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Spray-Invariant Sets in Infinite-Dimensional Manifolds *

Kaveh Eftekharinasab

ABSTRACT: We introduce the concept of spray-invariant sets on infinite-dimensional manifolds, where any
geodesic of a spray starting in the set stays within it for its entire domain. These sets, possibly including
singular spaces such as stratified spaces, exhibit different geometric properties depending on their regularity:
sets that are not differentiable submanifolds may show sensitive dependence, for example, on parametrization,
whereas for differentiable submanifolds invariance is preserved under reparametrization. This framework offers
a broader perspective on geodesic preservation than the rigid notion of totally geodesic submanifolds, with
examples arising naturally even in simple settings, such as linear spaces equipped with flat sprays.
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Introduction

This work studies subsets of infinite-dimensional manifolds, including singular spaces such as stratified
spaces, where any geodesic of a spray starting in the subset remains within it for the entire duration of its
definition. The behavior of such sets, which we call spray-invariant, depends strongly on their regularity.
For instance, for sets that are not differentiable submanifolds, reparametrization of geodesics may affect
whether they remain within the set. In contrast, for differentiable submanifolds, this invariance is pre-
served. The motivation for studying spray-invariant sets with less regularity stems from the observation
that such sets can arise naturally even in simple settings like linear spaces equipped with flat sprays.

We focus on the intrinsic properties of sprays and work within the broader context of spray geometry.
This approach does not require the existence of a spray induced by a Finsler (or Riemannian) metric
or compatibility with such a structure. Consequently, we can analyze the dynamics of geodesics in the
setting of infinite-dimensional manifolds, where traditional Finsler (or Riemannian) geometric tools are
either unavailable or inapplicable. We primarily focus on the more general context of Fréchet manifolds;
however, our results are applicable to Hilbert and Banach manifolds as well.

Given a subset S of a manifold M and a spray 8 on M, we define the admissible set Ag s (Definition
2.5) as the collection of all tangent vectors v € TM such that the projection 7(v) € S, and 8(v) belongs to
the second-order adjacent cone of S at 7(v). In Theorem 2.1, we prove that if S is closed, then a geodesic
g(t) lies entirely in S if and only if its tangent vector ¢'(¢) belongs to Ag g for all ¢ in its domain. This
equivalence establishes Ag g as a fundamental invariant for analyzing the behavior of geodesics. Building
on this, we define a spray-invariant set as follows: a subset S is spray-invariant for the spray 8§ if, for
every geodesic g: I — M of 8 with initial tangent ¢’(0) € As g, the entire trajectory remains within .S,
ie., g(t) € S forall t € I, where I is the maximal interval of existence. Example 2.2 provides an instance
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where the spray-invariant sets is a singular space. In Example 4.3, we present an instance of stratified
spray-invariant set.

For a sufficiently differentiable submanifold S, the admissible set Ag g provides a characterization
of totally geodesic submanifolds. Specifically, in Theorem 2.2, we prove that As g = TS if and only if
S is a totally geodesic submanifold. We apply this theorem in Example 4.2 to the infinite-dimensional
manifold of loops on a sphere. Theorem 2.2 yields a geometric criterion for identifying totally geodesic
structures: that is, if S is closed and locally geodesically convex (i.e., every pair of sufficiently close points
in S is connected by a unique geodesic segment lying entirely in .S), then S is totally geodesic (Corollary
2.1). Using this criterion, Example 2.5 presents a totally geodesic submanifold. In contrast, Example 2.4
provides a differentiable submanifold that is spray-invariant but not totally geodesic.

In Subsection 2.1, we introduce the notion of spray automorphisms and establish, in Theorem 2.3,
that the image of a spray-invariant set under such an automorphism remains spray-invariant. Example
2.6 illustrates this with the flat spray on C°°(R,R) and a singular spray-invariant set. In Subsection 2.2,
we study Lie group actions on smooth manifolds and their orbit type decompositions. We show that if
the action admits suitable local slices, then each orbit type stratum is invariant under a group-invariant
spray (Theorem 2.4).

If S is a spray-invariant set, a natural question arises: does the spray 8, when regarded as a first-
order vector field on TM, remain second-order adjacent tangent to Ag g7 This reformulation reduces the
problem from analyzing second-order dynamics on M to studying first-order dynamics on TM, which may
be more tractable. This question can be addressed using the Nagumo-Brezis Theorem, which provides
a criterion for determining the invariance of sets under vector fields. However, the theorem’s classical
formulation applies primarily to Banach manifolds and does not generalize straightforwardly to arbitrary
Fréchet manifolds. For a detailed discussion of these limitations and potential adaptations, see [6].

In Section 3, we revisit the category of MCF-Fréchet manifolds, where the Nagumo-Brezis Theorem
holds under nuclearity assumptions. For a nuclear MC*-Fréchet manifold M and a closed subset S C M,
we prove (Theorem 3.2) that S is spray-invariant for the spray 8 if and only if 8, regarded as a first-order
vector field on TM, is second-order adjacent tangent to As g.

A key property of this class of manifolds is the validity of the transversality theorem. Using this, we
give a transversality-based criterion to characterize spray-invariant sets (Theorem 3.4).

In Section 4, we consider Banach and Hilbert manifolds. All results from Sections 2 and 3 remain
valid with appropriate modifications to their assumptions.

1. Sprays
We employ the notion of differentiable mappings, known as C*-mappings in the Michal-Bastiani sense
or Keller’s C*-mappings.
Throughout this paper, we assume that (F,Sem(F)) and (E,Sem(E)) are Fréchet spaces over R, where
Sem(F) = {|||\Fn |ne N} and Sem(E) = {HHEn |ne N} are families of continuous seminorms that

define the topologies of F and E, respectively. We use the notation U @ T to denote that U is an open
subset of the topological space T.

Definition 1.1 (Definition 1.2.1, [14]) Let ¢: U @ E — F be a mapping. Then the derivative of ¢ at
x in the direction h is defined by

Dipy (h) = Dp(a)(h) = lim = (o(a + th) — ()

t—0

whenever it exists. The function ¢ is called differentiable at x if Dp(x)(h) exists for all h € E. It is called
continuously differentiable if it is differentiable at all points of U, and the mapping

Dp: U XxE—F, (x,h)— Dp(z)(h)

is continuous. It is called a C*-mapping, k € N U {oo}, if it is continuous, the iterated directional
derivatives Do, (h1, ..., hj) =Dip(z)(h1,. .., hj) exist for all integers j <k, x € U, and hq,...,hj € E,
and all mappings DVp: U x B/ — F are continuous. Alternatively, we refer to C°°-mappings as being
smooth.
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In light of the chain rule for C*-mappings between open subsets of Fréchet spaces (see [14, Proposition
1.2.3]), we can naturally define C*-manifolds modeled on Fréchet spaces. We assume that these Fréchet
manifolds are Hausdorff.

Henceforth, we assume that M is a C*-Fréchet manifold modeled on F, & > 4. Recall that the
tangent space T,M at a point p € M is defined as the space of equivalence classes of tangent curves at p
(see [14, 1.3.3]). The tangent bundle 7: TM — M is a C*~1-Fréchet manifold modeled on F x F. Given a
chart (U, ¢) on M with ¢: U — F, the induced chart on TM is (TU, Ty), where TU = 7~ *(U) and

Ty: TU — o(U) x F,  To(p,v) = (¢(p),Dep(v)),

for p € U and v € T,M. We will require the tangent bundle over TM, commonly called the double
tangent bundle, denoted by 75: T(TM) — TM. This can result in expressions of considerable complexity.
In such cases, we sometimes use the notation ¢, to denote the tangent map T¢. Consider a chart (U, ¢)
on M. Then, the tangent map of ¢, is given by

T(p«): T(TU) = (p(U) x F) x (F x F),
T(@*)((I% v), (u, w)) = ((@(p)»D‘Pp(U)>7 (pr(UL (DQSDP(Ua u) + D‘Pp(“’)))) )

forp e U, v,u € TyM and w € T, (T,M).

We identify U x F with TU and correspondingly T with Dy. Thus, for brevity, we may write Ty or
©x, implicitly understanding this identification.

Consider two overlapping charts (U, ¢) and (V, %) on M with UNV # &. For TM, the transition map
¢ =1 o ! induces the following transformation equation:

¢+(p,v) = (¢(p),Dp(v)),  V(p,v) €p(UNV) xF. (1.1)

By differentiating (1.1), we derive the following change of coordinates rule for T(TM):

T(:) ((p,v), (2,9)) = (Ddy(2), D*Pp(, v) + Dy (y)), (1.2)

for all (p,v) € p(UNV) x F and all z,y € F.
To simplify notations, let (U, ¢) be a chart on M, p € U, v € T,M, and w € T,(TM). We define

Uy = Dyp(v),and wy,, = D(p4),(w) = (wy, 1, Wy, 2). (1.3)

Here, w,, 1 and w,, » are the components of w,,, obtained by applying Equation (1.1) to the tangent
vectors. Consequently, from Equation (1.2) for p € V, we obtain

Wy 2 = D*Pp(a) (Vp, Wi, 1) + D) (W, 2)- (1.4)

The theory of sprays, studied in the context of Banach manifolds by Lang [8], was later generalized to
Fréchet manifolds in [5,7] with the aim of investigating the properties of geodesics on these manifolds.

We now recall the definition of sprays and related concepts that will be required.

A C"-mapping V: TM — T(TM), 1 < r < k — 2, satisfying 7, o V' = Idwm is called a second-order
C"-vector field. If, in addition, 75 0 V' = Idm, then V' is called symmetric. A second-order vector field is
symmetric if and only if its integral curves are canonical lifts of curves in M.

We will later use the following lemma, which was proved using different arguments for finite-
dimensional manifolds in [16, Corollary 5.1.6].

Lemma 1.1 Let V: TM — T(TM) be a C"-symmetric second-order vector field, and let ¢ be a C™2-
automorphism of M. Then, ¢, oV o ¢! is also a C"-symmetric second-order vector field.

Proof: Let (z,y) € TM and (z,y, X,Y) € T(TM). Then,

() V5 (¢(x),Dp(x)(y)), and
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(2,5, X,Y) % (¢(2),Dé(2)(y), Do (x) (X), D*p(x) (y, X) + D(a)(Y)).
By applying V' to ¢, (z,y) = (¢~ '(2),Dd~"(2)(y)), we obtain
V(g (x,y) = (0 (), D™ (2) (), D6~ (z)(y), Y (¢~ ' (x),D9 ™ () (1))

Here, Y (¢~ (x),Dp~1(z)(y)) is a tangent vector to M at ¢~1(x).
Next, applying ¢ to V(o5 (z,y)) yields

Der (V671 (2,9))) = bue (671 (2), D67 () (), D6~ (@) (9), Y (67 (2), D6 (2)(9)))
- ( (67 (2)),D8(6™" (2)) (06 () (1)), DH(6™" (1) (D6 () (1))
D2(6 (@) (06~ () (4),D6 " (@)()) + Do(& ™" (2) (¥ (67 (2),D6 (@) (1))
= (x Y.y, Z(x,y)),

where

Z(w,y) =D*¢(¢ ™" (2)) (Do~ ()(), D6~ (x)(y)) +Dg(¢~" (2)) (Y (¢~ ' (), D™ () (1))

is a C"-function. The projections 7, and 75 act as follows

T*(¢** © Vo¢;l(x’y)) = T*(I,y,y,Z(l’,y)) = (m,y),
7-2(¢** ° VO(b*_l(q,‘,y)) = Tg(x,y,y,Z(x,y)) = (I,y).

Thus, ¢y 0oV o ¢! is a C"-symmetric second-order vector field. O
Assume that s is a fixed real number, and define the mapping
Lry: TM — TM, v — sv.

Then, the induced map (Ltm).: T(TM) — T(TM) satisfies

(Ltm)« © Loermy = Lrermy © (Lm )+,

which follows from the linearity of LTy on each fiber. A second-order symmetric C"-vector filed §: TM —
T(TM) is called a spray if it satisfies the following condition:

(SP1) 8(sv) = (Ltm)s«(s8(v)) for all s € R and v € TM.

A manifold that possess a C*-partition of unity admits a spray of class C*~2. Important examples
are Lindeléf manifolds modelled on nuclear Fréchet spaces, cf. [9, Theorem 16.10]. Since we require that
sprays be of class at least C?, the underlying manifolds must be of class at least C*. Therefore, we assume
henceforth that M is at least of class C*.

Let v: I CR — M be a C"-curve, r > 2. A lift of v to TM is a curve y: I — TM such that 707 = .
In other words, a lift of a curve is a curve in the tangent bundle that projects down to the original curve
on the base manifold. The curve 4/ = Dy: I — TM is called the canonical lift of 4. An integral curve n
of a spray 8 is a curve in TM such that n/(¢t) = 8(#(¢t)). Each integral curve 7 of § is the canonical lift of
7(n), i.e., (r(n)) =n. For any t in the domain of 7, the latter formula reads as (7(n))'(t) = n(t).

A curve g: I C R — M is called a geodesic of a spray 8 if its canonical lifting ¢': I — TM is an
integral curve of the spray 8. Since ¢’ lies above g in TM, that is, 7(¢') = g, we can express the geodesic

condition by
"= 8(g). (15)

To avoid ambiguity, when necessary, we will denote the local representations of objects in a chart
(U, p) of M by a subscript . The local representations of Lty and (Lty )« in (U, @) are given by

Lry : (z,v) = (x,sv) and (Lty)«: (z,v,u,w) — (z,s0,u, sw).
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Therefore, we get Lr(ruy © (Lt )« (2,0, u,w) = (2,50, su, sw). Let 8, = (84,1,84,2): (U x F) = F x F
be a local representation of 8, where each 8, ; maps U x F to F with 8, 1(z,v) = v. Then, for all s € R,
the following condition holds:

Sp2(x,80) = 28, 0(x,0). (1.6)

Thus, condition (SP1) not only characterizes a second-order vector field but also implies that 8,5 is
homogeneous of degree 2 in v. Consequently, 8, 2 is a quadratic map in its second variable, i.e.,

1
SLP,Q(;E’ U) = §D§S<P72 (‘T7 OF)(”7 U)

where D3 is the second partial derivative with respect to the second variable. In the chart, a geodesic g
of 8 has two components: g(t) = (x(t),v(t)) € U x F. Accordingly, Equation (1.5) takes the form

dz Az

L o
T =v), Ty = Seale,v(t) = 5D38,(x, 01) (0 (1), (). (1.7)
Definition 1.2 Two sprays S and S on a manifold M are said to be projectively equivalent if they share
the same geodesics as point sets. Specifically, for any geodesic g of 8, there exists an orientation-preserving

reparametrization t = t(t) such that the curve g(t) = g(t(t)) is a geodesic of 8, and vice versa.

Suppose § is projectively equivalent to 8. For any v € T,M, let g(t) be a geodesic of 8§ with g(0) = «
and ¢’(0) = v. Then, there exists a reparametrization ¢ = ¢(¢) with #(0) = 0 and (£)’(0) = 1, such that
g(%) == g(t) is the geodesic of § satisfying g(0) = = and (3)'(0) = v.

By definition, the second derivative of the coordinate representation of the geodesic at t = 0 is
9,(0) = %\tzo. Therefore, Equation (1.7) implies

Sp.2(7,v0) = g5(0) = (7,)"(0) + (1) (0)(@,) (0) = Sp.2(x, v, (1)) + (1) (0),. (1.8)

Here, the final term (%)”(0)v, is a scalar multiplication, where the real number (¢)”(0) multiplies the
vector v,, which is the local representation of the tangent vector in F. Letting P(z,v,) = (¢)”(0), we
observe that P depends only on z,v,. Furthermore, P satisfies the homogeneity

P(z,rv,) =rP(x,v,), VreR.
which follows from the quadratic homogeneity of sprays. Thus,
Svﬂ@v”w) = g%2(xa U«p) + P(xavsa)vso- (1.9)

Conversely, suppose that 8 and § satisfy Equation (1.9) with P homogeneous of degree 1 in v. Given
a geodesic g(t) of 8, the reparametrization (t) can be constructed by solving 7 (t) = P(g(t), ¢'(t))) with
£(0) = 0 and (#)'(0) = 1, implying g(f) = g(t) is a geodesic of 8.

Sprays that are projectively equivalent form equivalence classes, which we call projective sprays. For
a spray 8, its corresponding equivalence class is denoted by [8].

Remark 1.1 Vector fields on general Fréchet manifolds may lack integral curves, and even when they
exist, uniqueness is not guaranteed. Consequently, a geodesic flow may fail to exist or be well-defined.
However, our study remains unaffected by these limitations, as our primary focus is the dynamics of
geodesics, independent of their existence or uniqueness.

2. Spray-Invariant Sets

Sets invariant under the flow of vector fields have been extensively studied and well-documented for
Banach manifolds in [11]. Partial generalizations to Fréchet manifolds were subsequently established
in [6]. In this section, drawing inspiration from the concept of flow-invariant sets, we introduce the
notion of spray-invariant sets with respect to a spray on Fréchet manifolds.

As our aim is to define spray-invariant sets that are not necessarily submanifolds, we require the
notions of tangent and second-order tangent cones. However, the concept of a tangent cone to a subset
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of a topological vector space can be formulated in various ways. We adopt the adjacent cone (also known
as the intermediate cone) as defined in [1, Definition 4.1.5].

In Fréchet spaces, convergence occurs if and only if it occurs with respect to each seminorm. Therefore,
a sequence converges to a set if and only if all pseudo-distances between the sequence and the set
simultaneously approach zero. The pseudo-distance of an element x € F to a subset S C F with respect
to a seminorm ||-[|¢ ,, is defined by

de (@, ) = inf {||o = ylle,, |y € S}

Definition 2.1 Let @ # S CF and s € S. The adjacent cone T3S is defined by
T:S = {f €F| lim t g, (s +tf,S) =0,Vn € N}.
t—0+

The adjacent cone TS is nonempty and closed. The proof is a straightforward adaptation of the argu-
ments given in the Banach space case (cf. [11, Proposition 1.2]).

Intuitively, the adjacent cone TS at a point s € S consists of all vectors f representing permissible
directions of motion from s, i.e., directions in which one can depart from s while remaining arbitrarily
close to S. This idea is formalized by the condition that all pseudo-distances from s+¢f to .S must vanish
faster than the step size t. As we will see, if S is a differentiable submanifold, then TS is the tangent
space at s.

Example 2.1 Let F be the Fréchet space R* of all real sequences, with the topology given by the family
of seminorms ||z, ||g,, = |xn| for n € N. Consider the set

S ={(z;) € F|z; >0 for alli € N}

and let s be the zero sequence. By definition, a vector f = (f;) € F belongs to TS if and only if for every
n €N,

lim ¢t~ 'dg (s +tf,S) = 0.

t—0+
Since s = 0, this simplifies to lim; o+ t~*dg ,(tf,S) = 0. The pseudo-distance with respect to the n-th
seminorm is given by

inf  |tfn — ynl-

dr(tf.8) = nf F ~ vl = inf

To calculate this infimum, we consider two cases for the component f:

1. If f,, > 0, then for t > 0, we have tf, > 0. We can choose the sequence y € S such that its n-th
component is y, = tf,. In this case, the distance is |tfn, —tfn] = 0.

2. If f, <0, then tf, < 0. The closest non-negative number y, to tf, is 0. Thus, the distance is
|tfn - O| = |tfn| = 7tfn'

Combining these cases, we have dg ,,(tf,S) = tmax(0, —f,,). Hence,

lim ¢t~ 'dg,(tf,S) = max(0, —f,).

t—0+
For f to be in the cone TS, this limit must be 0 for all n € N. The condition max(0, — f,,) = 0 means
fn > 0. Since this must hold for all n, we conclude that f is in T3S if and only if f; > 0 for all i. This
1s precisely the definition of the set S. Therefore, for the set of non-negative sequences at the origin, the
adjacent cone is the set itself, i.e., ToS = S.

We now naturally extend this idea to second-order adjacent tangency. This type of tangency was defined
for Banach spaces in [15].
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Definition 2.2 Let @ #S CF, s € S, and e € F. If there is some f € F such that

Vn € N, t£%1+ t2dr, ((s+tf + 3t%),S) =0, (2.1)

then e is called a second-order adjacent tangent vector to S at s, and we say that f is associated with e.
The set of all second-order adjacent tangent vectors to S at s is denoted by T2S.

Remark 2.1 If e € T2S and f is its associated direction, it follows directly from the definition of T2S
that f € TsS. Moreover, the zero vector O belongs to TS, as any direction can be associated with it.
To show that T2S is a cone, let e € T2S with associated direction f. For any positive scalar v, consider
the vector re. By scaling f by r'/?, we obtain a new direction r'/2f that satisfies the conditions for re
to belong to T2S. Hence, T2S is a cone.

Remark 2.2 As we will see in Lemma 2.3, for a C?-submanifold S, the second-order tangent space
T (s,1)(TS) consists precisely of those pairs (f, e) whose acceleration component e belongs to the cone
T2S (with f as the associated velocity). This relationship is clear for an open subset S C F. For any
s € S, the set of admissible accelerations T2S is the entire space F. Consequently, the second-order
tangent space T4 7)(TS) is the set of all pairs (f,e) where f € T,S =F and e € T2S = F. That is,
the space of all pairs is F x F.

Remark 2.3 Alternatively, in Definitions 2.1 and 2.2, we could use the metric

o0
1z —ylle,
d =y = “Fn 2.2

which induces the same topology on F as the sequence of seminorms. This equivalence holds because
de(-,S) = 0 if and only if dr n(-,S) — 0 for all positive integers n. In other words, both dr and the
sequence (dr ) yield the same conclusions about convergence to the set S.

However, Fréchet spaces lack a canonical metric; multiple metrics induce the same topology and
different distances. Seminorms offer a more flexible and practical framework by directly reflecting the
underlying topology.

Next, we provide natural and straightforward extensions of adjacent and second-order adjacent cones to
Fréchet manifolds, analogous to the Banach manifolds case (see [11,12]).

Definition 2.3 Let S C M, s € S. A wvector v € TS is called an adjacent tangent vector to S at s if
there exists a chart (U, ) around s such that

VneN, lim ¢ 'de, (@(5) + 1Dy (s) (), (U N 5)) —0. (2.3)

t—0+

The set of all such v is denoted by TsS.

Lemma 2.1 The set TsS defined in Definition 2.3 is independent of the choice of chart.

Proof: Let S C M, s € S, and v € T;S. Let (U, ) and (V%) be two charts around s. Assume Equation
(2.3) holds for (U, ). We show it holds for (V).

Since Equation (2.3) holds for (U, ¢), there is a family of functions h,(t): (0,€) = (U N S) for each
n € N, such that

Vi EN,  Tim 7 de(p(s) + 1Dp(s)(v), hu(t)) = 0.
t—0+

Define h,,(t) = =t~ (¢(s) + tDp(s)(v) — hy(t)) on (0,€). Then, lim;_,o+ hy () = 0 in all seminorms, and
for small ¢, we have
@(s) +t(Dp(s)(v) + hu(t)) € 9(UNS).
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Let ¢ = 1 o ¢~! be the transition map. By the chain rule, Di(s) = Dg(¢(s))(Dp(s)). Consider the
Taylor expansion (Proposition 1.2.3, [14]) of ¢ around ¢(s) up to first order

¢(x) = P(s) +De(p(s))(x — ¢(s)) + Ruo(x)

where Ri¢(x) is the first-order remainder. Substituting x = ¢(s) + t(Dep(s)(v) + hy(t)) into the Taylor
expression yields

¢(p(s) + t(Dp(s)(v) + hn(t))) = ¥ (s) + t(DY(s)(v) + Dp(p(s)) (hn (1)) + Ruo(2).

Let k,(t) = Dp(¢(s))(hn(t)) + t7'Ri¢p(z) on (0,€), where 0 < & < ¢ is sufficiently small. Since
lim; o+ k,,(t) — 0 (for all seminorms), for sufficiently small ¢ we have

¥(s) +t(DY(s)(v) + kn(t)) € (VN S).

Thus,
vneN,  lm t~dr, (¢(s) + tDy(s)(v), kn(t)) —0,
where ky,(t) = th,(t) +1(s) + tDy(s)(v) on (0,¢e). This implies Equation (2.3) holds for (V). O

The set TS is a closed cone in Ty M. This follows directly from the seminorm condition in Definition 2.3,
as limits and positive scaling preserve the structure. For C"-submanifolds, adjacent tangent vectors
coincide with tangent vectors. While this result is analogous to the Banach manifold case [12], we outline
the proof in the Fréchet setting for completeness.

Suppose F; is a closed subspace of the Fréchet space F that splits it. Let Fy be a topological com-
plement, such that F = F; @ Fo. A subset S C M is called a (split) C"-Fréchet submanifold modeled on
Fi, for 1 < r <k, if for any p € S there exists a C"-diffeomorphism ¢: U — V, where U > p is open
in M and V is an open subset of F. The set V is required to be a product neighborhood of the form
V=W x O, where W @ F; and O @ F3. The map must then satisfy

SD(SQU):WX{OFz}

Then S is a C"-Fréchet manifold modeled on F;, with the maximal C"-atlas including the mappings
dluns: UNS — VNS for all ¢ as described above.

Suppose v € T;M is an adjacent vector to S at s € S. By Lemma 2.1, there exists a submanifold
chart (U, ¢) around s such that for some open set W @ Fy, we have o(UNS) = W x {Of,}. By Definition
2.3, the element s satisfies (2.3) if and only if there exists a family of functions h,(¢): (0,€) — (U N .S)
such that

. 1 _
Vn € N, tl_1>r61+ t dr <g0(s) + tDp(s)(v), hn(t)) =0.

Define hy,(t) = —t7!(¢(s) + tDp(s)(v) — hy(t)) on (0,€). Then, lim;_,o+ hy,(t) = 0 in all seminorms, and
for small ¢, we have
Vn € N, Dy(s)(v)+ hy,(t) € F1 x {Og,}.

Since Fy is closed and each Dp(s)(v) + h,(t) lies in Fy, taking the limit ¢ — 07 yields Dy(s)(v) € Fy.
Hence, v is a tangent vector to S at s.

Conversely, let v € TS be a tangent vector, and (U, ¢) a submanifold chart. By definition of the
tangent space, the curve t — ¢(s) 4+ tDp(s)(v) lies entirely in (U N S) for small t. Consequently, s
satisfies (2.3), and hence v is an adjacent tangent vector to .S at s.

In the following definition and lemma, we will use the notation introduced in (1.3) and (1.4).

Definition 2.4 Let S C M, s € S, and v € T;S. A vector w € T,(TM) is called a second-order adjacent
tangent vector to S at s (associated with v) if there exists a chart (U, ) about s such that the following
two conditions hold:

(1) Wep, 1 = Vp,
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(ii) For alln € N,
lim ¢ 2 dp, (0(s) + tvg + 32wy, 2, (U NS)) = 0. (2.4)

t—0+t

Here, v, = Dyp4(v) is the local representation of v, while wy,_ 1 and wy, o are the components of the
local representation of w, given by wy,, = D(py), (W) = (Wy..1,We, 2). The set of all such vectors w is
denoted by T2S.

Lemma 2.2 The definition of T2S in Definition 2./ is independent of the choice of chart.

Proof: Let S € M, s € S, and v € T,S. Consider two charts (U, ¢) and (V,9) around s, and let
¢ =1 o' be the transition map. Suppose w € T, (TM) satisfies w1 = v, and (2.4) holds in (U, ¢).
We will show that (2.4) also holds in (V, ).

Equation (2.4) holds if and only if there exists a family of function h,(t): (0,€) = ¢(UN.S) such that

vneN,  lim r2dF,n((@(s) + o, + %ﬂww),hn(t)) —0.
t—

Define h,,(t) == —t72(p(s) + tvy + 5t2w,, 2 — h(t)) on (0,€). Then, lim; o+ hy,(¢) = 0 in all seminorms,
and for small £, we have

kn(t) = o(s) + tv, + 3t°(wy, 2 + hn(t)) € p(UNS).

Without loss of generality, we choose € sufficiently small so that ¢(k,(¢t)) € Y(UNV NS).
We aim to show that

Vn e N, lim t72d|:7n((1/)(8) + tvy, + %tzwd,*g),ﬂl(v N S)) = 0. (2.5)

t—0+

To this end, we will express the terms in the limit condition using the chart (V) based on the given
relationships between vy, vy, Wy, 2, and wy, 2, and ¢, namely

Vg = D) (Vy), Wype 1 = gy aNd Wy 2 = D* Py (Vo W, 1) + Dbiy(s) (Wi, 2)- (2.6)
Using the Taylor expansion up to second order of ¢ around ¢(s), we have
$(x) = P(5) + Ddy(s) (z — ¢(5)) + 5D*Py(s) ( — ¢(s), & — ¢(s)) + Rag(2)
where Ra¢(z) is the second-order remainder. Substituting = = k, (¢) into the Taylor expansion results in
¢ (kn(t)) = 1(5) + Dg(s) (kn(t) — (5)) + 3D*Gg(s) (kn(t) — (5), kn(t) — (s)) + Rag(2).
Applying the expressions in (2.6) and substituting k, (t) into the later equation yields
¢ (kn(t)) = ¥(s) + tvy + 51 (wy, 2) + Rad(x). (2.7)

Since ¢(kn(t)) € ¥(V N S), for sufficiently small ¢ > 0, there exists a h,(t) € S such that ¢(k,(t)) =
¥(hn(t)). Thus, Equation (2.7) implies

vneN,  lim f?dm((@z;(s) + oy + L2wy ), ¢(hn(t))) = lim t~Ry6(x) = 0.

Since ¥(hn(t)) € (VN S), it follows that the pseudo-distances to the set (V' N S) is at most the
pseudo-distances to the specific point ¥ (h, (1)), i.e.,

Qe ((5) + oy + 32wy, 2,0(V 1)) < den (005) + tvg + 5820 2, 6(hn(1)) ).

Thus, Equation (2.5) holds true. O
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Remark 2.4 If the manifold M coincides with its model space F, then Definition 2.4 reduces to
Definition 2.2. To see this, the arguments analogous to those in the Banach case can be applied;
see [11, Remark 2.12].

The proof of the following result relies primarily on the properties of submanifold charts and on limit

arguments, which can be adapted from Banach manifolds (see [11, Theorem 2.13]) to our context with

minor modifications.

Lemma 2.3 Let S be a C?-submanifold of M modeled on Fy, and let s € S. Then the following statements
are equivalent:

(i) w € T2S with associated tangent vector v € T4S;
(ii) w € T,(TS) for some v € T4S.

Proof: Suppose w € T2S and v is its associated vector. Then T, (TS) is the tangent space at v to TS.
By Lemma 2.2, there exists a submanifold chart (U, ¢) at s for S, such that for some W @ F;, we have

P(UNS) =W x {0r,}, (2.8)

where Fs is a complement of F;. The condition
vneN, lim t‘2dp’n<(<p(s) + 1o, + HPw,. ), 0(U N 5)) ~0
—
is valid if and only if there exists a family of functions h,(¢): (0,€) = ©(U N S) such that

YneN, lim t_QdF,n((go(s) + tv, + %t2w¢*72),hn(t)> =0.

t—0+
Define
h,(t) = —t_2<(go(s) + to, + 27wy, ) — hn(t)>.
Therefore, lim;_,o+ h,(t) = 0, in all seminorms. Moreover, for small ¢, we have
@(8) + tv, + 2t (wy, 2 + hn(t)) € Fy. (2.9)

Since TS is the tangent space at s to S and v € T,.S, it follows that v, € F;.
Furthermore, from Equation (2.9), for all n € N we have

Wy, 2 + hn(t) € Fl, vt > 0.

Taking the limit as ¢ — 07, we deduce that Wy, 2 € F1. Since wy, 1 = v, € Fyq, it follows that
Wy, = (Wy, 1, Wy, 2) € F1 x Fi, which implies that w € T, (T'S).

Conversely, let w € T,(T'S). Since S is a C?-submanifold of M modeled on Fy, its tangent bundle
TS is a C'-manifold modeled on the product space F; x F;. The tangent space at any point of TS is
therefore also modeled on F; x Fy. This implies that for any submanifold chart (U, ¢) at s for S, the
local components of the vector w must satisfy w,,, 1 € F1 and wy,, 2 € Fy.

Now, let t > 0 be small enough such that <p(s)+tv¢+%t2w%72 € W. Because v, € F1 and w,,, 2 € Fy,
their linear combination also lies in F;. Thus, we have

(¢(s) + tv, + 2t?w,, 2) € UNS) =W x {0, }.
This directly implies that the limit condition is satisfied:

vneN, lim t_QdF’n<(ga(s) + tv, + 22w, 2), (U N S)) =0.

t—0t

Therefore, w € T2S, which completes the proof. O

Having established the necessary tools for studying spray-invariant sets, we now introduce a specific set
that plays a crucial role.
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Definition 2.5 Let S be a spray on M, and S C M a non-empty subset. A tangent vector v € TM is
called a (T%S,8)-admissible vector if

2
T(v) €S and 8(v) €T, S.

The set of such vectors, denoted by As. s, is called the (T2S,8)-admissible set for 8 and S.

By directly applying Definition 2.4 and Lemma 2.2, we obtain a local description of the set As . Let
v € Ag g. Then, there exists a chart ¢: U — F at v := 7(v) such that

vneN, lim t—2dF,n( ((v) + to, + 228, 2 (1)), @ (U N S)) =0, (2.10)
where, in coordinates p,: TU — F X F, the spray decomposes as follows
8(p.) (V) = D(ps)uS(v) = (Prl(S(%)(v)) = Uy, Pra(8(p,) (V) = 84, 2) (v)) e F xF. (2.11)

Remark 2.5 Let 8 and 8 be projectively equivalent sprays, i.e., 8 € [8]. In general, the admissible sets
As.s and Ag g need not coincide. From the projective relation (1.9), locally

Sy 2w, vy,) = 3%2(3:, vy) + P(x,v,)v,,  forve TyM.

Since TE(E)S is generally only a closed cone (not a linear space), the term P(x,v,)v, may result in

S(v) ¢ T2 )S even if §(v) € Ti(v)S. Thus, As,g is not preserved under projective equivalence. However,

(v

if S is a C%-submanifold, then by Lemma 2.3 we have
S(v) € Ti(v)S < 8§(v) € T(TS) for some w € T,(,)S,
where Ty, (TS) is a linear subspace of T(TM). Since P(x,v,)v, € Tr)S, it follows that
8(v) = 8(v) + P(z,v,)v, € TE(U)S.

Therefore, As s and Ag 5 are the same in this case.

Theorem 2.1 Let 8 be a spray on M, g: I C R — M its geodesic, and S C M a non-empty closed subset.
Then, for allt in I, g(t) € S if and only if ¢'(t) € As s.

Proof: Assume that ¢ € I and g(t) € S. Let € > 0 be sufficiently small such that t+s € I and g(t+s) € S
for all s € (0,¢]. Let ¢: U — F be a chart around g(¢). Using the properties of charts, we can express
¢'(t) in terms of the chart coordinates and their derivatives as follows

(g' (1) =Dp(g(t)) (g'(1) = (2o 9)'(t).

Therefore, by (2.11), we get
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Thus, for sufficiently small s, we have
e N, s72den ((p(9() + 5(9' (1) + 35S0, (g (1), (U NS)) <
< 5 2den ((p(9(0) + 5(p 0 9) (1) + 3% (9.09)" (1), plg(t + 5)) ).

Since g(t) is C2, the right-hand side vanishes as s — 07. Therefore, ¢'(t) € As s.
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Now, assume that ¢ € I and ¢'(t) € As,s. Then,
Vn e N, lim 572den (9(0(0) + 66/ () + 10780, (6 (6), $UNS)) =0, (212)

which characterizes the admissibility of ¢'(¢) relative to the set S. This condition holds if and only if
there exists a family of functions h,(4): (0,€) = (U N S) such that

v e N, lim 5-de (9(9() + 30/ (1)g + 3080 2(9' (1), hu(6)) = 0.

Define
h(8) := =02 ((g(t) + 0(g' (1) + 36°8(5. 2 (9 (1) = ha(8)) s 0 € (0,¢).

Then lims_,g+ hy,(0) = 0 in all seminorms. Consequently,

p(g(t) + (g (1) + 50 (S(4..2) (9 (1) + hn(6)) € p(UNS),  for § € (0,¢).

Since (U N S) is closed in ¢(U), taking the limit as 6 — 0% yields

©(g(t)) € p(UNS),

and therefore g(t) € S. O
We can now introduce the concept of a spray-invariant set with respect to a spray.

Definition 2.6 Let § be a spray on M, and let S be a subset of M such that As s is not empty. We say
S is spray-invariant with respect to 8 if, for any geodesic g: I — M of 8 such that 0 € I, g(0) € S, and
g'(0) € As s, then g(t) € S for allt € I.

By Theorem 2.1, a closed subset S C M is spray-invariant if, for any geodesic g: I — M of 8§ such that
0e€1,g(0) €S, and ¢'(0) € As_ g, then ¢'(t) € Ag g forall t € I.

Example 2.2 Let E = C®(R,R) be the Fréchet space of smooth real-valued functions on R whose topol-
ogqy is defined by a family of seminorms

1flen = swp |F(@)]

me[fjxj]

Here, f™) denotes the m-th derivative of the function f, j € N, and m € {0,1,2,...}. This space is a
Fréchet manifold modeled on itself with the tangent bundle TE = E x E.

Consider a flat spray 8(f,v) = (f,v,v,0g), where geodesics are affine paths ¥(t) = f + tv. Define the
subset S =S, US_, where

Sy ={f €E[supp(f) C[0,00)}, S_:={f€E|supp(f) C (—o0,0]}.

The set S is the union of two closed subspaces Sy and S_ which are smooth submanifolds of E. However,
it fails to be a manifold because there exists mo neighborhood of the zero function in S that is locally
homeomorphic to a linear subspace. Consider any neighborhood N of the zero function in S. This
neighborhood will contain functions from Sy and functions from S_. In a linear space, one can always
find a continuous path between any two nearby points. However, any continuous path in E from a function
in S1 to a function in S_ must pass through functions whose support lies on both sides of zero. Such
functions are not in Sy and not in S_, and therefore are not in S. The only point connecting these two
sets is the zero function itself. Consequently, if we remove the origin from the neighborhood N, it splits
into two disconnected pieces. This local structure is not homeomorphic to a linear space.
The adjacent cones to S at non-zero points are given by

TyS =TSy = {v € E[supp(v) C [0.00)}, Jor f € Sy \ {0},
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TyS =TsS_ = {v € E|supp(v) C (~o0,0]}, for f € S_\ {0}.

At the origin, we prove that the adjacent cone is the union of the two subspaces, i.e., ToS =S, US_.

Letv € Sy US_. To check if v € ToS, we must show the limit condition holds for every seminorm
II-llg .- For any t > 0, the function tv is also in S. We can therefore choose the point h = tv € S to
measure the pseudo-distance. For any n € N, we have

dE,n (O + tU, S) = glerlfS' Ht’U - gHE,n < ||t’U - thE,n =0.

Since the pseudo-distance is zero for every m, the limit condition is trivially satisfied. Thus, any v €
S. US_ isin TgS.

Now, let v € E be a vector such that v ¢ S; US_. This means there exist points ©1 < 0 and x2 > 0
such that v(z1) # 0 and v(xz) # 0. Select an integer j € N large enough such that the compact interval
K; = [—4,j] contains both x1 and xo. Let ng be the index corresponding to the pair (j,m = 0). The
associated seminorm is | f|lg ., = SuPye(—; 1 |f(@)|. The function tv has non-zero values on both sides of
the origin within K;. Any function g € S has support on only one side of the origin.

e If we choose g € Sy, then g(x1) =0, so |[tv — gllg ., = [tv(z1) — g(@1)] = t[v(x1)].
o If we choose g € S_, then g(x2) =0, so [[tv — gllg,,, > [tv(z2) — g(z2)| = t[v(z2)|.

In either case, the infimum pseudo-distance is bounded below. Let C' = min(|v(z1)|, |v(z2)|) > 0. Then
dE e (tv,S) > Ct. The limit for this specific seminorm is therefore bounded below:

. —1 : —1 _
lim ¢ 'dg,p, (tv,S) > lim 71(C) = C > 0.

t—0+

Since the limit condition must hold for all n € N for a vector to be in TS, and we have found at least
one seminorm (indexed by ng) for which it fails, v is not in ToS. Combining both inclusions, we have
shown that ToS =S4 US_.

For f € S;\ {0} (resp. S_\ {0}), we have
T3S =TsS+ (resp. TfS_),

since infinitesimal perturbations preserve the support condition.
For f =0, we have

T3S=S,US_, and 8(v)=0g € T3S.
The flat spray 8 trivially satisfies 8(v) € T?S, as Og € T?S for all f €S. Thus,
Ags = U {(f,v) e TE|v € TyS; orve T;S_}.
fes

Let f € S be a point and v € Ass be a tangent vector at f. By direct verification, for the geodesic
v: R = M of 8§ with initial conditions v(0) = f and v'(0) = v, we have

yit)=f+tveS, VteR.

Hence, S is spray-invariant.

Remark 2.6 As noted in Remark 2.5, the admissible sets As s and Ag g for projectively equivalent

sprays 8 and 8 generally differ when S is not differentiable submanifold. Thus, spray invariance of S with
respect to one of these sprays does not imply spray invariance with respect to the other. This implies the
sensitivity of geometric properties of singular sets to the specific projective parametrization of sprays.
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Example 2.3 Let x5 and x. be standard smooth bump functions. A function xs : R — R is a C*
function such that xs(x) > 0 for x € (=§/2,5/2) and xs(z) = 0 otherwise. We choose these functions to
be symmetric, i.e., xs(x) = xs(—x).

Consider a tangent vector v € E = C®(R,R) defined as v(x) = xs(x) for some 0 < § < e/2. The
support of v is the compact interval [—6/2,06/2], which is centered at the origin. Then

5/2

a(v) = /R)(E(oz)x(;(x) dr = / Xe(z)xs(x) dx > 0.

—§/2

Now, define the spmyg by ~
S(fv U) = (fv v, v, —20(6(’0) : U)'

This yields a projectively equivalent spray since it modifies the second derivative by a multiple of the
adjacent tangent vector.

Let f € Sy (i.e., supp(f) C [0,00)) and the initial tangent be v'(0) = v = x5 with 6 > 0. The
support of v is [—6/2,0/2], extending to the negative real line. Att =0, a(v(0),7(0)) = a.(v) > 0, so
~v"(0) = —2a(v)v. The Taylor expansion of the geodesic around t = 0 is given by

() = f +tv — tac(v)v + O@3) = f 4+ t(1 — ta(v))v + O).

Since supp(f) C [0,00) and supp(v) = [—6/2,8/2] with 6 > 0, for any t > 0 (even infinitesimally small),
the term tv will introduce a non-zero component to v(t) with support on (—o0,0), unless v was identically
zero on (—00,0), which s is not. Therefore, y(t) will leave Sy, and hence S, for t > 0. Similarly, if we
start with f € S_ and v = xs, the geodesic will leave S_, and hence S, fort > 0. Thus, while S =S, US_
1s invariant under the flat spray, it is not invariant under the projectively equivalent spray 8.

Now, using the concept of admissible sets, we can characterize totally geodesic submanifolds. Let 8§ be
a spray on a manifold M, and let S C M be a submanifold. The submanifold S is called totally geodesic
(with respect to 8) if, for all p € S and all v € T,,S, the geodesic v,(t) in M starting at p with initial
velocity v satisfies v, (¢t) € S for all t. For a totally geodesic submanifold S, the restriction 8g := 8|rg
is a spray on S, and every geodesic of the induced spray Sg is also a geodesic of 8§ on M. By definition,
totally geodesic submanifolds are spray-invariant.

Theorem 2.2 Let 8§ be a spray on M, and let S be a C3-submanifold of M. Then S is totally geodesic if
and only if As g =TS.

Proof: First, we prove that As s = 8~'(T(TS)). Suppose v € As s. Then 7(v) € S and 8(v) € T? S,
with associated vector v € T,(,,S. By Lemma 2.3, it follows that 8(v) € T, (TS). Since T, (TS) C T(TS),
we conclude that §(v) € T(TS).

Conversely, suppose 8(v) € T(TS). Then 8(v) € T,(TS), and hence v € T,,,S. By Lemma 2.3, this

implies 8(v) € T2, S, and thus v € Ags 5. Therefore, we have

As.s =8 H(T(TS)). (2.13)

This means that Ag g consists of all vectors v € TM such that §(v) € T(TS). In particular, if
8(v) € T(TS), then the geodesic starting at v remains in T'S. Now assume that S is totally geodesic.
Then for all v € TS, the geodesic of § starting at v remains in S, so 8(v) € T(TS). Hence, by (2.13),
As s =TS. Conversely, if Ag g =TS, then S is totally geodesic by definition.

|

Example 2.4 Let M = C*°(R,R?) be the Fréchet space of smooth functions from R to R?, equipped
with the flat spray 8(f,v) = (f,v,v,(0,0)), where (0,0) denotes the zero function in M. Consider the
subset S C M defined by

S = {fe M| f(x)=(h(z),h(zx)?) for some h € C°(R,R)}.
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Let E = C*(R,R). Define the map
®:E =M, ®h)(x)=(h(z),h(z)?).

Then Im(®) = S. We first show that ® is a smooth injective immersion. Maps between Fréchet spaces
are Michal-Bastiani smooth if and only if they are conveniently smooth, i.e., they map smooth curves to
smooth curves. Let v: R — E be a smooth curve. Then

(@ o) (®)(x) = (v(t) (@), 1(t)(2)?),
which is smooth in both t and x, hence ® oy € C*(R, M), so ® is smooth. Moreover,
®(hy) = D(hy) = hy = ho,
so @ is injective. Next, for u € E, the tangent map is given by

T = 5|

d
= (h@) +tu(z), (h(z) + tu(z))?)
dt|,—o
= (u(z), 2h(z)u(x)).
If (Tp®)(u) = 0, then u(z) = 0 for all , so w = 0. Thus, Tp® is injective, and ® is an injective
UMMETSIon.

It remains to prove that ® is a topological embedding onto its image S, i.e., that &: E — S is a
homeomorphism when S is endowed with the subspace topology from M. Consider the following diagram:

141

E¢+——7-M

O(h + tu)(z)

Here, ®: E — S is smooth and injective, 1: S — M is the inclusion, m1: M — E is the projection
onto the first component, ® ' := m01: S — E is the inverse map, constructed by restricting the projection
map 1 to the subset S. Next, we prove that the composition ®~1: S — E has closed graph in S x E.
Hence, by the closed graph theorem, ®~1 is continuous. Thus ®: E — S is a homeomorphism.

Let ((fn, f2), fn) be a sequence in the graph that converges in M x E to some ((g,h), f). We must
show that (g,h) = (f, f?), so that the limit point lies in the graph. But since f, — f in E, and the
squaring map E — F, f — f2, is continuous (being smooth), we have

2= f* inF

Hence (fn, f2) — (f,f?) = (g,h), so it must be that g = f, h = f2. Therefore, the limit point is
((f, f?), ), which lies in the graph.

Let f(z) = (h(z),h(z)?) € S, and consider a smooth curve ¥(t)(x) = (h(z,t),h(z,t)?) € S with
h(z,0) = h(x). Then

v(x) =7'(0)(x) = (9eh(x,0), 2h(2)0sh(x, 0)) = (u(z), 2h(z)u()).
Thus,
7"(0)(z) = (8uh(z,0), 2(8:h(z,0))* + 2h(z)Dyh(z,0))
= (0yh(2,0), 2u(z)? + 2h(z)dyh(z,0)) .
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The flat spray assigns acceleration (0,0), so we must have v"'(0) = (0,0). Hence, Oyh(x,0) = 0 and
u(x)? =0, sou=0. Therefore, the only vector v for which (f,v,v,(0,0)) € T2S is v =0. Thus,
)

As.s ={(f,0) € TM | f(z) = (h(x),h(x)?), h € B},
while the tangent bundle is given by
TS = {(f,v) € TM | f(z) = (h(z), h(x)?), v(z) = (u(zx),2h(x)u(z)) for some u € E}.

If (f,v) € As g, thenv =0, and the geodesic ¥(t) = f+tv = f remains in S. Thus, S is spray-invariant.
The tangent bundle TS contains non-zero vectors v(z) = (h'(x),2h(z)h/(x)) for non-constant h. Since
As. s only contains pairs with v =0, we have TS # Ag g. By Theorem 2.2, S is not totally geodesic.

Corollary 2.1 Let M be a manifold equipped with a spray. Assume further that for any two distinct
points in M, there is unique geodesic connecting them. Let S C M be a closed C3-submanifold. Suppose
that locally, given two distinct points in S, the unique geodesic segment in M connecting them lies entirely
in S. Then S is a totally geodesic submanifold of M.

Proof: Let p € S and v € T,S. By the hypothesis of the corollary, there exists e > 0 such that the
unique geodesic v, : (—€,€) = M with 7,(0) = p and 7, (0) = v is defined. For ¢y € (0,¢), let ¢ = 7, (¢o)-
Moreover, by the corollary’s hypothesis, the unique geodesic segment 7, o+, connecting p and q lies
entirely in S.

By Theorem 2.1, since 7, (¢) € S for all ¢ € [0, %], we have v, (t) € As g for all ¢ € [0,%]. In particular,
at t = 0, we have v =, (0) € As s. Hence, T,;,S C Ag s.

Conversely, suppose v € Ag s. Let 7(v) = p € S. Consider the geodesic v, (t) starting at p with initial
tangent v. Since v € As g, by Theorem 2.1, for all ¢ in the domain of the geodesic where it is defined, we
have "yq/}(t) S Agﬁ.

Now, let ¢ be another point in S such that there is a geodesic 7, connecting p to ¢, with ~,(0) = p
and v, (0) = v. By the local property given in the corollary, this geodesic lies entirely within S. Since
Vv (t) stays in S, its tangent vector -, (t) must lie in T., ;)S for all ¢ in its domain. In particular, at ¢ = 0,
we have v = 7/(0) € As 5. Also, since 7/(0) = v and (0) = p € S, the initial velocity v is tangent to S
at p, so v € Tp,S. This shows that Ag g C TS. Therefore, Ag ¢ = T'S. Thus, by Theorem 2.2, S is a
totally geodesic submanifold. O

This result was proven for Banach manifolds using a different technique in [8, X1, §4, Proposition 4.2].

Example 2.5 Let M = C®°(R",R) be the Fréchet space of smooth real-valued functions on R™. The
tangent bundle is TM =2 M x M. Consider the flat spray S(f,v) = (f,v,v,0x), where f,v € M and
0, denotes the zero function. The geodesics are given by y(t) = f + tv.

Define the subset S C M as the set of functions that are constant on R™, i.e

S ={f e C®R",R)|JceR such that f(z) =c¢, Yz € R"}.
For any two distinct functions f1, fo € M, the unique geodesic passing through them is

Y(t) = fr +t(fo — f1).

Let f1, fa € S be two constant functions, say fi(x) = c¢1 and fo(x) = co with ¢y # co. Then for any
t € [0,1], the geodesic satisfies

Y(t)(x) =c1 +t(ca —c1) = (1 —t)ey + tea.

Notice that for a fized t, the expression (1 —t)cy +teg yields a single real number that does not depend on
x. This means that the function ~(t) takes the same constant value at every point x € R™. Therefore, by
the definition of S as the set of constant functions, y(t) € S for allt € [0,1]. Thus, the geodesic segment
connecting any two points in S lies entirely in S.

The set S can be identified with R via the constant value. It is a closed linear subspace of M, and
thus a closed C'*°-submanifold of M. Since all the conditions of Corollary 2.1 are satisfied, S is a totally
geodesic submanifold.
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Remark 2.7 The local existence of a unique geodesic in the third condition of Corollary 2.1 is crucial
for more general manifolds where geodesics might not be straight lines globally. In our specific example
of constant functions, this local condition happens to hold globally because the geodesics in M are straight
lines, and any straight line connecting two constant functions consists entirely of constant functions.
However, for a general Fréchet manifold and a submanifold, this containment might only hold for points
that are sufficiently close to each other within S.

2.1. Automorphisms Preserving Spray Invariance

In this subsection we study a class of automorphisms of M that preserve spray-invariance.

Lemma 2.4 Let 8 be a spray, and let ¢ be a C*-automorphism of M. Then, ¢, 080¢ " is also a spray.

Proof: Lemma 1.1 implies that S = byx 0800 isa Qk’z—symmetric second-order vector filed. We now
need to show that § satisfies the spray condition, i.e., 8(sv) = (Ltm)«(s8(v)), for all s € R and v € TM.
Here, (Ltm)« denotes the pushforward of the scalar multiplication map on the tangent bundle TM.

By definition of S, we have 8(sv) = ¢y, 08 0 ¢! (sv). Since ¢! is linear on each fiber (as it is the
inverse of the tangent map ¢.), we have ¢, 1(sv) = s¢;!(v). Substituting this into the expression for
S(sv), we get .

8(50) = s 0 8(s05 1 (v)).
)

Since 8 is a spray, it satisfies 8(s¢; 1 (v)) = (Ltm)«(s8(¢; 1(v))). Substituting this into the expression for

8(sv), we obtain .
8(50) = dux 0 (Lm)«(8(05 * (v))).

The pushforward ¢,. commutes with scalar multiplication maps. This is due to the fact that ¢, is linear
on each fiber of T(TM). Thus, ¢.x © (LTMm)x = (LTM)« © @us. Applying this, we have

8(sv) = (Lm)s © P (s8(85 (1))
Since ¢, is linear on each fiber, we can pull out the scalar s, i.e.,
Gus(58(6, (1)) = 5w 08 0 6. (1) = 58(v).
Therefore, 8(sv) = (Ltm)«(s8(v)). Thus, S satisfies the spray condition. O

A C*-automorphism ¢ of M is called an automorphism of the spray 8 if ¢y, 080 ¢p7' = 8. The
automorphisms of 8§ form a group under composition called the automorphism group of 8§ and denoted
by Aut(M, 8). For finite-dimensional manifolds this concept was introduced in [16].

Theorem 2.3 Let S C M be a non-empty closed subset that is spray-invariant with respect to 8, and let
¢ € Aut(M,8). Then ¢(S) is spray-invariant with respect to 8.

Proof: Let p € ¢(S). Then p = ¢(q) for some ¢ € S. Let © € Agys) such that 7(2) = p. Let
v =¢;1(0) € TyM. Since 7(9) = ¢(g), we have

T(v) = ¢~ (7(2)) = 67 (d(q)) =g € S.

We know that © € Ag (s) implies 8(7) € T%gb(S). Using the automorphism property 8 o ¢, = ¢y 08, we
obtain 8§(7) = 8(¢.(v)) = ¢« (8(v)). Now, since ¢ maps S into ¢(S5), its tangent maps satisfy

¢: TS = TP(S) and  ¢ui: T(TS) — T(TeH(S)).
If 8(7) = ¢ (8(v)) is tangent to T?¢(S) at p, then §(v) must be tangent to T2S at q. Thus, v € Ag 5.

Since S is spray-invariant and v € Ag g, the geodesic g with ¢g(0) = ¢ and ¢’(0) = v stays in S, i.e.,
g(t) € S for all ¢ in its domain. Now consider the geodesic §(¢) = ¢(g(t)). Then

9(0) = ¢(g(0)) = d(q) =p,  §'(0) = ¢.(g'(0)) = S (v) = 0.
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Since g(t) € S, it follows that g(t) = ¢(g(t)) € ¢(S) for all t. Hence, the geodesic § remains in ¢(.5), and
therefore ¢(.9) is spray-invariant with respect to 8. O

The orbit of a subset S C M under the action of Aut(M,8) is the set

O(5) ={¢(5) | ¢ € Aut(M, 8)}.

By Theorem 2.3, each ¢(S) € O(S) is spray-invariant, since automorphisms of 8§ preserve the spray
structure. Hence, the entire orbit O(S) consists of spray-invariant subsets.

Example 2.6 In Example 2.2, we showed that for the Fréchet space E = C*°(R,R), equipped with the
flat spray, the set S =S, US_, where

Sy == {f € E|supp(f) C[0,00)}, _={f € E|supp(f) C (—o0,0}.

is a singular spray-invariant. For a fired a € R, a # 0, define the translation map

da: E—=E, ¢u(f)(x) = f(z—a),

The induced tangent map (¢q)« acts on tangent vectors v € T¢E as (¢q)«(v)(2) = v(z —a), and similarly
for the second tangent map (¢q ). We need to verify (¢pg)wx 08 = 8 0 (Ppg)«. Indeed,

(@a) e (8(f,v)) = (Ga)sx(f, v, v,0)
= (0a(f); (0a)+(v), (da)+(v), ($a)+(0))
= (fz = a),v(z = a),v(z = a),0)

8(f(x —a),v(x —a))

8(0a(f); (da)(v))

8((da)«(f, ).

Thus, ¢, € Aut(E,8). Since S is spray-invariant, by Theorem 2.3, the set

¢a(S) = {g € E | supp(g) < [a,00)} U{g € E | supp(g) € (—o0,a]}
18 a spray-invariant set.

2.2. Orbit Types and Spray Invariance

This subsection examines how the symmetries of a manifold, defined by a Lie group action, relate to
the invariance of its orbit type decomposition under a G-invariant spray.

Let G be a smooth Lie group acting smoothly on a smooth Fréchet manifold M (denoted ¢,: M — M),
for each g € G, let the map T, be the tangent lift of ¢,. A spray 8§ on M is said to be G-invariant if,
for every g € G, the action of g on M lifts to a smooth transformation T,;: TM — TM such that § is
preserved under this lifted action. More precisely, for all g € G, the following diagram commutes:

(r™M) 28 T(TMm)

] E
™ ——— TM

This condition means that for any v € TM, we have T(T)(8(v)) = 8(Ty(v)).
For a point z € M, the isotropy group (or stabilizer) of z, denoted by G,, is the subgroup of G
consisting of all elements g € G that leave z unchanged under the group action, i.e.,

Gy,={9€G|g-z=uz}

A slice at x € M is a submanifold V' C F containing z such that
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1. H-invariance: h-v € V for all h € H and v € V, where H = G,,.

2. Local triviality: Let G Xz V be the set of equivalence classes [g, v] obtained from the quotient of
the product space G x V by the right action of H, which is defined by (g,v) - h = (gh,h™! - v) for
h € H. There exists a G-equivariant diffeomorphism

S GxygV—=>U

onto a G-invariant open neighborhood U C M of the orbit G - z, such that ®([g,v]) = ¢ - v and
®([e, z]) = x, where e is the identity in G.

3. Transversality:
(a) T,VNT,(G-z)={0}.
(b) T,V is a closed subspace of T;M such that T,M =T,(G-z) ® T, V.
(¢) The map a: G x V — M, given by a(g,v) = g - v, has a derivative at (e, z),

Temya: TeG x T,V — TyM,
which is surjective, with kernel complemented in T.G x T, V.

Theorem 2.4 Let G be a finite-dimensional smooth Lie group acting smoothly on a smooth Fréchet
manifold M. Assume that a smooth spray 8§ on M is G-invariant, and that for every x € M, there exists
a G-equivariant neighborhood U of x and a G-equivariant diffeomorphism ®: G xg V. — U where V is a
slice at © and H = G, is the isotropy subgroup. Then the orbit type decomposition of M, given by

M=| M), where M) ={z € M: G, = H},
[H]

defines a stratification of M such that each stratum Mg is spray-invariant.

Proof: Let x € M(y). By assumption, there exists a slice V'C M at x, and a G-equivariant diffeomor-
phism ®: Gx gV — U onto a G-equivariant open neighborhood U C M of G-z, with ®([e, 0]) = . Define
¢=®"1:U— GxgV,and consider the spray 8’ := (TT¢)o80(T¢)~!, which is a spray on T(G x5 V).
Since both ¢ and 8 are G-equivariant, the spray 8 is also G-invariant. Let V(g := {v € V: G, = H}
denote the set of points in V' with isotropy type H. Then under the diffeomorphism &, we have

M(H) NnU = (I)(G X H ‘/(H))

If 7(t) is a geodesic of § with y(0) = x € Mgy and 7/(0) € ToM(z), then for small ¢, we may assume
~(t) € U, so

o(y(t)) = [9(t),v(t)] € G xp V.
By G-invariance of 8, the geodesic (t) corresponds to a geodesic v(t) in V, starting at v(0) = 0 € Vi),
with tangent vector v'(0) € ToV ). This uses the transversality of the slice, which ensures the splitting

T.M =T, (G- z)® T,V,

and that 7'(0) € T;Mg implies v'(0) € ToV(g.

Now, the induced spray on V (via projection of 8') is H-invariant (by G-invariance of 8§ and H-
invariance of V'), and since v(0) € V() and v'(0) € ToV{g), the geodesic v(t) remains in V() for small
t. Hence, v(t) € Mg for small ¢, and the set

T = {t € dom(y): y(t) € M(m)}

is open and contains 0. To show that T'is closed, let t,, € T be a sequence converging to some t, € dom(y).
Since y(t,,) € Mg for all n, we know that the isotropy groups satisfy G, ~ H. The isotropy type
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map z — (G,) which sends each point in M to the conjugacy class of its isotropy group, is upper semi-
continuous. Upper semi-continuity means that if x,, — x, then (up to conjugacy) we have G, D gHg™!
for some ¢ € G, i.e., the isotropy group of the limit can only be larger (in the sense of subgroup inclusion),
not smaller. Applying this to the sequence () = v(txo), We get

Gy 2 gHg™' for some g € G.

On the other hand, since the spray 8 is G-invariant and v is a geodesic starting at v(0) € Mg, the
isotropy type along 7(t) remains constant (i.e., conjugate to H) by smoothness of the action. Hence,
Gty ~ H for all t, and in particular, Gy ~ H, 50 ¥(too) € M(gy. Thus, T'is closed. Since T' C dom(7)
is both open and closed, and dom(~) is connected (being an interval), we conclude that

v(t) € Mgy for all t € dom(y).

Finally, we prove that the orbit type decomposition M = U[ H] Mg is a stratification. If a point y
is in the closure of a stratum Mg, then its isotropy group G, must contain a subgroup conjugate to
H. In terms of orbit types, this is expressed as [G,] > [H]|, where [K;] > [K,] if K7 contains a subgroup
conjugate to Ks. This property arises directly from the upper semi-continuity of the isotropy group map.
This means that if a sequence x,, € M) converges to a point y, then for each x,, G, = H. Due to
upper semi-continuity, the isotropy group of the limit point G, must contain a subgroup conjugate to the
isotropy groups of the sequence points. More formally, for any y € Mg, there exists some g € G such
that gHg~! C G,. Consequently, G, contains a subgroup conjugate to H. This implies that the orbit
type of y, [G,], is larger than or equal to [H] in the standard partial order of isotropy types. Therefore,
y € Mk for some [K] such that [K] > [H]. Since this holds for any point in the closure of Mg, the
frontier condition is satisfied. O

Remark 2.8 It is important to distinguish between preservation of individual orbits and preservation of
orbit type strata under a G-invariant spray. Theorem 2.4 quarantees that geodesics starting in an orbit
type stratum remain in that stratum. Howewver, this does not imply that geodesics remain in the same
individual orbit. Thus, spray-invariance applies at the level of strata, not necessarily at the finer level of
individual orbits.

3. Spray-Invariant Sets for MC*-Fréchet Manifolds

In this section, we work within the category of MC*-Fréchet Manifolds. We briefly recall the necessary
definitions and refer the reader to [2-7] for further details.

To define MCF-differentiability (or bounded differentiability), we first introduce the topology of Fréchet
spaces F and E using translation invariant metric mg and meg, respectively. We consider only metrics of
the following form:

1 ||.’£ - y“F,n
me(z,y) = su

poe ZlFn (3.1)
nen 2" 1+ |z =yl g,

Let L(E, F) be the set of all linear mappings L: E — F that are (globally) Lipschitz continuous as mappings
between metric spaces. Specifically, a linear mapping L € L(F, E) satisfies

L
Lip(L) == sup %33)070':) < o0
vcE\{og} ME(T, Og)

We define a topology on L(E, F) using the following translation invariant metric:
L(E,F) x L(E,F) — [0,00), (L, H) — Lip(L — H), (3.2)

where Lip(L — H) denotes the Lipschitz constant of the linear map L — H.
Let ¢: U @ E — F be a Cl-mapping. If Dp(x) € L(E,F) for all x € U, and the induced map

Dy: U — L(E,F), x> Dy(x)
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is continuous, then ¢ is called bounded differentiable or MC!. Mappings of class MCk, for £ > 1, are
defined recursively. An MCF-Fréchet manifold is a Fréchet manifold whose coordinate transition functions
are all MC*-mappings.

Let (Biy,| - |1) and (Ba,| - |2) be Banach spaces. A linear operator T : By — By is called nuclear if it
can be written in the form T'(z) = Y 72, \;{z,z;)y;, where (-,-) is the duality pairing between B; and
its dual (B1,] - [1), z; € Bf with | z; \7’1§ 1, y; € By with | 41 |2< 1, and A; are complex numbers such
that >, | Aj [< occ.

For a seminorm ||-||¢, on F, we denote by F; the Banach space given by completing F using the
seminorm ||HF’Z There is a natural map from F to F; whose kernel is ker ”HF,z

A Fréchet space F is called nuclear if for any seminorm ||-||¢ ;, we can find a larger seminorm ||-|[ ; so
that the natural induced map from F; to F; is nuclear. A nuclear Fréchet manifold is a manifold modeled
on a nuclear Fréchet space. A key feature of Fréchet nuclear spaces is that they have the Heine-Borel
property. This provides a significant advantage over Banach spaces, as no infinite-dimensional Banach
space is nuclear.

In Definition 2.6, we introduced the concept of a spray-invariant set. This notion has an analogous
definition for vector fields on a manifold. The following definition, applicable to both MCF-Fréchet
manifolds and C*-Fréchet manifolds, shares the same underlying structure as Definition 2.6.

In this section, we assume that M is an MCF-Fréchet manifold with k > 4, modeled on F.

Definition 3.1 (Definition 3.1, [6]) Let A C M and V be an MC'-vector field on M. The set A is
called flow-invariant with respect to V if, for any integral curve I(t) of V with I(0) € A, we have I(t) € A
for all t > 0 within the domain of I.

Theorem 3.1 (Theorem 3.2, Nagumo-Brezis Theorem, [6]) Let M be a nuclear MC"-Fréchet
manifold, and let V: M — TM be an MC'-vector field. Let A C M be closed. Then, A is flow-invariant
with respect to V if and only if for each x € M, there exists a chart (U, $) around x, such that

tli%1+ t~ mg (¢(2) + tDp(z)(V(x)), #(U N A)) = 0. (3.3)
-

Lemma (2.1), which establishes the chart-independence of first-order adjacent tangency, ensures that
the condition in Theorem 3.1 is independent of the choice of chart. This result, not proved in [6], provides
additional strength to the theorem.

Theorem 3.2 Let M be a nuclear MCF-Fréchet manifold, and let S C M be a subset such that As g is
non-empty and closed. Then, the following are equivalent:

1. S is spray-invariant with respect to §.

2. § is adjacent tangent to Ags s when regarded as a vector field on TM.

Proof: (1) = (2): By Theorem 2.1, spray-invariance of S implies that all geodesics whose initial tangent
vectors are in Ag g remain within it. The Nagumo-Brezis condition (Theorem 3.1) then guarantees the
adjacent tangency

tliI(I)l+ t_lmF ((b(’l)) + tD(b(U)(S(U)), (b(U n Ag,s)) =0 Wwe AS,S-
—

(2) = (1): If 8 is adjacent tangent to As g, applying Theorem 3.1 to TM with As g as the closed
subset implies Ag g is spray-invariant. O

In the rest of this subsection, we assume that M is second countable, a property essential for applying
transversality. The notion of transversality extends to MCF-Fréchet manifolds and has been explored
in [2]. Here, we summarize the results relevant to our discussion.

Let o: M — N be an MC"-mapping, where r > 1, and S € N a submanifold. We say that ¢ is
transversal to S , denoted by ¢ M S, if either ¢=1(S) = @, or, if for each z € ¢~1(9), the following
conditions hold:
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1. (Tmcp)(TzM) + Tg,(x)S = Tcp(x)Na and
2. (Ty) 1 (Ty(x)S) splits in T, M.

The proof of the following lemma can be readily adapted from the case of Banach manifolds (see [11])
to our setting, so we omit it here.

Lemma 3.1 Let ¢: M — N be an mMck mapping between MCF-Fréchet manifolds M and N, and let
W C N be an MC*-submanifold of N. Then

phW <« TehTW.

Theorem 3.3 (Theorem 2.2, Transversality Theorem, [2]) Let o: M — N be an MC"-mapping
with v > 1, and let S C N be an MC"-submanifold such that o hS. Then, ¢~1(S) is either empty or an
MC" -submanifold of M with

(Top) HTyS) = Tule™(S)), z€9 '(S),y=0p).

If S has finite co-dimension in N, then codim(p~1(S)) = codim S. Moreover, if dimS = m < oo and ¢
is an MC"-Lipschitz-Fredholm mapping of index I, then dim p~1(S) =1+ m.

Let ¢: M — N be an MC3-mapping between MC*-Fréchet manifolds M and N, and let W C N be an
MC?-submanifold of N such that ¢ M W. Then, by the transversality theorem, S = ¢~ '(W) is an
MC3-submanifold of M, and TS = (Te)~Y(TW). Since Lemma 3.1 implies T M TW, applying the
transversality theorem again yields

T(TS) = (T(Tp)) " (T(TW)).
Consequently, for a given spray 8 on M, Equation (2.13) implies
As,s = (T(Tp) 0 8)~H(T(TW)).

Suppose F; is a closed subset of the Fréchet space F that splits it. Let F5 be one of its complements, i.e.,
F=F; & F,. Let S be an MC*-submanifold modeled on F;.

Theorem 3.4 Let M be a nuclear MC®-Fréchet manifold, and let S be the submanifold of M introduced
above. If S is a closed MC3-submanifold of M such that S|TS M T(TS), then S is spray-invariant with
respect to 8 if and only if

Vo € S(T(TS)), DS(v)(S(v)) € Ts)(T(TS)). (3.4)

Proof: Define T'(TS) as the set of elements w € T(TM)) such that 7o(w) € TS, and there exists a chart
¢: U — F at 7(m2(w)) satisfying the following conditions:

* p(UNS) =¢(U)NFy,
e D(D¢)(m2(w))(w) € Fy x F.
This definition is independent of the choice of chart. The definition directly implies

D(D¢) (T(TU)) OT(TS))) = (¢(U)NFy) x Fy x Fy x F.

This implies that T'(TS) is a submanifold of T(TM) modeled on F; x F; x F; x F. Moreover, since 8 on
M maps TS into T'(TS), and

D(D¢) o (8] ) © (D)~ (#(U) NFy) x Fy C Fy x Fy x Fy x F.

we find that the image of S‘T ¢ lies in T(TS). Now, the transversality assumption implies

D(S|Ts(v))(TU(TS)) + Ts() (T(TS)) = T () (T(TS)),  for v € §(T(TS)).
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Therefore, by Equation (2.13) and Theorem 3.2, As g = 8~'(T(TS)) is an MC'-Fréchet submanifold
of TS, and its tangent space at v € Ag g is given by

Ty (As.s) = DS(v) " (T (T(TS)) ).
Consequently, by Theorem 3.2, S is spray-invariant with respect to 8 if and only if
Yv € AS,5'7 8(’()) € TU(A575)

which is equivalent to the condition stated in (3.4). O

Remark 3.1 In Theorem 3.4, explicitly verifying the transversality condition can be very difficult. The
infinite-dimensional nature of T(TS), together with the complexity of identifying suitable complements in
the modeling space, poses significant analytical challenges even in relatively simple settings.

4. Aspects of Banach and Hilbert Manifolds

In contrast to Fréchet manifolds, for Banach manifolds there is a well-developed framework for the
existence, uniqueness, and regularity of ordinary differential equations. This allows for the application of
tools such as geodesic flows to characterize invariance.

We use the same notations as before. Regarding differentiability, Definition 1.1 applies to Banach
spaces as well; however, Banach spaces admit an equivalent formulation (see [8]).

In Section 2, Definitions 2.5 and 2.6, along with Theorems 2.1, 2.2, 2.4, and 2.3, and their consequences,
remain valid for Banach manifolds as well. This follows from the fact that all prerequisite results hold in
the Banach setting. In particular, relevant properties of sprays are discussed in [8], while adjacent cones
are treated in [13].

In Section 3, an analogous of Theorem 3.4 holds for arbitrary Banach manifolds, since the transver-
sality theorem is available in this context. However, as previously observed, verifying the transversality
condition remains challenging even for Banach and Hilbert manifolds.

Theorem 3.2 relies on the Nagumo-Brezis Theorem for nuclear manifolds. However, no infinite-
dimensional Banach manifold is nuclear. Nevertheless, a variant of the Nagumo-Brezis Theorem is avail-
able for arbitrary Banach manifolds of class C*, with k > 2; see [15]. Thus, Theorem 3.2 holds for
arbitrary Banach manifolds of class at least C*.

Theorem 4.1 Let B be a C*-Banach manifold, k > 4, and S C B a subset such that Ag s is non-empty
and closed. Then, S is spray-invariant if and only if 8 is adjacent tangent to As s when regarded as a
vector field on TB.

Example 4.1 Consider the Banach manifold M = C*(S',R) equipped with the flat spray S(f,v) =
(f,v,v,0), whose geodesics are affine paths v(t) = f + tv.
Let N be a fized non-negative integer. Define the set S as follows

N
S=LfeM]|f@ Z (a; cos(j0) + b; sin(j60)) for some a;,b; € R

The set S is a finite-dimensional linear subspace of M and therefore a smooth submanifold. Thus, the
adjacent cone T¢S at a point f € S is the tangent space, i.e., T¢S = S.

The admissibility condition for a velocity v at a point f € S is simply v € TyS = §. Thus, the
admissible set is

Ass={(fiv) eTM | feSveS=5xS5.

As a finite-dimensional subspace, S is a closed subset of M. Consequently, the product set S x S is a
closed subset of the product space M x M. Therefore, As g is closed.

The spray 8 assigns the vector (v,0) to the point (f,v) € TM. We show that this vector is in the
tangent cone T (f.,)As,s. Since As,s = S x S is a linear subspace, its tangent cone at any point is the
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space itself. We check if (v,0) € S x S. This requires v € S and 0 € S. Both are true since (f,v) € Ag g
and S is a linear subspace containing the zero function. Thus, the spray is adjacent tangent to Ag g.
Therefore by Theorem 4.1 the subspace S is spray-invariant.

We assume that B is a Banach manifold of class C* with k& > 4, and that 8 is a spray on B of class C2.
Recall that the geodesic flow is the mapping ®;: TB — TB that satisfies ®;(v) = g/, (¢), where g,: [ — B
is the unique geodesic with initial tangent v € TB.

Theorem 4.2 A closed subset S C B is spray-invariant if and only if its admissible set As g is invariant
under the geodesic flow Py.

Proof: Assume S is spray-invariant. Let v € Ags g. By definition of the admissible set, the geodesic
Yo (t) = 7(D:(v)) satisfies v, (t) € S for all ¢ in its maximal interval I. By Theorem 2.1, the tangent field
v, (t) = ®4(v) remains in Ag g. Thus, ®;(v) € Ag g for all t € I, proving Ag s is ®;-invariant.
Conversely, assume Ag g is ®;-invariant. Let v: I — B be a geodesic with v(0) € S and 7/(0) € Ag s.
By spray invariance we have
VEET, +(t) = 8+ (0)) € As.s.

Then Theorem 2.1 implies v(t) = 7(7/(t)) € S for all t € I. Hence, S is spray-invariant. O

The spray 8 induces a unique torsion-free covariant derivative V8 (VIII, §2, Theorem 2.1, [8]). Let
g: I — B be a C%-curve. We say that a lift v: I — TB of g is g-parallel if VE,'y =0. A curve g is a
geodesic for the spray if and only if VgB/ g’ =0, that is, if and only if ¢’ is g-parallel.

Manifolds modeled on self-dual Banach spaces, including Hilbert spaces, admit canonical sprays in-
duced by pseudo-Riemannian metrics (VIII, §7, Theorem 7.1, [8]). This theorem also holds for Hilbert
Riemannian manifolds, as the proof does not rely on the indefiniteness of the pseudo-Riemannian metric.
Instead, it depends only on the metric being smooth and non-degenerate, properties that Riemannian
metrics also possess.

Consider canonical sprays on Hilbert Riemannian manifolds. Suppose that H is a Hilbert Riemannian
manifold and that S C H is a C'-submanifold with the induced metric (or Levi-Civita) covariant derivative
V*? defined by canonical spray 8. There exists a canonical symmetric bilinear bundle map, known as
the second fundamental form (see [8, IX, §1, Propositions 1.2 and 1.3]). This map is given by the Gauss
formula as follows

VHY, (@) = VY (@) + 11(X (2), Y (2)),
for any x € S vector fields X, Y of S near s, and the extension Y, of Y near z.
Suppose that S C H is spray-invariant, and Let v: I — H be a geodesic with v(0) € S and v'(0) € Ass.
Then
0= V,Y/(t)’)//(t) in T,y(t)S vt e l.
By the Gauss formula
Vi = V5 +11(Y, 7)),
since the total derivative is tangent to S, its normal component must vanish, i.e., II(+/(¢),~'(t)) = 0 for
all t € I. A polarization identity is given by

I(X,Y) = % (X +Y, X +Y)—II(X,X) - II(Y,Y)).

If this identity could be applied for arbitrary X,Y € TS, then the vanishing of II(X, X)) would imply the
vanishing of II(X,Y"). However, spray-invariance only gives us the condition II(Z, Z) = 0 for vectors Z

in As s. It does not guarantee that X + Y is also such a tangent vector, and hence we cannot conclude
that II(X +Y, X +Y) = 0 unless As s = TS.

Example 4.2 Consider the Hilbert manifold M = H*(S',S5?), the space of maps from the circle S*
into the 2-sphere S? whose first derivatives are square-integrable. By the Sobolev embedding theorem

1
(1- 3 > 0), every map in this space is continuous.
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Let 852 be the canonical geodesic spray on the finite-dimensional manifold S*. We define a spray 8
on the loop space M by applying the target spray pointwise. For any (f,v) € TM, the spray S(f,v) is
the second-order vector field along f given by

8(f,v)(0) = 8s2(f(0),v(0)).

The geodesics of 8 are defined as the paths (t) in M that satisfy the pointwise geodesic equation for S?:
2
V2 (0) =0 for each 0 € S*.

Since unique solutions for this ODE exist on the compact manifold S% for any initial condition, this spray
1s well-defined. Its geodesics are, by construction, precisely the pointwise geodesics of the target manifold

S2.
Let C C S? be a great circle, which is a totally geodesic submanifold. Define the subset of constant
loops on this circle:
S = {feM’EpEC such thatf(@)zpforall@ESl}.

This set S is a closed C™-submanifold of M. The tangent space TS at a point f(§) = p € S consists
of constant vector fields v(0) = vy where vy € T,C.

We first determine the admissible set As s. A vector v = (f,u) € TS is in As, s if the acceleration of
its geodesic, v)/(0), is tangent to S. For the spray 8, this acceleration is computed pointwise:

Y2 (0)(8) = V5 g u(8).

Since u(0) = ug is a constant vector tangent to the great circle C, and C is itself a geodesic on S?, the
self-covariant derivative Vﬁj ug is zero. The zero vector field is tangent to S. This condition holds for all
vectors v € T'S. Therefore, the admissible set is the entire tangent bundle of S':

AS,S =TS.
Therefore, by Theorem 2.2 for Hilbert manifolds, S is a totally geodesic submanifold.

Example 4.3 Let H = (2, the separable Hilbert space of square-summable sequences with standard inner

product
oo
<$, y> = Z TilYi,
i=1
and let {en tnen denote its standard orthonormal basis. Define the subset

S :={x € H | only finitely many coordinates of x are nonzero} .

This is the space of finite sequences, and can be expressed as a countable union:

S= U Hy, where Hy :=span(ey,...,eg).
k=1

Each Hy, is a finite-dimensional linear subspace of H. Consider the flat spray of ¢2. Let x € S and
v € T,S. Then there exists k such that both x,v € Hy,. The geodesic starting at x with tangent v is given
by v(t) = x + tv. Since Hy, is a linear subspace, v(t) € H, C S for allt € R. Thus, S is spray-invariant.
The set S is not a smooth submanifold of H, since it is not locally homeomorphic to a Hilbert space. It is
a stratified space, built from the smooth finite-dimensional submanifolds Hy. We consider a stratification
of § into strata S;:

Si=H;\ Hi_1.

Let S; and S; be two strata. We consider the following cases:
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ase 1: 1 < j

contains vectors with exactly j > ¢ nonzero components, it follows that H; N S; = @. Thus,

o C

S; = H,;. Since H; C H;, but H; contains vectors with at most i nonzero components, while

&
SN Sj = .

o Case 2: i=j o o
Trivially, S; = H;, and S; N.S; = S; # &. Furthermore, S; C S; by definition.

e Case 3: 1> o o
We have Hj C H;, and Sj = Hj \Hj,1 C H;. H@TLC@, SN Sj = Sj 7& g, and Sj C S;.

all cases, the frontier condition is satisfied for the decomposition S = | |- Sk. Thus, this decomposi-

tion defines a stratification of S.

Each Hy, is totally geodesic in H due to the flatness of the ambient geometry. However, the union S

s not totally geodesic as a whole, since it lacks a global smooth structure: the second fundamental form
1s not defined across strata.
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