmatrix} \right| \right) < \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{b} \left| \det \begin{pmatrix} x_{j} & x_{k} \\ y_{j} & y_{k} \end{pmatrix} \right| \right) \leq 1.$$

Case II: $b > \epsilon_1$. This implies that $||x, y||_{\ell_{\Phi}} > \epsilon_0 > 1$.

Hence, both cases contradict.

Lemma 2.3 $||x,y||_{\ell_{\Phi}} = 0$ if and only if $\frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\alpha \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) = 0$ for every $\alpha > 0$.

Proof: For every $0 < \epsilon < 1$ and $\alpha > 0$, we obtain

$$\Phi\left(\alpha \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) = \Phi\left((1 - \epsilon)0 + \epsilon \left(\frac{\alpha}{\epsilon} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) \right) \\
\leq \epsilon \Phi\left(\frac{\alpha}{\epsilon} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right).$$

Because $||x,y||_{\ell_{\Phi}} = 0$ then $\frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{\alpha}{\epsilon} \left| \det \begin{pmatrix} x_{j} & x_{k} \\ y_{j} & y_{k} \end{pmatrix} \right| \right) \le 1$ by using Lemma 2.2. As consequence, we have

$$\frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\alpha \left| \det \left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array} \right) \right| \right) \leq \frac{\epsilon}{2} \sum_{j} \sum_{k} \Phi\left(\frac{\alpha}{\epsilon} \left| \det \left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array} \right) \right| \right) \leq \epsilon.$$

Since $0 < \epsilon < 1$ is arbitrary, we conclude that $\frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\alpha \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) = 0$ for every $\alpha > 0$.

Conversely, suppose that $\frac{1}{2}\sum_{j}\sum_{k}\Phi\left(\alpha\left|\det\left(\begin{array}{cc}x_{j} & x_{k}\\y_{j} & y_{k}\end{array}\right)\right|\right)=0$ for every $\alpha>0$. Then

$$\frac{1}{\alpha} \in \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\alpha \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) \le 1 \right\}.$$

Hence, $\|x,y\|_{\ell_{\Phi}} \leq \frac{1}{\alpha}$. Since $\alpha > 0$ is arbitrary, we conclude that $\|x,y\|_{\ell_{\Phi}} = 0$.

Finaly, we have a 2-norm on discrete Orlicz space ℓ_{Φ} in the following theorem.

Theorem 2.1 The mapping (2.1) defines a 2-norm on ℓ_{Φ} .

Proof: We need to check that $\|\cdot,\cdot\|_{\ell_{\Phi}}$ satisfies the four properties of a 2-norm.

(1) Suppose that $||x,y||_{\ell_{\Phi}} = 0$. By Lemma 2.3, we obtain

$$\frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\alpha \left| \det \left(\begin{array}{cc} x_j & x_k \\ y_j & y_k \end{array} \right) \right| \right) = 0.$$

for every $\alpha > 0$. Since the Young function Φ is non-negative number, we conclude that

$$\Phi\left(\alpha \left| \det \left(\begin{array}{cc} x_j & x_k \\ y_j & y_k \end{array} \right) \right| \right) = 0.$$

As consequence, we have $\det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} = 0$. Hence, x and y are linear dependent.

Conversely, suppose x = my for some $m \in \mathbb{R}$. Observe that

$$\det\left(\begin{array}{cc} x_j & x_k \\ y_j & y_k \end{array}\right) = 0.$$

Then

$$||x,y||_{\ell_{\Phi}} = \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array}\right) \right| \right) \le 1 \right\}$$

$$= \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(0\right) \le 1 \right\} = \inf \left\{ b > 0 \right\} = 0.$$

(2) Observe that

$$||x,y||_{\ell_{\Phi}} = \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array}\right) \right| \right) \le 1 \right\}$$

$$= \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} y_{j} & y_{k} \\ x_{j} & x_{k} \end{array}\right) \right| \right) \le 1 \right\}$$

$$= ||y,x||_{\ell_{\Phi}}.$$

(3) Observe that

$$\begin{split} \|\gamma x,y\|_{\ell_{\Phi}} &= \inf\left\{b>0: \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} \gamma x_{j} & \gamma x_{k} \\ y_{j} & y_{k} \end{array}\right) \right|\right) \leq 1\right\} \\ &= \inf\left\{b>0: \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{\frac{b}{|\gamma|}} \left| \det\left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array}\right) \right|\right) \leq 1\right\} \\ &= \inf\left\{\left|\gamma\right| c>0: \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{c} \left| \det\left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array}\right) \right|\right) \leq 1\right\} \\ &= \left|\gamma\right| \inf\left\{c>0: \frac{1}{2} \sum_{j} \sum_{k} \Phi\left(\frac{1}{c} \left| \det\left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array}\right) \right|\right) \leq 1\right\} \\ &= \left|\gamma\right| \|x,y\|_{\ell_{\Phi}}. \end{split}$$

(4) Suppose that

$$||x,y+z||_{\ell_{\Phi}} = \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{1}{b} \left| \det \begin{pmatrix} x_j & x_k \\ y_j + z_j & y_k + z_k \end{pmatrix} \right| \right) \le 1 \right\}.$$

Using the properties of determinants and Lemma 2.1, we observe that

$$\begin{split} &\frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{1}{\|x,y\|_{\ell_{\Phi}} + \|x,z\|_{\ell_{\Phi}}} \left| \det \left(\frac{x_{j}}{y_{j} + z_{j}} \frac{x_{k}}{y_{k} + z_{k}} \right) \right| \right) \\ &\leq \frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{\left| \det \left(\frac{x_{j}}{y_{j}} \frac{x_{k}}{y_{k}} \right) \right| + \left| \det \left(\frac{x_{j}}{z_{j}} \frac{x_{k}}{z_{k}} \right) \right|}{\|x,y\|_{\ell_{\Phi}} + \|x,z\|_{\ell_{\Phi}}} \right) \\ &= \frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{\|x,y\|_{\ell_{\Phi}}}{\|x,y\|_{\ell_{\Phi}} + \|x,z\|_{\ell_{\Phi}}} \frac{\left| \det \left(\frac{x_{j}}{y_{j}} \frac{x_{k}}{y_{k}} \right) \right|}{\|x,y\|_{\ell_{\Phi}}} + \frac{\|x,z\|_{\ell_{\Phi}}}{\|x,y\|_{\ell_{\Phi}} + \|x,z\|_{\ell_{\Phi}}} \frac{\left| \det \left(\frac{x_{j}}{z_{j}} \frac{x_{k}}{z_{k}} \right) \right|}{\|x,z\|_{\ell_{\Phi}}} \right) \\ &\leq \frac{\|x,y\|_{\ell_{\Phi}}}{\|x,y\|_{\ell_{\Phi}} + \|x,z\|_{\ell_{\Phi}}} \sum_{j} \sum_{k} \Phi \left(\frac{1}{2\|x,y\|_{\ell_{\Phi}}} \left| \det \left(\frac{x_{j}}{y_{j}} \frac{x_{k}}{y_{k}} \right) \right| \right) \\ &+ \frac{\|x,z\|_{\ell_{\Phi}}}{\|x,y\|_{\ell_{\Phi}} + \|x,z\|_{\ell_{\Phi}}} \sum_{j} \sum_{k} \Phi \left(\frac{1}{2\|x,z\|_{\ell_{\Phi}}} \left| \det \left(\frac{x_{j}}{y_{j}} \frac{x_{k}}{y_{k}} \right) \right| \right) \\ &= \frac{\|x,y\|_{\ell_{\Phi}}}{\|x,y\|_{\ell_{\Phi}} + \|x,z\|_{\ell_{\Phi}}} + \frac{\|x,z\|_{\ell_{\Phi}}}{\|x,y\|_{\ell_{\Phi}} + \|x,z\|_{\ell_{\Phi}}} = 1. \end{split}$$

By definition $||x, y + z||_{\ell_{\Phi}}$, we have $||x, y + z||_{\ell_{\Phi}} \le ||x, y||_{\ell_{\Phi}} + ||x, z||_{\ell_{\Phi}}$.

Hence, the mapping (2.1) is the 2-norm.

Next, we discuss that the discrete Orlicz ℓ_{Φ} equipped with the 2 norm can be seen as a generalization of the space of p-summable sequence ℓ_p equipped with the 2-norm in [14] as follows.

Theorem 2.2 If $\Phi(t) = t^p$ for $1 \le p < \infty$, then $||x, y||_{\ell_{\Phi}} = ||x, y||_{\ell_p}$.

Proof: Suppose that $\Phi(t) = t^p$ for $1 \le p < \infty$. Observe that

$$\begin{aligned} \|x,y\|_{\ell_{\Phi}} &= \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \frac{1}{b^{p}} \left| \det \begin{pmatrix} x_{j} & x_{k} \\ y_{j} & y_{k} \end{pmatrix} \right|^{p} \le 1 \right\} \\ &= \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \left| \det \begin{pmatrix} x_{j} & x_{k} \\ y_{j} & y_{k} \end{pmatrix} \right|^{p} \le b^{p} \right\} \\ &= \inf B. \end{aligned}$$

Since

$$\|x,y\|_{\ell_p}^p = \frac{1}{2} \sum_{i} \sum_{k} \left| \det \left(\begin{array}{cc} x_j & x_k \\ y_j & y_k \end{array} \right) \right|^p$$

then $||x,y||_{\ell_p} \leq b$ for every $b \in B$. As consequence, $||x,y||_{\ell_p}$ is lower bound of B. Hence, $||x,y||_{\ell_p} \leq ||x,y||_{\ell_{\Phi}}$. Conversely, choosing $b = ||x,y||_{\ell_p}$, we have

$$\frac{1}{2} \sum_{j} \sum_{k} \frac{1}{\|x,y\|_{\ell_p}^p} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right|^p = \frac{1}{\|z,y\|_{\ell_p}^p} \left(\frac{1}{2} \sum_{j} \sum_{k} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right|^p \right) = 1.$$

Hence, $b = \|x, y\|_{\ell_p} \in B$. Since $\inf B = \|x, y\|_{\ell_\Phi}$ then $\|x, y\|_{\ell_p} \ge \|x, y\|_{\ell_\Phi}$. Therefore, $\|x, y\|_{\ell_p} = \|x, y\|_{\ell_\Phi}$.

2.2. $\ell_{\Phi}(\mathbb{Z})$ as a 2-Banach space

We know that ℓ_{Φ} is Banach space with respect to its usual norm $\|\cdot\|_{\ell_{\Phi}}$ [12]. Our aim now is to show that ℓ_{Φ} is a 2-Banach space with respect to its 2-norm $\|\cdot,\cdot\|_{\ell_p}$. To do so, we need the following lemmas.

Lemma 2.4 [15] Let Φ be a Young function and $x \in \ell_{\Phi}$. If $0 < \|x\|_{\ell_{\Phi}} < \infty$ then

$$\sum_{j} \Phi\left(\frac{|x_{j}|}{\|x\|_{\ell_{\Phi}}}\right) \le 1.$$

Lemma 2.5 For any $x, y \in \ell_{\Phi}$, we have

$$||x,y||_{\ell_{\Phi}} \le ||x||_{\ell_{\Phi}} ||y||_{\ell_{\Phi}}.$$

Proof: Suppose that

$$||x,y||_{\ell_{\Phi}} = \inf \left\{ b > 0 : \frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{1}{b} \left| \det \begin{pmatrix} x_j & x_k \\ y_j & y_k \end{pmatrix} \right| \right) \le 1 \right\}.$$

Using the properties of the Young function Φ , we observe that

$$\sum_{j} \sum_{k} \Phi\left(\frac{1}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}} |x_{j}y_{k} - x_{k}y_{j}|\right) \leq \sum_{j} \sum_{k} \Phi\left(\frac{|x_{j}| |y_{k}|}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}} + \frac{|x_{k}| |y_{j}|}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}}\right) \\
\leq \sum_{j} \sum_{k} \left(\Phi\left(\frac{|x_{j}| |y_{k}|}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}}\right) + \Phi\left(\frac{|x_{k}| |y_{j}|}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}}\right)\right) \\
= \sum_{j} \sum_{k} \Phi\left(\frac{|x_{j}| |y_{k}|}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}}\right) + \sum_{j} \sum_{k} \Phi\left(\frac{|x_{k}| |y_{j}|}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}}\right) \\
\leq \sum_{j} \Phi\left(\frac{|x_{j}|}{\|x\|_{\ell_{\Phi}}}\right) \sum_{k} \Phi\left(\frac{|y_{k}|}{\|y\|_{\ell_{\Phi}}}\right) + \sum_{k} \Phi\left(\frac{|x_{k}|}{\|x\|_{\ell_{\Phi}}}\right) \sum_{j} \Phi\left(\frac{|y_{j}|}{\|y\|_{\ell_{\Phi}}}\right).$$

By Lemma 2.4, we obtain

$$\frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{1}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}} \left| \det \left(\begin{array}{cc} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array} \right) \right| \right) = \frac{1}{2} \sum_{j} \sum_{k} \Phi \left(\frac{1}{\|x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}}} |x_{j}y_{k} - x_{k}y_{j}| \right) \le 1.$$

Hence, $||x, y||_{\ell_{\Phi}} \le ||x||_{\ell_{\Phi}} ||y||_{\ell_{\Phi}}$.

Using Lemma 2.5, we have the following result.

Theorem 2.3 If a sequence $\{x_n\} \in \ell_{\Phi}$ converges to x in the $\|\cdot\|_{\ell_{\Phi}}$ norm then $\{x_n\}$ also converges to x in the $\|\cdot,\cdot\|_{\ell_{\Phi}}$ norm. Similarly, if $\{x_n\} \in \ell_{\Phi}$ is a Cauchy sequence with respect to the $\|\cdot\|_{\ell_{\Phi}}$ norm then $\{x_n\} \in \ell_{\Phi}$ is also a Cauchy sequence with respect to the $\|\cdot,\cdot\|_{\ell_{\Phi}}$ norm.

Proof: Let $\{x_n\} \in \ell_{\Phi}$ converges to some x in the $\|\cdot\|_{\ell_{\Phi}}$ norm, i.e., $\lim_{n\to\infty} \|x_n - x\|_{ell_{\Phi}} = 0$. By applying Lemma 2.5, we obtain

$$\lim_{n \to \infty} \|x_n - x, y\|_{\ell_{\Phi}} \le \lim_{n \to \infty} \|x_n - x\|_{\ell_{\Phi}} \|y\|_{\ell_{\Phi}} = 0$$

for every $y \in \ell_{\Phi}$. Hence, $\{x_n\}$ also converges to some x in $\|\cdot,\cdot\|_{\ell_{\Phi}}$. The proof of the second part can be done similarly, completing the proof.

Now, we can define a norm that is derived from the 2-norm in a specific manner. Indeed, if $\{a_1, a_2\}$ is a linearly independent set in ℓ_{Φ} , then one can observe that

$$||x||_{\ell_{\Phi}}^* = ||x, a_1||_{\ell_{\Phi}} + ||x, a_2||_{\ell_{\Phi}}$$
(2.2)

defines a norm on ℓ_{Φ} . One may observe that $\|x\|_{\ell_{\Phi}}^*$ in (2.2) satisfies the properties of a norm. In particular, we may check that if $\|x\|_{\ell_{\Phi}}^* = 0$, then x = 0. Indeed, if $\|x\|_{\ell_{\Phi}}^* = 0$, then we have $\|x, a_1\|_{\ell_{\Phi}} = 0$ and $\|x, a_2\|_{\ell_{\Phi}} = 0$. As consequence, $x = \gamma a_1$ for some $\gamma \in \mathbb{R}$. Therefore, $\gamma \|a_1, a_2\|_{\ell_{\Phi}} = 0$. Since $\|a_1, a_2\|_{\ell_{\Phi}} \neq 0$ then $\gamma = 0$. Hence, x = 0. Next, by properties of the 2-norm, we have (2) $\|\kappa x\|_{\ell_{\Phi}}^* = |\kappa| \|x\|_{\ell_{\Phi}}^*$ and (3) $\|x + y\|_{\ell_{\Phi}}^* \leq \|x\|_{\ell_{\Phi}}^* + \|y\|_{\ell_{\Phi}}^*$.

The relationship between the derived norm $\|\cdot\|_{\ell_{\Phi}}^*$ and the usual norm $\|\cdot\|_{\ell_{\Phi}}$ on ℓ_{Φ} can be described as follows.

Lemma 2.6 Let $\{a_1, a_2\}$ be a linearly independent set in ℓ_{Φ} . For any $x \in \ell_{\Phi}$, the following inequality holds:

$$||x||_{\ell_{\Phi}}^* \le (||a_1||_{\ell_{\Phi}} + ||a_2||_{\ell_{\Phi}})||x||_{\ell_{\Phi}}.$$

Proof: By applying Lemma 2.5, we obtain

$$||x, a_1||_{\ell_{\Phi}} \le ||x||_{\ell_{\Phi}} ||a_1||_{\ell_{\Phi}}$$

and

$$||x, a_2||_{\ell_{\Phi}} \le ||x||_{\ell_{\Phi}} ||a_2||_{\ell_{\Phi}}$$

for any $x \in \ell_{\Phi}$. Using (2.2), we obtain

$$||x||_{\ell_{\Phi}}^* \le (||a_1||_{\ell_{\Phi}} + ||a_2||_{\ell_{\Phi}})||x||_{\ell_{\Phi}}.$$

For simplicity, we select $a_1 = (1, 0, 0, ...)$ and $a_2 = (0, 1, 0, ...)$ and define the norm $||x||_{\ell_{\Phi}}$ with respect to $\{a_1, a_2\}$ as described above. Then we have the following theorem:

Theorem 2.4 The derived norm $\|\cdot\|_{\ell_{\Phi}}^*$ is equivalent to the usual norm $\|\cdot\|_{\ell_{\Phi}}$ on ℓ_{Φ} . Specifically, we have

$$||x||_{\ell_{\Phi}} \le ||x||_{\ell_{\Phi}}^* \le 2||x||_{\ell_{\Phi}}$$

for every $x \in \ell_{\Phi}$.

Proof: Take any $x \in \ell_{\Phi}$. By using Lemma 2.6, we have $||x||_{\ell_{\Phi}}^* \leq 2||x||_{\ell_{\Phi}}$. Next, because $a_1 = (1, 0, 0, \ldots)$ and $a_2 = (0, 1, 0, \ldots)$, we calculate

$$||x, a_1||_{\ell_{\Phi}} = \inf \left\{ b > 0 : \sum_{k \neq 1} \Phi\left(\frac{|x_k|}{b}\right) \le 1 \right\}$$

and

$$||x, a_2||_{\ell_{\Phi}} = \inf \left\{ b > 0 : \sum_{k \neq 2} \Phi\left(\frac{|x_k|}{b}\right) \le 1 \right\}.$$

Using the infimum property, we obtain

$$\inf\left\{b>0: \sum_{k} \Phi\left(\frac{|x_k|}{b}\right) \leq 1\right\} \leq \inf\left\{b>0: \sum_{k\neq 1} \Phi\left(\frac{|x_k|}{b}\right) \leq 1\right\} + \inf\left\{b>0: \sum_{k\neq 2} \Phi\left(\frac{|x_k|}{b}\right) \leq 1\right\}.$$

Because $\|x\|_{\ell_{\Phi}} := \inf \left\{ b > 0 : \sum_{k} \Phi\left(\frac{|x_k|}{b}\right) \le 1 \right\}$, we have $\|x\|_{\ell_{\Phi}} \le \|x\|_{\ell_{\Phi}}^*$. Hence,

$$||x||_{\ell_{\Phi}} \le ||x||_{\ell_{\Phi}}^* \le 2||x||_{\ell_{\Phi}}.$$

This demonstrates that $\|\cdot\|_{\ell_{\Phi}}^*$ and norm $\|\cdot\|_{\ell_{\Phi}}$ are equivalent.

As a consequence of Theorem 2.4, we have the following corollaries.

Corollary 2.1 A sequence $\{x_n\} \in \ell_{\Phi}$ converges to an x in $\|\cdot\|_{\ell_{\Phi}}$ if and only if $\{x_n\}$ also converges to an x in $\|\cdot\|_{\ell_{\Phi}}^*$. Similarly, $\{x_n\} \in \ell_{\Phi}$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{\ell_{\Phi}}$ if and only if $\{x_n\} \in \ell_{\Phi}$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{\ell_{\Phi}}^*$.

Since the discrete Orlicz space ℓ_{Φ} with respect to $\|\cdot\|_{\ell_{\Phi}}$ is a Banach space [12], then we have.

Corollary 2.2 The discrete Orlicz space $(\ell_{\Phi}, \|\cdot\|_{\ell_{\Phi}}^*)$ is a Banach space.

Now, we will demonstrate the relationship between a Banach space with respect to the derived norm $\|\cdot\|_{\ell_{\Phi}}^*$ and a 2-Banach space with respect to the 2-norm $\|\cdot,\cdot\|_{\ell_{\Phi}}$ as follows.

Theorem 2.5 Let $\{a_1, a_2\}$ be basis on ℓ_{Φ} . The discrete Orlicz space ℓ_{Φ} , when equipped with the 2-norm $\|\cdot, \cdot\|_{\ell_{\Phi}}$, is a 2-Banach space if and only if ℓ_{Φ} , when equipped with the derived norm $\|\cdot\|_{\ell_{\Phi}}^*$, is a Banach space.

Proof: Assume that ℓ_{Φ} with respect to the 2-norm $\|\cdot,\cdot\|_{\ell_{\Phi}}$ is a 2-Banach space. Let $\{x_n\}$ be an arbitrary Cauchy sequence with respect to the norm $\|\cdot\|_{\ell_{\Phi}}^*$. Then, we have the following relation.

$$||x_m - x_n, a_1||_{\ell_{\Phi}} + ||x_m - x_n, a_2||_{L_{\Phi}(X)} = ||x_m - x_n||_{L_{\Phi}}^* \to 0$$

as $n, m \to \infty$. As a consequence, we obtain that $||x_m - x_n, a_1||_{L_{\Phi}} \to 0$ and $||x_m - x_n, a_2||_{\ell_{\Phi}} \to 0$ as $n, m \to \infty$. Since $\{a_1, a_2\}$ is basis on ℓ_{Φ} , for every $a \in \ell_{\Phi}$, we have

$$||x_m - x_n, a||_{\ell_{\Phi}} = ||x_m - x_n, \alpha_1 a_1 + \alpha_2 a_2||_{\ell_{\Phi}}$$
$$= |\alpha_1| ||x_m - x_n, a_1||_{\ell_{\Phi}} + |\alpha_2| ||x_m - x_n, a_2||_{\ell_{\Phi}}.$$

This shows that $\|x_m - x_n, a\|_{\ell_{\Phi}} \to 0$ for every $a \in \ell_{\Phi}$. Therefore, $\{x_n\}$ is a Cauchy sequence with respect to the 2-norm. Since ℓ_{Φ} is a 2-Banach space, there exists an $x \in \ell_{\Phi}$ such that $\|x_n - x, a\|_{\ell_{\Phi}} \to 0$ as $n \to \infty$. In particular, we obtain $\|x_n - x, a_1\|_{\ell_{\Phi}} \to 0$ and $\|x_n - x, a_2\|_{\ell_{\Phi}} \to 0$ as $n \to \infty$. Moreover, we have

$$||x_n - x||_{\ell_{\Phi}(X)}^* = ||x_n - x, a_1||_{\ell_{\Phi}} + ||x_n - x, a_2||_{\ell_{\Phi}} \to 0.$$

Since the Cauchy sequence $\{x_n\}$ converges to some $x \in \ell_{\Phi}$, it follows that ℓ_{Φ} is a Banach space with respect to the norm $\|\cdot\|_{\ell_{\Phi}}^*$.

Conversely, assume that ℓ_{Φ} , equipped with the norm $\|\cdot\|_{\ell_{\Phi}}^*$, is a Banach space. Let $\{x_n\}$ be a Cauchy sequences in ℓ_{Φ} , equipped with the 2-norm $\|\cdot,\cdot\|_{\ell_{\Phi}}$, meaning that:

$$\lim_{m,n\to\infty} \|x_m - x_n, a\|_{\ell_{\Phi}} = 0$$

for every $a \in \ell_{\Phi}$. In particular, for $a = a_1$ and $a = a_2$, we obtain $\lim_{m,n\to\infty} \|x_m - x_n, a_1\|_{\ell_{\Phi}} = 0$ and $\lim_{m,n\to\infty} \|x_m - x_n, a_2\|_{\ell_{\Phi}} = 0$. This leads to the following

$$\lim_{m,n\to\infty} \|x_m - x_n\|_{\ell_{\Phi}}^* = \lim_{m,n\to\infty} [\|x_m - x_n, a_1\|_{\ell_{\Phi}} + \|x_m - x_n, a_2\|_{\ell_{\Phi}}] = 0.$$

Thus, $\{x_n\}$ be a Cauchy sequences in ℓ_{Φ} with respect to the derived norm $\|\cdot\|_{\ell_{\Phi}}^*$. Since ℓ_{Φ} is a Banach space with respect to the derived norm $\|\cdot\|_{\ell_{\Phi}}^*$, there exists an $x \in \ell_{\Phi}$ such that $\lim_{n \to \infty} \|x_n - x\|_{\ell_{\Phi}}^* = 0$. Consequently, we have $\lim_{n \to \infty} \|x_n - x, a_1\|_{\ell_{\Phi}} = 0$ and $\lim_{n \to \infty} \|x_n - x, a_2\|_{\ell_{\Phi}} = 0$. Since $\{a_1, a_2\}$ is basis for ℓ_{Φ} , then for every $a \in \ell_{\Phi}$ we get

$$||x_n - x, a||_{\ell_{\Phi}} = ||x_n - x, \alpha_1 a_1 + \alpha_2 a_2||_{\ell_{\Phi}}$$
$$= |\alpha_1| ||f_n - x, a_1||_{\ell_{\Phi}} + |\alpha_2| ||x_n - x, a_2||_{\ell_{\Phi}}.$$

Hence, we conclde $\lim_{n\to\infty} \|x_n - x, a\|_{\ell_{\Phi}} = 0$ for every $a \in \ell_{\Phi}$. Since the Cauchy sequence $\{x_n\}$ converges to an $x \in \ell_{\Phi}$, it follows that ℓ_{Φ} is a Banach space with respect to the 2-norm $\|\cdot, \cdot\|_{\ell_{\Phi}}$.

As a consequence of Corollary 2.2 and Theorem 2.5, we have the main result as follows.

Corollary 2.3 The discrete Orlicz space $(\ell_{\Phi}, \|\cdot, \cdot\|_{\ell_{\Phi}})$ is a 2-Banach space.

3. An Application

In the above section we have defined the 2-norm in discrete Orlicz space. In addition, we have also defined a new norm using the 2-norm and proved its equivalence to the usual norm in discrete Orlicz space. Using this result, we have proven that discrete Orlicz space with 2-norm is complete. With this result, we will now prove the following contractive mapping theorem on the discrete Orlicz space $(\ell_{\Phi}, \|\cdot, \cdot\|_{\ell_{\Phi}})$. The contractive mapping theorem on the space of *p*-summable sequences equipped 2-norm $((\ell_{p}, \|\cdot, \cdot\|_{\ell_{p}}))$ was formulated by Gunawan [14] and Idris et al. [16].

Theorem 3.1 Let $(\ell_{\Phi}, \|\cdot, \cdot\|_{\ell_{\Phi}})$ be a 2-normed space and $T : \ell_{\Phi} \to \ell_{\Phi}$. If there is real number $C \in (0, 1)$ such that

$$||Tx - Ty, z||_{\ell_{x}} \le C ||x - y, z||_{\ell_{x}},$$

holds for every $x, y, z \in \ell_{\Phi}$ then T has a unique fixed point in ℓ_{Φ} .

Proof: Let $a_1 = (1, 0, ...)$ and $a_2 = (0, 1, 0, ...)$. By hypothesis, we obtain there is real number $C \in (0, 1)$ such that

$$||Tx - Ty, a_i||_{\ell_{\Phi}} \le C ||x - y, a_i||_{\ell_{\Phi}},$$

holds for every $x, y \in \ell_{\Phi}$ and i = 1, 2. Using derived norm $\|\cdot\|_{\ell_{\Phi}}^*$, we observe that

$$\begin{aligned} \|Tx - Ty\|_{\ell_{\Phi}}^* &= \|Tx - Ty, a_1\|_{\ell_{\Phi}} + \|Tx - Ty, a_2\|_{\ell_{\Phi}} \\ &\leq C \left[\|x - y, a_1\|_{\ell_{\Phi}} + \|x - y, a_2\|_{\ell_{\Phi}} \right] = C \|x - y\|_{\ell_{\Phi}}^* \,. \end{aligned}$$

Hence, T is a contractive mapping on $(\ell_{\Phi}, \|\cdot\|_{\ell_{\Phi}}^*)$. Since $(\ell_{\Phi}, \|\cdot\|_{\ell_{\Phi}}^*)$ is complete by Corollary 2.2, then T must have a unique fixed point in ℓ_{Φ} .

Acknowledgement. I extend my sincere thanks and appreciation to the editor and reviewers for their assessment and insightful comments.

References

- 1. M. Nur, A. A. Masta, M. Bahri, Firman, and A. Islamiyati, On the 2-normed Orlicz space, Int. J. Math. Comput. Sci., 19(4), 1377–1387, (2024).
- 2. S. Gähler, Lineare 2-normierte räume, Math. Nachr., 28, 1-43, (1964).
- 3. S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume. I, Math. Nachr., 40, 165–189, (1969).
- 4. S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume. II, Math. Nachr., 40, 229–264, (1969).

- 5. S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume. III, Math. Nachr., 41, 23-26, (1970).
- 6. H. Gunawan and M. Mashadi, On finite-dimensional 2-normed space Soochow J. Math., 27, 321-329, (2001).
- 7. Ş. Konca, and M. Idrıs. Equivalence among three 2-norms on the space of p-summable sequences, Journal of inequalities and special functions, 7 (4), 218–232, (2016).
- 8. Ş. Konca, and M. Idrıs. New 2-norms formed on $\ell_p(\mathbb{R})$ by bounded linear functionals, Euro-Tbilisi Math.J., 16 (4), 151–165, (2023).
- 9. Ş. Konca, and M. Idrıs. (2023) A new 2-norm generated by bounded linear functionals on a normed space, Filomat, 37 (9), 2823–2830, (2023).
- M. Nur, and H. Gunawan, A note on the g-angle between subspaces of a normed space, Aequationes Math., 95, 309–318, (2021).
- 11. M. Nur, M. Bahri, A. Islamiyati and H. Batkunde, A new semi-inner product and p_n -angle in the space of p-summable sequences, Mathematics, 11, 3139, (2023).
- 12. J. Lindenstrauss, and L. Tzafrir, On Orlicz sequence spaces, Isr. J. Math., 10, 379-390, (1971).
- 13. A. A. Masta, H. Kalita, and M. Nur, Another version discrete Orlicz-Morrey spaces, Filomat, 39(6), 1821-1830, (2025).
- H. Gunawan, The space of p-summable sequences and its natural n-norms, Bull. Austral. Math. Soc., 64, 137–147, (2001).
- P. S. Prayoga, A. A. Masta and S. Fatimah, Inclusion -roperties and generalization of Hölder's inequality in Orlicz sequence spaces, Eureka Matika, 8, 184–202, (2020).
- 16. M. Idris, S. Ekariani, and H. Gunawan, On the space of p-summable sequences, Mat. Vesnik., 65(1), 58-63, (2013).

Muh Nur,
Department of Mathematics,
Hasanuddin University,
P.O. Box 90245, Makassar, Indonesia
E-mail address: muhammadnur@unhas.ac.id