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Spray-Invariant Sets in Infinite-Dimensional Manifolds ∗

Kaveh Eftekharinasab

abstract: We introduce the concept of spray-invariant sets on infinite-dimensional manifolds, where any
geodesic of a spray starting in the set stays within it for its entire domain. These sets, possibly including
singular spaces such as stratified spaces, exhibit different geometric properties depending on their regularity:
sets that are not differentiable submanifolds may show sensitive dependence, for example, on parametrization,
whereas for differentiable submanifolds invariance is preserved under reparametrization. This framework offers
a broader perspective on geodesic preservation than the rigid notion of totally geodesic submanifolds, with
examples arising naturally even in simple settings, such as linear spaces equipped with flat sprays.
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Introduction

This work studies subsets of infinite-dimensional manifolds, including singular spaces such as stratified
spaces, where any geodesic of a spray starting in the subset remains within it for the entire duration of its
definition. The behavior of such sets, which we call spray-invariant, depends strongly on their regularity.
For instance, for sets that are not differentiable submanifolds, reparametrization of geodesics may affect
whether they remain within the set. In contrast, for differentiable submanifolds, this invariance is pre-
served. The motivation for studying spray-invariant sets with less regularity stems from the observation
that such sets can arise naturally even in simple settings like linear spaces equipped with flat sprays.

We focus on the intrinsic properties of sprays and work within the broader context of spray geometry.
This approach does not require the existence of a spray induced by a Finsler (or Riemannian) metric
or compatibility with such a structure. Consequently, we can analyze the dynamics of geodesics in the
setting of infinite-dimensional manifolds, where traditional Finsler (or Riemannian) geometric tools are
either unavailable or inapplicable. We primarily focus on the more general context of Fréchet manifolds;
however, our results are applicable to Hilbert and Banach manifolds as well.

Given a subset S of a manifold M and a spray S on M, we define the admissible set AS,S (Definition
2.5) as the collection of all tangent vectors v ∈ TM such that the projection τ(v) ∈ S, and S(v) belongs to
the second-order adjacent cone of S at τ(v). In Theorem 2.1, we prove that if S is closed, then a geodesic
g(t) lies entirely in S if and only if its tangent vector g′(t) belongs to AS,S for all t in its domain. This
equivalence establishes AS,S as a fundamental invariant for analyzing the behavior of geodesics. Building
on this, we define a spray-invariant set as follows: a subset S is spray-invariant for the spray S if, for
every geodesic g : I → M of S with initial tangent g′(0) ∈ AS,S , the entire trajectory remains within S,
i.e., g(t) ∈ S for all t ∈ I, where I is the maximal interval of existence. Example 2.2 provides an instance
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where the spray-invariant sets is a singular space. In Example 4.3, we present an instance of stratified
spray-invariant set.

For a sufficiently differentiable submanifold S, the admissible set AS,S provides a characterization
of totally geodesic submanifolds. Specifically, in Theorem 2.2, we prove that AS,S = TS if and only if
S is a totally geodesic submanifold. We apply this theorem in Example 4.2 to the infinite-dimensional
manifold of loops on a sphere. Theorem 2.2 yields a geometric criterion for identifying totally geodesic
structures: that is, if S is closed and locally geodesically convex (i.e., every pair of sufficiently close points
in S is connected by a unique geodesic segment lying entirely in S), then S is totally geodesic (Corollary
2.1). Using this criterion, Example 2.5 presents a totally geodesic submanifold. In contrast, Example 2.4
provides a differentiable submanifold that is spray-invariant but not totally geodesic.

In Subsection 2.1, we introduce the notion of spray automorphisms and establish, in Theorem 2.3,
that the image of a spray-invariant set under such an automorphism remains spray-invariant. Example
2.6 illustrates this with the flat spray on C∞(R,R) and a singular spray-invariant set. In Subsection 2.2,
we study Lie group actions on smooth manifolds and their orbit type decompositions. We show that if
the action admits suitable local slices, then each orbit type stratum is invariant under a group-invariant
spray (Theorem 2.4).

If S is a spray-invariant set, a natural question arises: does the spray S, when regarded as a first-
order vector field on TM, remain second-order adjacent tangent to AS,S? This reformulation reduces the
problem from analyzing second-order dynamics on M to studying first-order dynamics on TM, which may
be more tractable. This question can be addressed using the Nagumo-Brezis Theorem, which provides
a criterion for determining the invariance of sets under vector fields. However, the theorem’s classical
formulation applies primarily to Banach manifolds and does not generalize straightforwardly to arbitrary
Fréchet manifolds. For a detailed discussion of these limitations and potential adaptations, see [6].

In Section 3, we revisit the category of MCk-Fréchet manifolds, where the Nagumo-Brezis Theorem
holds under nuclearity assumptions. For a nuclear MCk-Fréchet manifold M and a closed subset S ⊂ M,
we prove (Theorem 3.2) that S is spray-invariant for the spray S if and only if S, regarded as a first-order
vector field on TM, is second-order adjacent tangent to AS,S .

A key property of this class of manifolds is the validity of the transversality theorem. Using this, we
give a transversality-based criterion to characterize spray-invariant sets (Theorem 3.4).

In Section 4, we consider Banach and Hilbert manifolds. All results from Sections 2 and 3 remain
valid with appropriate modifications to their assumptions.

1. Sprays

We employ the notion of differentiable mappings, known as Ck-mappings in the Michal–Bastiani sense
or Keller’s Ckc -mappings.

Throughout this paper, we assume that (F,Sem(F)) and (E,Sem(E)) are Fréchet spaces over R, where
Sem(F) =

{
∥·∥F,n | n ∈ N

}
and Sem(E) =

{
∥·∥E,n | n ∈ N

}
are families of continuous seminorms that

define the topologies of F and E, respectively. We use the notation U ⊆◦ T to denote that U is an open
subset of the topological space T.

Definition 1.1 (Definition I.2.1, [14]) Let φ : U ⊆◦ E → F be a mapping. Then the derivative of φ at
x in the direction h is defined by

Dφx(h) = Dφ(x)(h) := lim
t→0

1

t
(φ(x+ th)− φ(x))

whenever it exists. The function φ is called differentiable at x if Dφ(x)(h) exists for all h ∈ E. It is called
continuously differentiable if it is differentiable at all points of U , and the mapping

Dφ : U × E → F, (x, h) 7→ Dφ(x)(h)

is continuous. It is called a Ck-mapping, k ∈ N ∪ {∞}, if it is continuous, the iterated directional
derivatives Djφx(h1, . . . , hj) = Djφ(x)(h1, . . . , hj) exist for all integers j ≤ k, x ∈ U , and h1, . . . , hj ∈ E,
and all mappings Djφ : U × Ej → F are continuous. Alternatively, we refer to C∞-mappings as being
smooth.
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In light of the chain rule for Ck-mappings between open subsets of Fréchet spaces (see [14, Proposition
I.2.3]), we can naturally define Ck-manifolds modeled on Fréchet spaces. We assume that these Fréchet
manifolds are Hausdorff.

Henceforth, we assume that M is a Ck-Fréchet manifold modeled on F, k ≥ 4. Recall that the
tangent space TpM at a point p ∈ M is defined as the space of equivalence classes of tangent curves at p
(see [14, I.3.3]). The tangent bundle τ : TM → M is a Ck−1-Fréchet manifold modeled on F× F. Given a
chart (U,φ) on M with φ : U → F, the induced chart on TM is

(
TU,Tφ

)
, where TU = τ−1(U) and

Tφ : TU → φ(U)× F, Tφ(p, v) = (φ(p), Dφp(v)),

for p ∈ U and v ∈ TpM. We will require the tangent bundle over TM, commonly called the double
tangent bundle, denoted by τ2 : T(TM) → TM. This can result in expressions of considerable complexity.
In such cases, we sometimes use the notation φ∗ to denote the tangent map Tφ. Consider a chart (U,φ)
on M. Then, the tangent map of φ∗ is given by

T(φ∗) : T(TU) → (φ(U)× F)× (F× F),

T(φ∗)
(
(p, v), (u,w)

)
=

(
(φ(p), Dφp(v)), (Dφp(u), (D

2φp(v, u) + Dφp(w)))
)
,

forp ∈ U , v, u ∈ TpM and w ∈ Tv(TpM).
We identify U × F with TU and correspondingly Tφ with Dφ. Thus, for brevity, we may write Tφ or

φ∗, implicitly understanding this identification.
Consider two overlapping charts (U,φ) and (V, ψ) on M with U ∩V ̸= ∅. For TM, the transition map

ϕ = ψ ◦ φ−1 induces the following transformation equation:

ϕ∗(p, v) = (ϕ(p), Dϕp(v)) , ∀(p, v) ∈ φ(U ∩ V )× F. (1.1)

By differentiating (1.1), we derive the following change of coordinates rule for T(TM):

T(ϕ∗) ((p, v), (x, y)) =
(
Dϕp(x), D

2ϕp(x, v) + Dϕp(y)
)
, (1.2)

for all (p, v) ∈ φ(U ∩ V )× F and all x, y ∈ F.
To simplify notations, let (U,φ) be a chart on M, p ∈ U , v ∈ TpM, and w ∈ Tv(TM). We define

vφ := Dφp(v), and wφ∗ := D(φ∗)v(w) = (wφ∗,1, wφ∗,2). (1.3)

Here, wφ∗,1 and wφ∗,2 are the components of wφ∗ , obtained by applying Equation (1.1) to the tangent
vectors. Consequently, from Equation (1.2) for p ∈ V , we obtain

wψ∗,2 = D2ϕφ(x)(vp, wφ∗,1) + Dϕφ(x)(wφ∗,2). (1.4)

The theory of sprays, studied in the context of Banach manifolds by Lang [8], was later generalized to
Fréchet manifolds in [5, 7] with the aim of investigating the properties of geodesics on these manifolds.

We now recall the definition of sprays and related concepts that will be required.
A Cr-mapping V : TM → T(TM), 1 ≤ r ≤ k − 2, satisfying τ∗ ◦ V = IdTM is called a second-order

Cr-vector field. If, in addition, τ2 ◦ V = IdTM, then V is called symmetric. A second-order vector field is
symmetric if and only if its integral curves are canonical lifts of curves in M.

We will later use the following lemma, which was proved using different arguments for finite-
dimensional manifolds in [16, Corollary 5.1.6].

Lemma 1.1 Let V : TM → T(TM) be a Cr-symmetric second-order vector field, and let ϕ be a Cr+2-
automorphism of M. Then, ϕ∗∗ ◦ V ◦ ϕ−1

∗ is also a Cr-symmetric second-order vector field.

Proof: Let (x, y) ∈ TM and (x, y,X, Y ) ∈ T(TM). Then,

(x, y)
ϕ∗7−→

(
ϕ(x), Dϕ(x)(y)

)
, and
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(x, y,X, Y )
ϕ∗∗7−→

(
ϕ(x), Dϕ(x)(y), Dϕ(x)(X), D2ϕ(x)(y,X) + Dϕ(x)(Y )

)
.

By applying V to ϕ−1
∗ (x, y) = (ϕ−1(x), Dϕ−1(x)(y)), we obtain

V (ϕ−1
∗ (x, y)) =

(
ϕ−1(x), Dϕ−1(x)(y), Dϕ−1(x)(y), Y (ϕ−1(x), Dϕ−1(x)(y))

)
.

Here, Y (ϕ−1(x), Dϕ−1(x)(y)) is a tangent vector to M at ϕ−1(x).
Next, applying ϕ∗∗ to V (ϕ−1

∗ (x, y)) yields

ϕ∗∗(V (ϕ−1
∗ (x, y))) = ϕ∗∗

(
ϕ−1(x), Dϕ−1(x)(y), Dϕ−1(x)(y), Y (ϕ−1(x), Dϕ−1(x)(y))

)
=

(
ϕ(ϕ−1(x)), Dϕ(ϕ−1(x))(Dϕ−1(x)(y)), Dϕ(ϕ−1(x))(Dϕ−1(x)(y)),

D2ϕ(ϕ−1(x))
(
Dϕ−1(x)(y), Dϕ−1(x)(y)

)
+ Dϕ(ϕ−1(x))

(
Y (ϕ−1(x), Dϕ−1(x)(y))

))
=

(
x, y, y, Z(x, y)

)
,

where

Z(x, y) = D2ϕ(ϕ−1(x))
(
Dϕ−1(x)(y), Dϕ−1(x)(y)

)
+ Dϕ(ϕ−1(x))

(
Y (ϕ−1(x), Dϕ−1(x)(y))

)
.

is a Cr-function. The projections τ∗ and τ2 act as follows

τ∗(ϕ∗∗ ◦ V ◦ ϕ−1
∗ (x, y)) = τ∗(x, y, y, Z(x, y)) = (x, y),

τ2(ϕ∗∗ ◦ V ◦ ϕ−1
∗ (x, y)) = τ2(x, y, y, Z(x, y)) = (x, y).

Thus, ϕ∗∗ ◦ V ◦ ϕ−1
∗ is a Cr-symmetric second-order vector field. 2

Assume that s is a fixed real number, and define the mapping

LTM : TM → TM, v 7→ sv.

Then, the induced map (LTM)∗ : T(TM) → T(TM) satisfies

(LTM)∗ ◦ LT(TM) = LT(TM) ◦ (LTM)∗,

which follows from the linearity of LTM on each fiber. A second-order symmetric Cr-vector filed S : TM →
T(TM) is called a spray if it satisfies the following condition:

(SP1) S(sv) = (LTM)∗(sS(v)) for all s ∈ R and v ∈ TM.

A manifold that possess a Ck-partition of unity admits a spray of class Ck−2. Important examples
are Lindelöf manifolds modelled on nuclear Fréchet spaces, cf. [9, Theorem 16.10]. Since we require that
sprays be of class at least C2, the underlying manifolds must be of class at least C4. Therefore, we assume
henceforth that M is at least of class C4.

Let γ : I ⊆ R → M be a Cr-curve, r ≥ 2. A lift of γ to TM is a curve γ̃ : I → TM such that τ ◦ γ̃ = γ.
In other words, a lift of a curve is a curve in the tangent bundle that projects down to the original curve
on the base manifold. The curve γ′ = Dγ : I → TM is called the canonical lift of γ. An integral curve η
of a spray S is a curve in TM such that η′(t) = S(η(t)). Each integral curve η of S is the canonical lift of
τ(η), i.e., (τ(η))′ = η. For any t in the domain of η, the latter formula reads as (τ(η))′(t) = η(t).

A curve g : I ⊆ R → M is called a geodesic of a spray S if its canonical lifting g′ : I → TM is an
integral curve of the spray S. Since g′ lies above g in TM, that is, τ(g′) = g, we can express the geodesic
condition by

g′′ = S(g′). (1.5)

To avoid ambiguity, when necessary, we will denote the local representations of objects in a chart
(U,φ) of M by a subscript φ. The local representations of LTU and (LTU )∗ in (U,φ) are given by

LTU : (x, v) 7→ (x, sv) and (LTU )∗ : (x, v, u, w) 7→ (x, sv, u, sw).
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Therefore, we get LT(TU) ◦ (LTU )∗(x, v, u, w) = (x, sv, su, s2w). Let Sφ = (Sφ,1, Sφ,2) : (U × F) → F × F
be a local representation of S, where each Sφ,i maps U × F to F with Sφ,1(x, v) = v. Then, for all s ∈ R,
the following condition holds:

Sφ,2(x, sv) = s2Sφ,2(x, v). (1.6)

Thus, condition (SP1) not only characterizes a second-order vector field but also implies that Sφ,2 is
homogeneous of degree 2 in v. Consequently, Sφ,2 is a quadratic map in its second variable, i.e.,

Sφ,2(x, v) =
1

2
D22Sφ,2(x,0F)(v, v)

where D22 is the second partial derivative with respect to the second variable. In the chart, a geodesic g
of S has two components: g(t) =

(
x(t), v(t)

)
∈ U × F. Accordingly, Equation (1.5) takes the form

dx

dt
= v(t),

d2x

dt2
= Sφ,2(x, v(t)) =

1

2
D22Sφ,2(x,0F)(v(t), v(t)). (1.7)

Definition 1.2 Two sprays S and S̄ on a manifold M are said to be projectively equivalent if they share
the same geodesics as point sets. Specifically, for any geodesic g of S, there exists an orientation-preserving
reparametrization t = t(t) such that the curve g(t) := g(t(t)) is a geodesic of S, and vice versa.

Suppose S is projectively equivalent to S. For any v ∈ TxM, let g(t) be a geodesic of S with g(0) = x
and g′(0) = v. Then, there exists a reparametrization t = t(t) with t(0) = 0 and (t)′(0) = 1, such that
g(t) := g(t) is the geodesic of S satisfying g(0) = x and (g)′(0) = v.

By definition, the second derivative of the coordinate representation of the geodesic at t = 0 is

g′′φ(0) =
d2x
dt2 |t=0. Therefore, Equation (1.7) implies

Sφ,2(x, vφ) = g′′φ(0) = (gφ)
′′(0) + (t)′′(0)(gφ)

′(0) = Sφ,2(x, vφ(t)) + (t)′′(0)vφ. (1.8)

Here, the final term (t)′′(0)vφ is a scalar multiplication, where the real number (t)′′(0) multiplies the
vector vφ, which is the local representation of the tangent vector in F. Letting P (x, vφ) := (t)′′(0), we
observe that P depends only on x, vφ. Furthermore, P satisfies the homogeneity

P (x, rvφ) = rP (x, vφ), ∀r ∈ R.

which follows from the quadratic homogeneity of sprays. Thus,

Sφ,2(x, vφ) = Sφ,2(x, vφ) + P (x, vφ)vφ. (1.9)

Conversely, suppose that S and S satisfy Equation (1.9) with P homogeneous of degree 1 in v. Given

a geodesic g(t) of S, the reparametrization t(t) can be constructed by solving t
′′
(t) = P (g(t), g′(t))) with

t(0) = 0 and (t)′(0) = 1, implying g(t) = g(t) is a geodesic of S.
Sprays that are projectively equivalent form equivalence classes, which we call projective sprays. For

a spray S, its corresponding equivalence class is denoted by [S].

Remark 1.1 Vector fields on general Fréchet manifolds may lack integral curves, and even when they
exist, uniqueness is not guaranteed. Consequently, a geodesic flow may fail to exist or be well-defined.
However, our study remains unaffected by these limitations, as our primary focus is the dynamics of
geodesics, independent of their existence or uniqueness.

2. Spray-Invariant Sets

Sets invariant under the flow of vector fields have been extensively studied and well-documented for
Banach manifolds in [11]. Partial generalizations to Fréchet manifolds were subsequently established
in [6]. In this section, drawing inspiration from the concept of flow-invariant sets, we introduce the
notion of spray-invariant sets with respect to a spray on Fréchet manifolds.

As our aim is to define spray-invariant sets that are not necessarily submanifolds, we require the
notions of tangent and second-order tangent cones. However, the concept of a tangent cone to a subset
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of a topological vector space can be formulated in various ways. We adopt the adjacent cone (also known
as the intermediate cone) as defined in [1, Definition 4.1.5].

In Fréchet spaces, convergence occurs if and only if it occurs with respect to each seminorm. Therefore,
a sequence converges to a set if and only if all pseudo-distances between the sequence and the set
simultaneously approach zero. The pseudo-distance of an element x ∈ F to a subset S ⊂ F with respect
to a seminorm ∥·∥F,n is defined by

dF,n(x, S) := inf
{
∥x− y∥F,n | y ∈ S

}
.

Definition 2.1 Let ∅ ̸= S ⊂ F and s ∈ S. The adjacent cone TsS is defined by

TsS :=

{
f ∈ F | lim

t→0+
t−1dF,n (s+ tf, S) = 0, ∀n ∈ N

}
.

The adjacent cone TsS is nonempty and closed. The proof is a straightforward adaptation of the argu-
ments given in the Banach space case (cf. [11, Proposition 1.2]).

Intuitively, the adjacent cone TsS at a point s ∈ S consists of all vectors f representing permissible
directions of motion from s, i.e., directions in which one can depart from s while remaining arbitrarily
close to S. This idea is formalized by the condition that all pseudo-distances from s+tf to S must vanish
faster than the step size t. As we will see, if S is a differentiable submanifold, then TsS is the tangent
space at s.

Example 2.1 Let F be the Fréchet space R∞ of all real sequences, with the topology given by the family
of seminorms ∥xn∥F,n = |xn| for n ∈ N. Consider the set

S = {(xi) ∈ F | xi ≥ 0 for all i ∈ N}

and let s be the zero sequence. By definition, a vector f = (fi) ∈ F belongs to TsS if and only if for every
n ∈ N,

lim
t→0+

t−1dF,n(s+ tf, S) = 0.

Since s = 0, this simplifies to limt→0+ t
−1dF,n(tf, S) = 0. The pseudo-distance with respect to the n-th

seminorm is given by

dF,n(tf, S) = inf
y∈S

∥tf − y∥F,n = inf
{yi}⊆[0,∞)

|tfn − yn|.

To calculate this infimum, we consider two cases for the component fn:

1. If fn ≥ 0, then for t > 0, we have tfn ≥ 0. We can choose the sequence y ∈ S such that its n-th
component is yn = tfn. In this case, the distance is |tfn − tfn| = 0.

2. If fn < 0, then tfn < 0. The closest non-negative number yn to tfn is 0. Thus, the distance is
|tfn − 0| = |tfn| = −tfn.

Combining these cases, we have dF,n(tf, S) = tmax(0,−fn). Hence,

lim
t→0+

t−1dF,n(tf, S) = max(0,−fn).

For f to be in the cone TsS, this limit must be 0 for all n ∈ N. The condition max(0,−fn) = 0 means
fn ≥ 0. Since this must hold for all n, we conclude that f is in TsS if and only if fi ≥ 0 for all i. This
is precisely the definition of the set S. Therefore, for the set of non-negative sequences at the origin, the
adjacent cone is the set itself, i.e., T0S = S.

We now naturally extend this idea to second-order adjacent tangency. This type of tangency was defined
for Banach spaces in [15].
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Definition 2.2 Let ∅ ̸= S ⊂ F, s ∈ S, and e ∈ F. If there is some f ∈ F such that

∀n ∈ N, lim
t→0+

t−2dF,n
((
s+ tf + 1

2 t
2e
)
, S

)
= 0, (2.1)

then e is called a second-order adjacent tangent vector to S at s, and we say that f is associated with e.
The set of all second-order adjacent tangent vectors to S at s is denoted by T2

sS.

Remark 2.1 If e ∈ T2
sS and f is its associated direction, it follows directly from the definition of T2

sS
that f ∈ TsS. Moreover, the zero vector 0F belongs to TsS, as any direction can be associated with it.
To show that T2

sS is a cone, let e ∈ T2
sS with associated direction f . For any positive scalar r, consider

the vector re. By scaling f by r1/2, we obtain a new direction r1/2f that satisfies the conditions for re
to belong to T2

sS. Hence, T2
sS is a cone.

Remark 2.2 As we will see in Lemma 2.3, for a C2-submanifold S, the second-order tangent space
T(s,f)(TS) consists precisely of those pairs (f, e) whose acceleration component e belongs to the cone
T2
sS (with f as the associated velocity). This relationship is clear for an open subset S ⊂ F. For any

s ∈ S, the set of admissible accelerations T2
sS is the entire space F. Consequently, the second-order

tangent space T(s,f)(TS) is the set of all pairs (f, e) where f ∈ TsS = F and e ∈ T2
sS = F. That is,

the space of all pairs is F× F.

Remark 2.3 Alternatively, in Definitions 2.1 and 2.2, we could use the metric

dF(x, y) =

∞∑
n=1

1

2n
∥x− y∥F,n

1 + ∥x− y∥F,n
(2.2)

which induces the same topology on F as the sequence of seminorms. This equivalence holds because
dF(·, S) → 0 if and only if dF,n(·, S) → 0 for all positive integers n. In other words, both dF and the
sequence (dF,n) yield the same conclusions about convergence to the set S.

However, Fréchet spaces lack a canonical metric; multiple metrics induce the same topology and
different distances. Seminorms offer a more flexible and practical framework by directly reflecting the
underlying topology.

Next, we provide natural and straightforward extensions of adjacent and second-order adjacent cones to
Fréchet manifolds, analogous to the Banach manifolds case (see [11,12]).

Definition 2.3 Let S ⊂ M, s ∈ S. A vector v ∈ TsS is called an adjacent tangent vector to S at s if
there exists a chart (U,φ) around s such that

∀n ∈ N, lim
t→0+

t−1dF,n

(
φ(s) + tDφ(s)(v), φ(U ∩ S)

)
= 0. (2.3)

The set of all such v is denoted by TsS.

Lemma 2.1 The set TsS defined in Definition 2.3 is independent of the choice of chart.

Proof: Let S ⊂ M, s ∈ S, and v ∈ TsS. Let (U,φ) and (V, ψ) be two charts around s. Assume Equation
(2.3) holds for (U,φ). We show it holds for (V, ψ).

Since Equation (2.3) holds for (U,φ), there is a family of functions hn(t) : (0, ϵ) → φ(U ∩ S) for each
n ∈ N, such that

∀n ∈ N, lim
t→0+

t−1dF,n

(
φ(s) + tDφ(s)(v), hn(t)

)
= 0.

Define hn(t) = −t−1
(
φ(s) + tDφ(s)(v)− hn(t)

)
on (0, ϵ). Then, limt→0+ hn(t) = 0 in all seminorms, and

for small t, we have

φ(s) + t
(
Dφ(s)(v) + hn(t)

)
∈ φ(U ∩ S).
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Let ϕ = ψ ◦ φ−1 be the transition map. By the chain rule, Dψ(s) = Dϕ(φ(s))
(
Dφ(s)

)
. Consider the

Taylor expansion (Proposition I.2.3, [14]) of ϕ around φ(s) up to first order

ϕ(x) = ψ(s) + Dϕ(φ(s))(x− φ(s)) + R1ϕ(x)

where R1ϕ(x) is the first-order remainder. Substituting x = φ(s) + t(Dφ(s)(v) + hn(t)) into the Taylor
expression yields

ϕ
(
φ(s) + t

(
Dφ(s)(v) + hn(t)

))
= ψ(s) + t

(
Dψ(s)(v) + Dϕ(φ(s))(hn(t))

)
+R1ϕ(x).

Let kn(t) = Dϕ(φ(s))(hn(t)) + t−1R1ϕ(x) on (0, ε), where 0 < ε ≤ ϵ is sufficiently small. Since
limt→0+ kn(t) → 0 (for all seminorms), for sufficiently small t we have

ψ(s) + t
(
Dψ(s)(v) + kn(t)

)
∈ ψ(V ∩ S).

Thus,

∀n ∈ N, lim
t→0+

t−1dF,n

(
ψ(s) + tDψ(s)(v), kn(t)

)
= 0,

where kn(t) = tkn(t) + ψ(s) + tDψ(s)(v) on (0, ε). This implies Equation (2.3) holds for (V, ψ). 2

The set TsS is a closed cone in TsM . This follows directly from the seminorm condition in Definition 2.3,
as limits and positive scaling preserve the structure. For Cr-submanifolds, adjacent tangent vectors
coincide with tangent vectors. While this result is analogous to the Banach manifold case [12], we outline
the proof in the Fréchet setting for completeness.

Suppose F1 is a closed subspace of the Fréchet space F that splits it. Let F2 be a topological com-
plement, such that F = F1 ⊕ F2. A subset S ⊂ M is called a (split) Cr-Fréchet submanifold modeled on
F1, for 1 ≤ r ≤ k, if for any p ∈ S there exists a Cr-diffeomorphism φ : U → V , where U ∋ p is open
in M and V is an open subset of F. The set V is required to be a product neighborhood of the form
V =W ×O, where W ⊆◦ F1 and O ⊆◦ F2. The map must then satisfy

φ(S ∩ U) =W × {0F2} .

Then S is a Cr-Fréchet manifold modeled on F1, with the maximal Cr-atlas including the mappings
ϕ|U∩S : U ∩ S → V ∩ S for all φ as described above.

Suppose v ∈ TsM is an adjacent vector to S at s ∈ S. By Lemma 2.1, there exists a submanifold
chart (U,φ) around s such that for some open set W ⊆◦ F1, we have φ(U ∩S) =W ×{0F2

}. By Definition
2.3, the element s satisfies (2.3) if and only if there exists a family of functions hn(t) : (0, ϵ) → φ(U ∩ S)
such that

∀n ∈ N, lim
t→0+

t−1dF,n

(
φ(s) + tDφ(s)(v), hn(t)

)
= 0.

Define hn(t) = −t−1
(
φ(s) + tDφ(s)(v)− hn(t)

)
on (0, ϵ). Then, limt→0+ hn(t) = 0 in all seminorms, and

for small t, we have
∀n ∈ N, Dφ(s)(v) + hn(t) ∈ F1 × {0F2

} .

Since F1 is closed and each Dφ(s)(v) + hn(t) lies in F1, taking the limit t → 0+ yields Dφ(s)(v) ∈ F1.
Hence, v is a tangent vector to S at s.

Conversely, let v ∈ TsS be a tangent vector, and (U,φ) a submanifold chart. By definition of the
tangent space, the curve t 7→ φ(s) + t Dφ(s)(v) lies entirely in φ(U ∩ S) for small t. Consequently, s
satisfies (2.3), and hence v is an adjacent tangent vector to S at s.

In the following definition and lemma, we will use the notation introduced in (1.3) and (1.4).

Definition 2.4 Let S ⊂ M, s ∈ S, and v ∈ TsS. A vector w ∈ Tv(TM) is called a second-order adjacent
tangent vector to S at s (associated with v) if there exists a chart (U,φ) about s such that the following
two conditions hold:

(i) wφ∗,1 = vφ,



Spray-Invariant Sets in Infinite-Dimensional Manifolds 9

(ii) For all n ∈ N,
lim
t→0+

t−2 dF,n
(
φ(s) + tvφ + 1

2 t
2wφ∗,2, φ(U ∩ S)

)
= 0. (2.4)

Here, vφ := Dφs(v) is the local representation of v, while wφ∗,1 and wφ∗,2 are the components of the
local representation of w, given by wφ∗ := D(φ∗)v(w) = (wφ∗,1, wφ∗,2). The set of all such vectors w is
denoted by T2

sS.

Lemma 2.2 The definition of T2
sS in Definition 2.4 is independent of the choice of chart.

Proof: Let S ⊂ M, s ∈ S, and v ∈ TsS. Consider two charts (U,φ) and (V, ψ) around s, and let
ϕ = ψ ◦ φ−1 be the transition map. Suppose w ∈ Tv(TM) satisfies wφ∗,1 = vφ and (2.4) holds in (U,φ).
We will show that (2.4) also holds in (V, ψ).

Equation (2.4) holds if and only if there exists a family of function hn(t) : (0, ϵ) → φ(U ∩S) such that

∀n ∈ N, lim
t→0+

t−2dF,n

((
φ(s) + tvφ + 1

2 t
2wφ∗,2

)
, hn(t)

)
= 0.

Define hn(t) := −t−2
(
φ(s) + tvφ + 1

2 t
2wφ∗,2 − h(t)

)
on (0, ϵ). Then, limt→0+ hn(t) = 0 in all seminorms,

and for small t, we have

kn(t) := φ(s) + tvφ + 1
2 t

2
(
wφ∗,2 + hn(t)

)
∈ φ(U ∩ S).

Without loss of generality, we choose ϵ sufficiently small so that ϕ(kn(t)) ∈ ψ(U ∩ V ∩ S).
We aim to show that

∀n ∈ N, lim
t→0+

t−2dF,n

((
ψ(s) + tvψ + 1

2 t
2wψ∗,2

)
, ψ(V ∩ S)

)
= 0. (2.5)

To this end, we will express the terms in the limit condition using the chart (V, ψ), based on the given
relationships between vφ, vψ, wφ∗,2, and wψ∗,2, and ϕ, namely

vψ = Dϕφ(s)(vφ), wψ∗,1 = vφ, and wψ∗,2 = D2ϕφ(s)(vφ, wφ∗,1) + Dϕφ(s)(wφ∗,2). (2.6)

Using the Taylor expansion up to second order of ϕ around φ(s), we have

ϕ(x) = ψ(s) + Dϕφ(s)(x− φ(s)) + 1
2D

2ϕφ(s)
(
x− φ(s), x− φ(s)

)
+R2ϕ(x)

where R2ϕ(x) is the second-order remainder. Substituting x = kn(t) into the Taylor expansion results in

ϕ
(
kn(t)

)
= ψ(s) + Dϕφ(s)

(
kn(t)− φ(s)

)
+ 1

2D
2ϕφ(s)

(
kn(t)− φ(s), kn(t)− φ(s)

)
+R2ϕ(x).

Applying the expressions in (2.6) and substituting kn(t) into the later equation yields

ϕ
(
kn(t)

)
= ψ(s) + tvψ + 1

2 t
2
(
wψ∗,2

)
+R2ϕ(x). (2.7)

Since ϕ(kn(t)) ∈ ψ(V ∩ S), for sufficiently small t > 0, there exists a hn(t) ∈ S such that ϕ(kn(t)) =
ψ(hn(t)). Thus, Equation (2.7) implies

∀n ∈ N, lim
t→0+

t−2dF,n

((
ψ(s) + tvψ + 1

2 t
2wψ∗,2

)
, ψ(hn(t))

)
= lim
t→0+

t−2R2ϕ(x) = 0.

Since ψ(hn(t)) ∈ ψ(V ∩ S), it follows that the pseudo-distances to the set ψ(V ∩ S) is at most the
pseudo-distances to the specific point ψ(hn(t)), i.e.,

dF,n

(
ψ(s) + tvψ + 1

2 t
2wψ∗,2, ψ(V ∩ S)

)
≤ dF,n

(
ψ(s) + tvψ + 1

2 t
2wψ∗,2, ψ(hn(t))

)
.

Thus, Equation (2.5) holds true. 2
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Remark 2.4 If the manifold M coincides with its model space F, then Definition 2.4 reduces to
Definition 2.2. To see this, the arguments analogous to those in the Banach case can be applied;
see [11, Remark 2.12].

The proof of the following result relies primarily on the properties of submanifold charts and on limit
arguments, which can be adapted from Banach manifolds (see [11, Theorem 2.13]) to our context with
minor modifications.

Lemma 2.3 Let S be a C2-submanifold of M modeled on F1, and let s ∈ S. Then the following statements
are equivalent:

(i) w ∈ T2
sS with associated tangent vector v ∈ TsS;

(ii) w ∈ Tv(TS) for some v ∈ TsS.

Proof: Suppose w ∈ T2
sS and v is its associated vector. Then Tv(TS) is the tangent space at v to TS.

By Lemma 2.2, there exists a submanifold chart (U,φ) at s for S, such that for some W ⊆◦ F1, we have

φ(U ∩ S) =W × {0F2
} , (2.8)

where F2 is a complement of F1. The condition

∀n ∈ N, lim
t→0+

t−2dF,n

((
φ(s) + tvφ + 1

2 t
2wφ∗,2

)
, φ(U ∩ S)

)
= 0

is valid if and only if there exists a family of functions hn(t) : (0, ϵ) → φ(U ∩ S) such that

∀n ∈ N, lim
t→0+

t−2dF,n

((
φ(s) + tvφ + 1

2 t
2wφ∗,2

)
, hn(t)

)
= 0.

Define
hn(t) := −t−2

((
φ(s) + tvφ + 1

2 t
2wφ∗,2

)
− hn(t)

)
.

Therefore, limt→0+ hn(t) = 0, in all seminorms. Moreover, for small t, we have

φ(s) + tvφ + 1
2 t

2(wφ∗,2 + hn(t)) ∈ F1. (2.9)

Since TsS is the tangent space at s to S and v ∈ TsS, it follows that vφ ∈ F1.
Furthermore, from Equation (2.9), for all n ∈ N we have

wφ∗,2 + hn(t) ∈ F1, ∀t > 0.

Taking the limit as t → 0+, we deduce that wφ∗,2 ∈ F1. Since wφ∗,1 = vφ ∈ F1, it follows that
wφ∗ = (wφ∗,1, wφ∗,2) ∈ F1 × F1, which implies that w ∈ Tv(TS).

Conversely, let w ∈ Tv(TS). Since S is a C2-submanifold of M modeled on F1, its tangent bundle
TS is a C1-manifold modeled on the product space F1 × F1. The tangent space at any point of TS is
therefore also modeled on F1 × F1. This implies that for any submanifold chart (U,φ) at s for S, the
local components of the vector w must satisfy wφ∗,1 ∈ F1 and wφ∗,2 ∈ F1.

Now, let t > 0 be small enough such that φ(s)+tvφ+
1
2 t

2wφ∗,2 ∈W . Because vφ ∈ F1 and wφ∗,2 ∈ F1,
their linear combination also lies in F1. Thus, we have(

φ(s) + tvφ + 1
2 t

2wφ∗,2

)
∈ φ(U ∩ S) =W × {0F2} .

This directly implies that the limit condition is satisfied:

∀n ∈ N, lim
t→0+

t−2dF,n

((
φ(s) + tvφ + 1

2 t
2wφ∗,2

)
, φ(U ∩ S)

)
= 0.

Therefore, w ∈ T2
sS, which completes the proof. 2

Having established the necessary tools for studying spray-invariant sets, we now introduce a specific set
that plays a crucial role.
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Definition 2.5 Let S be a spray on M, and S ⊂ M a non-empty subset. A tangent vector v ∈ TM is
called a (T2S, S)-admissible vector if

τ(v) ∈ S and S(v) ∈ T2
τ(v)S.

The set of such vectors, denoted by AS,S, is called the (T2S, S)-admissible set for S and S.

By directly applying Definition 2.4 and Lemma 2.2, we obtain a local description of the set AS,S . Let
v ∈ AS,S . Then, there exists a chart φ : U → F at v := τ(v) such that

∀n ∈ N, lim
t→0+

t−2dF,n

((
φ(v) + tvφ + 1

2 t
2S(φ∗,2)(v)

)
, φ(U ∩ S)

)
= 0, (2.10)

where, in coordinates φ∗ : TU → F× F, the spray decomposes as follows

S(φ∗)(v) = D(φ∗)vS(v) =
(
Pr1(S(φ∗)(v)) = vφ,Pr2(S(φ∗)(v)) =: S(φ∗,2)(v)

)
∈ F× F. (2.11)

Remark 2.5 Let S and S be projectively equivalent sprays, i.e., S ∈ [S]. In general, the admissible sets
AS,S and AS,S need not coincide. From the projective relation (1.9), locally

Sφ,2(x, vφ) = Sφ,2(x, vφ) + P (x, vφ)vφ, for v ∈ TxM.

Since T2
τ(v)S is generally only a closed cone (not a linear space), the term P (x, vφ)vφ may result in

S(v) /∈ T2
τ(v)S even if S(v) ∈ T2

τ(v)S. Thus, AS,S is not preserved under projective equivalence. However,

if S is a C2-submanifold, then by Lemma 2.3 we have

S(v) ∈ T2
τ(v)S ⇐⇒ S(v) ∈ Tw(TS) for some w ∈ Tτ(v)S,

where Tw(TS) is a linear subspace of T(TM). Since P (x, vφ)vφ ∈ Tτ(v)S, it follows that

S(v) = S(v) + P (x, vφ)vφ ∈ T2
τ(v)S.

Therefore, AS,S and AS,S are the same in this case.

Theorem 2.1 Let S be a spray on M, g : I ⊂ R → M its geodesic, and S ⊂ M a non-empty closed subset.
Then, for all t in I, g(t) ∈ S if and only if g′(t) ∈ AS,S.

Proof: Assume that t ∈ I and g(t) ∈ S. Let ϵ > 0 be sufficiently small such that t+s ∈ I and g(t+s) ∈ S
for all s ∈ (0, ϵ]. Let φ : U → F be a chart around g(t). Using the properties of charts, we can express
g′(t) in terms of the chart coordinates and their derivatives as follows

(g′(t))φ = Dφ
(
g(t)

)
(g′(t)) = (φ ◦ g)′(t).

Therefore, by (2.11), we get

S(φ∗)(g
′(t)) = D(φ∗)

(
g(t)

)
(S(g′(t)) = D(φ∗)

(
g(t)

)
(g′(t))

= (φ∗(g
′))′(t)

=
(
(φ ◦ g)′(t), (φ ◦ g)′′(t)

)
.

Thus, for sufficiently small s, we have

∀n ∈ N, s−2dF,n

((
φ(g(t)) + s(g′(t))φ + 1

2s
2S(φ∗,2)(g

′(t))
)
, φ(U ∩ S)

)
≤

≤ s−2dF,n

((
φ(g(t)) + s

(
φ ◦ g

)′
(t) + 1

2s
2
(
φ ◦ g)

)′′
(t)

)
, φ(g(t+ s))

)
.

Since g(t) is C2, the right-hand side vanishes as s→ 0+. Therefore, g′(t) ∈ AS,S .
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Now, assume that t ∈ I and g′(t) ∈ AS,S . Then,

∀n ∈ N, lim
δ→0+

δ−2dF,n

(
φ(g(t)) + δ(g′(t))φ + 1

2δ
2S(φ∗,2)(g

′(t)), φ(U ∩ S)
)
= 0, (2.12)

which characterizes the admissibility of g′(t) relative to the set S. This condition holds if and only if
there exists a family of functions hn(δ) : (0, ϵ) → φ(U ∩ S) such that

∀n ∈ N, lim
δ→0+

δ−2dF,n

(
φ(g(t)) + δ(g′(t))φ + 1

2δ
2S(φ∗,2)(g

′(t)), hn(δ)
)
= 0.

Define
hn(δ) := −δ2

(
φ(g(t)) + δ(g′(t))φ + 1

2δ
2S(φ∗,2)(g

′(t))− hn(δ)
)
, δ ∈ (0, ϵ).

Then limδ→0+ hn(δ) = 0 in all seminorms. Consequently,

φ(g(t)) + δ(g′(t))φ + 1
2δ

2
(
S(φ∗,2)(g

′(t)) + hn(δ)
)
∈ φ(U ∩ S), for δ ∈ (0, ϵ).

Since φ(U ∩ S) is closed in φ(U), taking the limit as δ → 0+ yields

φ(g(t)) ∈ φ(U ∩ S),

and therefore g(t) ∈ S. 2

We can now introduce the concept of a spray-invariant set with respect to a spray.

Definition 2.6 Let S be a spray on M, and let S be a subset of M such that AS,S is not empty. We say
S is spray-invariant with respect to S if, for any geodesic g : I → M of S such that 0 ∈ I, g(0) ∈ S, and
g′(0) ∈ AS,S, then g(t) ∈ S for all t ∈ I.

By Theorem 2.1, a closed subset S ⊂ M is spray-invariant if, for any geodesic g : I → M of S such that
0 ∈ I, g(0) ∈ S, and g′(0) ∈ AS,S , then g

′(t) ∈ AS,S for all t ∈ I.

Example 2.2 Let E = C∞(R,R) be the Fréchet space of smooth real-valued functions on R whose topol-
ogy is defined by a family of seminorms

∥f∥E,n := sup
x∈[−j,j]

|f (m)(x)|

Here, f (m) denotes the m-th derivative of the function f , j ∈ N, and m ∈ {0, 1, 2, . . . }. This space is a
Fréchet manifold modeled on itself with the tangent bundle TE ∼= E× E.

Consider a flat spray S(f, v) = (f, v, v,0E), where geodesics are affine paths γ(t) = f + tv. Define the
subset S = S+ ∪ S−, where

S+ := {f ∈ E | supp(f) ⊆ [0,∞)}, S− := {f ∈ E | supp(f) ⊆ (−∞, 0]}.

The set S is the union of two closed subspaces S+ and S− which are smooth submanifolds of E. However,
it fails to be a manifold because there exists no neighborhood of the zero function in S that is locally
homeomorphic to a linear subspace. Consider any neighborhood N of the zero function in S. This
neighborhood will contain functions from S+ and functions from S−. In a linear space, one can always
find a continuous path between any two nearby points. However, any continuous path in E from a function
in S+ to a function in S− must pass through functions whose support lies on both sides of zero. Such
functions are not in S+ and not in S−, and therefore are not in S. The only point connecting these two
sets is the zero function itself. Consequently, if we remove the origin from the neighborhood N , it splits
into two disconnected pieces. This local structure is not homeomorphic to a linear space.

The adjacent cones to S at non-zero points are given by

TfS = TfS+ = {v ∈ E | supp(v) ⊆ [0,∞)} , for f ∈ S+ \ {0},
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TfS = TfS− = {v ∈ E | supp(v) ⊆ (−∞, 0]} , for f ∈ S− \ {0}.

At the origin, we prove that the adjacent cone is the union of the two subspaces, i.e., T0S = S+ ∪ S−.

Let v ∈ S+ ∪ S−. To check if v ∈ T0S, we must show the limit condition holds for every seminorm
∥·∥E,n. For any t > 0, the function tv is also in S. We can therefore choose the point h = tv ∈ S to
measure the pseudo-distance. For any n ∈ N, we have

dE,n
(
0 + tv, S

)
= inf
g∈S

∥tv − g∥E,n ≤ ∥tv − tv∥E,n = 0.

Since the pseudo-distance is zero for every n, the limit condition is trivially satisfied. Thus, any v ∈
S+ ∪ S− is in T0S.

Now, let v ∈ E be a vector such that v /∈ S+ ∪ S−. This means there exist points x1 < 0 and x2 > 0
such that v(x1) ̸= 0 and v(x2) ̸= 0. Select an integer j ∈ N large enough such that the compact interval
Kj = [−j, j] contains both x1 and x2. Let n0 be the index corresponding to the pair (j,m = 0). The
associated seminorm is ∥f∥E,n0

= supx∈[−j,j] |f(x)|. The function tv has non-zero values on both sides of
the origin within Kj. Any function g ∈ S has support on only one side of the origin.

• If we choose g ∈ S+, then g(x1) = 0, so ∥tv − g∥E,n0
≥ |tv(x1)− g(x1)| = t|v(x1)|.

• If we choose g ∈ S−, then g(x2) = 0, so ∥tv − g∥E,n0
≥ |tv(x2)− g(x2)| = t|v(x2)|.

In either case, the infimum pseudo-distance is bounded below. Let C = min(|v(x1)|, |v(x2)|) > 0. Then
dE,n0

(tv, S) ≥ Ct. The limit for this specific seminorm is therefore bounded below:

lim
t→0+

t−1dE,n0

(
tv, S

)
≥ lim
t→0+

t−1(Ct) = C > 0.

Since the limit condition must hold for all n ∈ N for a vector to be in T0S, and we have found at least
one seminorm (indexed by n0) for which it fails, v is not in T0S. Combining both inclusions, we have
shown that T0S = S+ ∪ S−.

For f ∈ S+ \ {0} (resp. S− \ {0}), we have

T2
fS = TfS+ (resp. TfS−),

since infinitesimal perturbations preserve the support condition.

For f = 0, we have

T2
0S = S+ ∪ S−, and S(v) = 0E ∈ T2

0S.

The flat spray S trivially satisfies S(v) ∈ T2
fS, as 0E ∈ T2

fS for all f ∈ S. Thus,

AS,S =
⋃
f∈S

{(f, v) ∈ TE | v ∈ TfS+ or v ∈ TfS−} .

Let f ∈ S be a point and v ∈ AS,S be a tangent vector at f . By direct verification, for the geodesic
γ : R → M of S with initial conditions γ(0) = f and γ′(0) = v, we have

γ(t) = f + tv ∈ S, ∀t ∈ R.

Hence, S is spray-invariant.

Remark 2.6 As noted in Remark 2.5, the admissible sets AS,S and AS,S for projectively equivalent

sprays S and S generally differ when S is not differentiable submanifold. Thus, spray invariance of S with
respect to one of these sprays does not imply spray invariance with respect to the other. This implies the
sensitivity of geometric properties of singular sets to the specific projective parametrization of sprays.
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Example 2.3 Let χδ and χε be standard smooth bump functions. A function χδ : R → R is a C∞

function such that χδ(x) > 0 for x ∈ (−δ/2, δ/2) and χδ(x) = 0 otherwise. We choose these functions to
be symmetric, i.e., χδ(x) = χδ(−x).

Consider a tangent vector v ∈ E = C∞(R,R) defined as v(x) = χδ(x) for some 0 < δ ≤ ε/2. The
support of v is the compact interval [−δ/2, δ/2], which is centered at the origin. Then

αϵ(v) =

∫
R
χε(x)χδ(x) dx =

∫ δ/2

−δ/2
χε(x)χδ(x) dx > 0.

Now, define the spray S̃ by
S̃(f, v) := (f, v, v,−2αϵ(v) · v).

This yields a projectively equivalent spray since it modifies the second derivative by a multiple of the
adjacent tangent vector.

Let f ∈ S+ (i.e., supp(f) ⊆ [0,∞)) and the initial tangent be γ′(0) = v = χδ with δ > 0. The
support of v is [−δ/2, δ/2], extending to the negative real line. At t = 0, α(γ(0), γ′(0)) = αϵ(v) > 0, so
γ′′(0) = −2αϵ(v)v. The Taylor expansion of the geodesic around t = 0 is given by

γ(t) = f + tv − t2αϵ(v)v +O(t3) = f + t(1− tαϵ(v))v +O(t3).

Since supp(f) ⊆ [0,∞) and supp(v) = [−δ/2, δ/2] with δ > 0, for any t > 0 (even infinitesimally small),
the term tv will introduce a non-zero component to γ(t) with support on (−∞, 0), unless v was identically
zero on (−∞, 0), which χδ is not. Therefore, γ(t) will leave S+, and hence S, for t > 0. Similarly, if we
start with f ∈ S− and v = χδ, the geodesic will leave S−, and hence S, for t > 0. Thus, while S = S+∪S−
is invariant under the flat spray, it is not invariant under the projectively equivalent spray S̃.

Now, using the concept of admissible sets, we can characterize totally geodesic submanifolds. Let S be
a spray on a manifold M, and let S ⊂ M be a submanifold. The submanifold S is called totally geodesic
(with respect to S) if, for all p ∈ S and all v ∈ TpS, the geodesic γv(t) in M starting at p with initial
velocity v satisfies γv(t) ∈ S for all t. For a totally geodesic submanifold S, the restriction SS := S|TS
is a spray on S, and every geodesic of the induced spray SS is also a geodesic of S on M. By definition,
totally geodesic submanifolds are spray-invariant.

Theorem 2.2 Let S be a spray on M, and let S be a C3-submanifold of M. Then S is totally geodesic if
and only if AS,S = TS.

Proof: First, we prove that AS,S = S−1(T(TS)). Suppose v ∈ AS,S . Then τ(v) ∈ S and S(v) ∈ T2
τ(v)S,

with associated vector v ∈ Tτ(v)S. By Lemma 2.3, it follows that S(v) ∈ Tv(TS). Since Tv(TS) ⊂ T(TS),
we conclude that S(v) ∈ T(TS).

Conversely, suppose S(v) ∈ T(TS). Then S(v) ∈ Tv(TS), and hence v ∈ Tτ(v)S. By Lemma 2.3, this
implies S(v) ∈ T2

τ(v)S, and thus v ∈ AS,S . Therefore, we have

AS,S = S−1(T(TS)). (2.13)

This means that AS,S consists of all vectors v ∈ TM such that S(v) ∈ T(TS). In particular, if
S(v) ∈ T(TS), then the geodesic starting at v remains in TS. Now assume that S is totally geodesic.
Then for all v ∈ TS, the geodesic of S starting at v remains in S, so S(v) ∈ T(TS). Hence, by (2.13),
AS,S = TS. Conversely, if AS,S = TS, then S is totally geodesic by definition.

2

Example 2.4 Let M = C∞(R,R2) be the Fréchet space of smooth functions from R to R2, equipped
with the flat spray S(f, v) = (f, v, v, (0, 0)), where (0, 0) denotes the zero function in M. Consider the
subset S ⊆ M defined by

S := {f ∈ M | f(x) = (h(x), h(x)2) for some h ∈ C∞(R,R)}.
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Let E = C∞(R,R). Define the map

Φ: E → M, Φ(h)(x) =
(
h(x), h(x)2

)
.

Then Im(Φ) = S. We first show that Φ is a smooth injective immersion. Maps between Fréchet spaces
are Michal-Bastiani smooth if and only if they are conveniently smooth, i.e., they map smooth curves to
smooth curves. Let γ : R → E be a smooth curve. Then

(Φ ◦ γ)(t)(x) =
(
γ(t)(x), γ(t)(x)2

)
,

which is smooth in both t and x, hence Φ ◦ γ ∈ C∞(R,M), so Φ is smooth. Moreover,

Φ(h1) = Φ(h2) ⇒ h1 = h2,

so Φ is injective. Next, for u ∈ E, the tangent map is given by

(ThΦ)(u)(x) =
d

dt

∣∣∣∣
t=0

Φ(h+ tu)(x)

=
d

dt

∣∣∣∣
t=0

(
h(x) + tu(x), (h(x) + tu(x))2

)
=

(
u(x), 2h(x)u(x)

)
.

If (ThΦ)(u) = 0, then u(x) = 0 for all x, so u = 0. Thus, ThΦ is injective, and Φ is an injective
immersion.

It remains to prove that Φ is a topological embedding onto its image S, i.e., that Φ: E → S is a
homeomorphism when S is endowed with the subspace topology from M. Consider the following diagram :

E S

E M

Φ

idE ı
Φ−1

π1

Here, Φ: E → S is smooth and injective, ı : S ↪→ M is the inclusion, π1 : M → E is the projection
onto the first component, Φ−1 := π1◦ı : S → E is the inverse map, constructed by restricting the projection
map π1 to the subset S. Next, we prove that the composition Φ−1 : S → E has closed graph in S × E.
Hence, by the closed graph theorem, Φ−1 is continuous. Thus Φ: E → S is a homeomorphism.

Let ((fn, f
2
n), fn) be a sequence in the graph that converges in M× E to some ((g, h), f). We must

show that (g, h) = (f, f2), so that the limit point lies in the graph. But since fn → f in E, and the
squaring map E → F , f 7→ f2, is continuous (being smooth), we have

f2n → f2 in F.

Hence (fn, f
2
n) → (f, f2) = (g, h), so it must be that g = f , h = f2. Therefore, the limit point is

((f, f2), f), which lies in the graph.
Let f(x) = (h(x), h(x)2) ∈ S, and consider a smooth curve γ(t)(x) = (h(x, t), h(x, t)2) ∈ S with

h(x, 0) = h(x). Then

v(x) = γ′(0)(x) = (∂th(x, 0), 2h(x)∂th(x, 0)) = (u(x), 2h(x)u(x)).

Thus,

γ′′(0)(x) =
(
∂tth(x, 0), 2(∂th(x, 0))

2 + 2h(x)∂tth(x, 0)
)

=
(
∂tth(x, 0), 2u(x)

2 + 2h(x)∂tth(x, 0)
)
.
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The flat spray assigns acceleration (0, 0), so we must have γ′′(0) = (0, 0). Hence, ∂tth(x, 0) = 0 and
u(x)2 = 0, so u = 0. Therefore, the only vector v for which (f, v, v, (0, 0)) ∈ T2S is v = 0. Thus,

AS,S = {(f, 0) ∈ TM | f(x) = (h(x), h(x)2), h ∈ E},

while the tangent bundle is given by

TS = {(f, v) ∈ TM | f(x) = (h(x), h(x)2), v(x) = (u(x), 2h(x)u(x)) for some u ∈ E}.

If (f, v) ∈ AS,S, then v = 0, and the geodesic γ(t) = f+ tv = f remains in S. Thus, S is spray-invariant.
The tangent bundle TS contains non-zero vectors v(x) = (h′(x), 2h(x)h′(x)) for non-constant h. Since
AS,S only contains pairs with v = 0, we have TS ̸= AS,S. By Theorem 2.2, S is not totally geodesic.

Corollary 2.1 Let M be a manifold equipped with a spray. Assume further that for any two distinct
points in M, there is unique geodesic connecting them. Let S ⊂ M be a closed C3-submanifold. Suppose
that locally, given two distinct points in S, the unique geodesic segment in M connecting them lies entirely
in S. Then S is a totally geodesic submanifold of M.

Proof: Let p ∈ S and v ∈ TpS. By the hypothesis of the corollary, there exists ϵ > 0 such that the
unique geodesic γv : (−ϵ, ϵ) → M with γv(0) = p and γ′v(0) = v is defined. For t0 ∈ (0, ϵ), let q = γv(t0).
Moreover, by the corollary’s hypothesis, the unique geodesic segment γv|[0,t0] connecting p and q lies
entirely in S.

By Theorem 2.1, since γv(t) ∈ S for all t ∈ [0, t0], we have γ
′
v(t) ∈ AS,S for all t ∈ [0, t0]. In particular,

at t = 0, we have v = γ′v(0) ∈ AS,S . Hence, TpS ⊆ AS,S .
Conversely, suppose v ∈ AS,S . Let τ(v) = p ∈ S. Consider the geodesic γv(t) starting at p with initial

tangent v. Since v ∈ AS,S , by Theorem 2.1, for all t in the domain of the geodesic where it is defined, we
have γ′v(t) ∈ AS,S .

Now, let q be another point in S such that there is a geodesic γv connecting p to q, with γv(0) = p
and γ′v(0) = v. By the local property given in the corollary, this geodesic lies entirely within S. Since
γv(t) stays in S, its tangent vector γ

′
v(t) must lie in Tγv(t)S for all t in its domain. In particular, at t = 0,

we have v = γ′(0) ∈ AS,S . Also, since γ′(0) = v and γ(0) = p ∈ S, the initial velocity v is tangent to S
at p, so v ∈ TpS. This shows that AS,S ⊆ TS. Therefore, AS,S = TS. Thus, by Theorem 2.2, S is a
totally geodesic submanifold. 2

This result was proven for Banach manifolds using a different technique in [8, XI, §4, Proposition 4.2].

Example 2.5 Let M = C∞(Rn,R) be the Fréchet space of smooth real-valued functions on Rn. The
tangent bundle is TM ∼= M×M. Consider the flat spray S(f, v) = (f, v, v,0M), where f, v ∈ M and
0M denotes the zero function. The geodesics are given by γ(t) = f + tv.

Define the subset S ⊂ M as the set of functions that are constant on Rn, i.e.,

S := {f ∈ C∞(Rn,R) | ∃ c ∈ R such that f(x) = c, ∀x ∈ Rn} .

For any two distinct functions f1, f2 ∈ M, the unique geodesic passing through them is

γ(t) = f1 + t(f2 − f1).

Let f1, f2 ∈ S be two constant functions, say f1(x) = c1 and f2(x) = c2 with c1 ̸= c2. Then for any
t ∈ [0, 1], the geodesic satisfies

γ(t)(x) = c1 + t(c2 − c1) = (1− t)c1 + tc2.

Notice that for a fixed t, the expression (1− t)c1+ tc2 yields a single real number that does not depend on
x. This means that the function γ(t) takes the same constant value at every point x ∈ Rn. Therefore, by
the definition of S as the set of constant functions, γ(t) ∈ S for all t ∈ [0, 1]. Thus, the geodesic segment
connecting any two points in S lies entirely in S.

The set S can be identified with R via the constant value. It is a closed linear subspace of M, and
thus a closed C∞-submanifold of M. Since all the conditions of Corollary 2.1 are satisfied, S is a totally
geodesic submanifold.
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Remark 2.7 The local existence of a unique geodesic in the third condition of Corollary 2.1 is crucial
for more general manifolds where geodesics might not be straight lines globally. In our specific example
of constant functions, this local condition happens to hold globally because the geodesics in M are straight
lines, and any straight line connecting two constant functions consists entirely of constant functions.
However, for a general Fréchet manifold and a submanifold, this containment might only hold for points
that are sufficiently close to each other within S.

2.1. Automorphisms Preserving Spray Invariance

In this subsection we study a class of automorphisms of M that preserve spray-invariance.

Lemma 2.4 Let S be a spray, and let ϕ be a Ck-automorphism of M. Then, ϕ∗∗ ◦S◦ϕ−1
∗ is also a spray.

Proof: Lemma 1.1 implies that S̃ = ϕ∗∗ ◦S◦ϕ−1
∗ is a Ck−2-symmetric second-order vector filed. We now

need to show that S̃ satisfies the spray condition, i.e., S̃(sv) = (LTM)∗(sS̃(v)), for all s ∈ R and v ∈ TM.
Here, (LTM)∗ denotes the pushforward of the scalar multiplication map on the tangent bundle TM.

By definition of S̃, we have S̃(sv) = ϕ∗∗ ◦ S ◦ ϕ−1
∗ (sv). Since ϕ−1

∗ is linear on each fiber (as it is the
inverse of the tangent map ϕ∗), we have ϕ−1

∗ (sv) = sϕ−1
∗ (v). Substituting this into the expression for

S̃(sv), we get
S̃(sv) = ϕ∗∗ ◦ S(sϕ−1

∗ (v)).

Since S is a spray, it satisfies S(sϕ−1
∗ (v)) = (LTM)∗(sS(ϕ

−1
∗ (v))). Substituting this into the expression for

S̃(sv), we obtain
S̃(sv) = ϕ∗∗ ◦ (LTM)∗(sS(ϕ

−1
∗ (v))).

The pushforward ϕ∗∗ commutes with scalar multiplication maps. This is due to the fact that ϕ∗∗ is linear
on each fiber of T(TM). Thus, ϕ∗∗ ◦ (LTM)∗ = (LTM)∗ ◦ ϕ∗∗. Applying this, we have

S̃(sv) = (LTM)∗ ◦ ϕ∗∗(sS(ϕ−1
∗ (v))).

Since ϕ∗∗ is linear on each fiber, we can pull out the scalar s, i.e.,

ϕ∗∗(sS(ϕ
−1
∗ (v))) = sϕ∗∗ ◦ S ◦ ϕ−1

∗ (v) = sS̃(v).

Therefore, S̃(sv) = (LTM)∗(sS̃(v)). Thus, S̃ satisfies the spray condition. 2

A Ck-automorphism ϕ of M is called an automorphism of the spray S if ϕ∗∗ ◦ S ◦ ϕ−1
∗ = S. The

automorphisms of S form a group under composition called the automorphism group of S and denoted
by Aut(M, S). For finite-dimensional manifolds this concept was introduced in [16].

Theorem 2.3 Let S ⊂ M be a non-empty closed subset that is spray-invariant with respect to S, and let
ϕ ∈ Aut(M, S). Then ϕ(S) is spray-invariant with respect to S.

Proof: Let p̃ ∈ ϕ(S). Then p̃ = ϕ(q) for some q ∈ S. Let ṽ ∈ AS,ϕ(S) such that τ(ṽ) = p̃. Let
v = ϕ−1

∗ (ṽ) ∈ TqM. Since τ(ṽ) = ϕ(q), we have

τ(v) = ϕ−1(τ(ṽ)) = ϕ−1(ϕ(q)) = q ∈ S.

We know that ṽ ∈ AS,ϕ(S) implies S(ṽ) ∈ T2
p̃ϕ(S). Using the automorphism property S ◦ϕ∗ = ϕ∗∗ ◦ S, we

obtain S(ṽ) = S(ϕ∗(v)) = ϕ∗∗(S(v)). Now, since ϕ maps S into ϕ(S), its tangent maps satisfy

ϕ∗ : TS → Tϕ(S) and ϕ∗∗ : T(TS) → T(Tϕ(S)).

If S(ṽ) = ϕ∗∗(S(v)) is tangent to T2ϕ(S) at p̃, then S(v) must be tangent to T2S at q. Thus, v ∈ AS,S .
Since S is spray-invariant and v ∈ AS,S , the geodesic g with g(0) = q and g′(0) = v stays in S, i.e.,
g(t) ∈ S for all t in its domain. Now consider the geodesic g̃(t) = ϕ(g(t)). Then

g̃(0) = ϕ(g(0)) = ϕ(q) = p̃, g̃′(0) = ϕ∗(g
′(0)) = ϕ∗(v) = ṽ.
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Since g(t) ∈ S, it follows that g̃(t) = ϕ(g(t)) ∈ ϕ(S) for all t. Hence, the geodesic g̃ remains in ϕ(S), and
therefore ϕ(S) is spray-invariant with respect to S. 2

The orbit of a subset S ⊂ M under the action of Aut(M, S) is the set

O(S) = {ϕ(S) | ϕ ∈ Aut(M, S)}.

By Theorem 2.3, each ϕ(S) ∈ O(S) is spray-invariant, since automorphisms of S preserve the spray
structure. Hence, the entire orbit O(S) consists of spray-invariant subsets.

Example 2.6 In Example 2.2, we showed that for the Fréchet space E = C∞(R,R), equipped with the
flat spray, the set S = S+ ∪ S−, where

S+ := {f ∈ E | supp(f) ⊆ [0,∞)}, S− := {f ∈ E | supp(f) ⊆ (−∞, 0]}.

is a singular spray-invariant. For a fixed a ∈ R, a ̸= 0, define the translation map

ϕa : E → E, ϕa(f)(x) = f(x− a),

The induced tangent map (ϕa)∗ acts on tangent vectors v ∈ TfE as (ϕa)∗(v)(x) = v(x− a), and similarly
for the second tangent map (ϕa)∗∗. We need to verify (ϕa)∗∗ ◦ S = S ◦ (ϕa)∗. Indeed,

(ϕa)∗∗(S(f, v)) = (ϕa)∗∗(f, v, v, 0)

= (ϕa(f), (ϕa)∗(v), (ϕa)∗(v), (ϕa)∗(0))

= (f(x− a), v(x− a), v(x− a), 0)

= S(f(x− a), v(x− a))

= S(ϕa(f), (ϕa)∗(v))

= S((ϕa)∗(f, v)).

Thus, ϕa ∈ Aut(E, S). Since S is spray-invariant, by Theorem 2.3, the set

ϕa(S) = {g ∈ E | supp(g) ⊆ [a,∞)} ∪ {g ∈ E | supp(g) ⊆ (−∞, a]}

is a spray-invariant set.

2.2. Orbit Types and Spray Invariance

This subsection examines how the symmetries of a manifold, defined by a Lie group action, relate to
the invariance of its orbit type decomposition under a G-invariant spray.

Let G be a smooth Lie group acting smoothly on a smooth Fréchet manifold M (denoted ϕg : M → M),
for each g ∈ G, let the map Tg be the tangent lift of ϕg. A spray S on M is said to be G-invariant if,
for every g ∈ G, the action of g on M lifts to a smooth transformation Tg : TM → TM such that S is
preserved under this lifted action. More precisely, for all g ∈ G, the following diagram commutes:

T(TM) T(TM)

TM TM

T(Tg)

S

Tg

S

This condition means that for any v ∈ TM, we have T(Tg)(S(v)) = S(Tg(v)).
For a point x ∈ M, the isotropy group (or stabilizer) of x, denoted by Gx, is the subgroup of G

consisting of all elements g ∈ G that leave x unchanged under the group action, i.e.,

Gx = {g ∈ G | g · x = x}.

A slice at x ∈ M is a submanifold V ⊂ F containing x such that
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1. H-invariance: h · v ∈ V for all h ∈ H and v ∈ V , where H = Gx.

2. Local triviality: Let G ×H V be the set of equivalence classes [g, v] obtained from the quotient of
the product space G× V by the right action of H, which is defined by (g, v) · h = (gh, h−1 · v) for
h ∈ H. There exists a G-equivariant diffeomorphism

Φ: G×H V → U

onto a G-invariant open neighborhood U ⊂ M of the orbit G · x, such that Φ([g, v]) = g · v and
Φ([e, x]) = x, where e is the identity in G.

3. Transversality:

(a) TxV ∩ Tx(G · x) = {0}.
(b) TxV is a closed subspace of TxM such that TxM = Tx(G · x)⊕ TxV .

(c) The map α : G× V → M, given by α(g, v) = g · v, has a derivative at (e, x),

T(e,x)α : TeG× TxV → TxM,

which is surjective, with kernel complemented in TeG× TxV .

Theorem 2.4 Let G be a finite-dimensional smooth Lie group acting smoothly on a smooth Fréchet
manifold M. Assume that a smooth spray S on M is G-invariant, and that for every x ∈ M, there exists
a G-equivariant neighborhood U of x and a G-equivariant diffeomorphism Φ: G×H V → U where V is a
slice at x and H = Gx is the isotropy subgroup. Then the orbit type decomposition of M, given by

M =
⋃
[H]

M(H), where M(H) = {x ∈ M : Gx ∼= H},

defines a stratification of M such that each stratum M(H) is spray-invariant.

Proof: Let x ∈ M(H). By assumption, there exists a slice V ⊂ M at x, and a G-equivariant diffeomor-
phism Φ: G×HV → U onto a G-equivariant open neighborhood U ⊂ M of G·x, with Φ([e, 0]) = x. Define
ϕ = Φ−1 : U → G×H V , and consider the spray S′ := (TTϕ)◦S◦ (Tϕ)−1, which is a spray on T(G×H V ).
Since both ϕ and S are G-equivariant, the spray S′ is also G-invariant. Let V(H) := {v ∈ V : Gv = H}
denote the set of points in V with isotropy type H. Then under the diffeomorphism Φ, we have

M(H) ∩ U = Φ(G×H V(H)).

If γ(t) is a geodesic of S with γ(0) = x ∈ M(H) and γ′(0) ∈ TxM(H), then for small t, we may assume
γ(t) ∈ U , so

ϕ(γ(t)) = [g(t), v(t)] ∈ G×H V.

By G-invariance of S′, the geodesic γ(t) corresponds to a geodesic v(t) in V , starting at v(0) = 0 ∈ V(H),
with tangent vector v′(0) ∈ T0V(H). This uses the transversality of the slice, which ensures the splitting

TxM = Tx(G · x)⊕ TxV,

and that γ′(0) ∈ TxM(H) implies v′(0) ∈ T0V(H).
Now, the induced spray on V (via projection of S′) is H-invariant (by G-invariance of S and H-

invariance of V ), and since v(0) ∈ V(H) and v′(0) ∈ T0V(H), the geodesic v(t) remains in V(H) for small
t. Hence, γ(t) ∈ M(H) for small t, and the set

T := {t ∈ dom(γ) : γ(t) ∈ M(H)}

is open and contains 0. To show that T is closed, let tn ∈ T be a sequence converging to some t∞ ∈ dom(γ).
Since γ(tn) ∈ M(H) for all n, we know that the isotropy groups satisfy Gγ(tn) ∼ H. The isotropy type
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map x 7→ (Gx) which sends each point in M to the conjugacy class of its isotropy group, is upper semi-
continuous. Upper semi-continuity means that if xn → x, then (up to conjugacy) we have Gx ⊇ gHg−1

for some g ∈ G, i.e., the isotropy group of the limit can only be larger (in the sense of subgroup inclusion),
not smaller. Applying this to the sequence γ(tn) → γ(t∞), we get

Gγ(t∞) ⊇ gHg−1 for some g ∈ G.

On the other hand, since the spray S is G-invariant and γ is a geodesic starting at γ(0) ∈ M(H), the
isotropy type along γ(t) remains constant (i.e., conjugate to H) by smoothness of the action. Hence,
Gγ(t) ∼ H for all t, and in particular, Gγ(t∞) ∼ H, so γ(t∞) ∈ M(H). Thus, T is closed. Since T ⊆ dom(γ)
is both open and closed, and dom(γ) is connected (being an interval), we conclude that

γ(t) ∈ M(H) for all t ∈ dom(γ).

Finally, we prove that the orbit type decomposition M =
⋃

[H] M(H) is a stratification. If a point y
is in the closure of a stratum M(H), then its isotropy group Gy must contain a subgroup conjugate to
H. In terms of orbit types, this is expressed as [Gy] ≥ [H], where [K1] ≥ [K2] if K1 contains a subgroup
conjugate to K2. This property arises directly from the upper semi-continuity of the isotropy group map.
This means that if a sequence xn ∈ M(H) converges to a point y, then for each xn, Gxn

∼= H. Due to
upper semi-continuity, the isotropy group of the limit point Gy must contain a subgroup conjugate to the
isotropy groups of the sequence points. More formally, for any y ∈ M(H), there exists some g ∈ G such
that gHg−1 ⊆ Gy. Consequently, Gy contains a subgroup conjugate to H. This implies that the orbit
type of y, [Gy], is larger than or equal to [H] in the standard partial order of isotropy types. Therefore,
y ∈ M(K) for some [K] such that [K] ≥ [H]. Since this holds for any point in the closure of M(H), the
frontier condition is satisfied. 2

Remark 2.8 It is important to distinguish between preservation of individual orbits and preservation of
orbit type strata under a G-invariant spray. Theorem 2.4 guarantees that geodesics starting in an orbit
type stratum remain in that stratum. However, this does not imply that geodesics remain in the same
individual orbit. Thus, spray-invariance applies at the level of strata, not necessarily at the finer level of
individual orbits.

3. Spray-Invariant Sets for MCk-Fréchet Manifolds

In this section, we work within the category of MCk-Fréchet Manifolds. We briefly recall the necessary
definitions and refer the reader to [2–7] for further details.

To defineMCk-differentiability (or bounded differentiability), we first introduce the topology of Fréchet
spaces F and E using translation invariant metric mF and mE, respectively. We consider only metrics of
the following form:

mF(x, y) = sup
n∈N

1

2n
∥x− y∥F,n

1 + ∥x− y∥F,n
. (3.1)

Let L(E,F) be the set of all linear mappings L : E → F that are (globally) Lipschitz continuous as mappings
between metric spaces. Specifically, a linear mapping L ∈ L(F,E) satisfies

Lip(L) := sup
x∈E\{0E}

mF(L(x),0F)

mE(x,0E)
<∞.

We define a topology on L(E,F) using the following translation invariant metric:

L(E,F)× L(E,F) −→ [0,∞), (L,H) 7→ Lip(L−H), (3.2)

where Lip(L−H) denotes the Lipschitz constant of the linear map L−H.
Let φ : U ⊆◦ E → F be a C1-mapping. If Dφ(x) ∈ L(E,F) for all x ∈ U , and the induced map

Dφ : U → L(E,F), x 7→ Dφ(x)
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is continuous, then φ is called bounded differentiable or MC1. Mappings of class MCk, for k > 1, are
defined recursively. An MCk-Fréchet manifold is a Fréchet manifold whose coordinate transition functions
are all MCk-mappings.

Let (B1, | · |1) and (B2, | · |2) be Banach spaces. A linear operator T : B1 → B2 is called nuclear if it
can be written in the form T (x) =

∑∞
j=1 λj⟨x, xj⟩yj , where ⟨·, ·⟩ is the duality pairing between B1 and

its dual (B′
1, | · |′1), xj ∈ B′

1 with | xj |′1≤ 1, yj ∈ B2 with | y1 |2≤ 1, and λj are complex numbers such
that

∑
j | λj |<∞.

For a seminorm ∥·∥F,i on F, we denote by Fi the Banach space given by completing F using the
seminorm ∥·∥F,i. There is a natural map from F to Fi whose kernel is ker ∥·∥F,i.

A Fréchet space F is called nuclear if for any seminorm ∥·∥F,i, we can find a larger seminorm ∥·∥F,j so
that the natural induced map from Fj to Fi is nuclear. A nuclear Fréchet manifold is a manifold modeled
on a nuclear Fréchet space. A key feature of Fréchet nuclear spaces is that they have the Heine-Borel
property. This provides a significant advantage over Banach spaces, as no infinite-dimensional Banach
space is nuclear.

In Definition 2.6, we introduced the concept of a spray-invariant set. This notion has an analogous
definition for vector fields on a manifold. The following definition, applicable to both MCk-Fréchet
manifolds and Ck-Fréchet manifolds, shares the same underlying structure as Definition 2.6.

In this section, we assume that M is an MCk-Fréchet manifold with k ≥ 4, modeled on F.

Definition 3.1 (Definition 3.1, [6]) Let A ⊂ M and V be an MC1-vector field on M. The set A is
called flow-invariant with respect to V if, for any integral curve I(t) of V with I(0) ∈ A, we have I(t) ∈ A
for all t ≥ 0 within the domain of I.

Theorem 3.1 (Theorem 3.2, Nagumo-Brezis Theorem, [6]) Let M be a nuclear MCk-Fréchet
manifold, and let V : M → TM be an MC1-vector field. Let A ⊂ M be closed. Then, A is flow-invariant
with respect to V if and only if for each x ∈ M, there exists a chart (U, ϕ) around x, such that

lim
t→0+

t−1
mF (ϕ(x) + tDϕ(x)(V(x)), ϕ(U ∩A)) = 0. (3.3)

Lemma (2.1), which establishes the chart-independence of first-order adjacent tangency, ensures that
the condition in Theorem 3.1 is independent of the choice of chart. This result, not proved in [6], provides
additional strength to the theorem.

Theorem 3.2 Let M be a nuclear MCk-Fréchet manifold, and let S ⊂ M be a subset such that AS,S is
non-empty and closed. Then, the following are equivalent :

1. S is spray-invariant with respect to S.

2. S is adjacent tangent to AS,S when regarded as a vector field on TM.

Proof: (1) ⇒ (2): By Theorem 2.1, spray-invariance of S implies that all geodesics whose initial tangent
vectors are in AS,S remain within it. The Nagumo-Brezis condition (Theorem 3.1) then guarantees the
adjacent tangency

lim
t→0+

t−1
mF (ϕ(v) + tDϕ(v)(S(v)), ϕ(U ∩AS,S)) = 0 ∀v ∈ AS,S .

(2) ⇒ (1): If S is adjacent tangent to AS,S , applying Theorem 3.1 to TM with AS,S as the closed
subset implies AS,S is spray-invariant. 2

In the rest of this subsection, we assume that M is second countable, a property essential for applying
transversality. The notion of transversality extends to MCk-Fréchet manifolds and has been explored
in [2]. Here, we summarize the results relevant to our discussion.

Let φ : M → N be an MCr-mapping, where r ≥ 1, and S ⊆ N a submanifold. We say that φ is
transversal to S , denoted by φ ⋔ S, if either φ−1(S) = ∅, or, if for each x ∈ φ−1(S), the following
conditions hold:
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1. (Txφ)(TxM) + Tφ(x)S = Tφ(x)N, and

2. (Txφ)
−1(Tφ(x)S) splits in TxM.

The proof of the following lemma can be readily adapted from the case of Banach manifolds (see [11])
to our setting, so we omit it here.

Lemma 3.1 Let φ : M → N be an MCk mapping between MCk-Fréchet manifolds M and N, and let
W ⊂ N be an MCk-submanifold of N. Then

φ ⋔W ⇐⇒ Tφ ⋔ TW.

Theorem 3.3 (Theorem 2.2, Transversality Theorem, [2]) Let φ : M → N be an MCr-mapping
with r ≥ 1, and let S ⊂ N be an MCr-submanifold such that φ ⋔ S. Then, φ−1(S) is either empty or an
MCr-submanifold of M with

(Txφ)
−1(TyS) = Tx(φ

−1(S)), x ∈ φ−1(S), y = φ(x).

If S has finite co-dimension in N, then codim(φ−1(S)) = codimS. Moreover, if dimS = m < ∞ and φ
is an MCr-Lipschitz-Fredholm mapping of index l, then dimφ−1(S) = l +m.

Let φ : M → N be an MC3-mapping between MC4-Fréchet manifolds M and N, and let W ⊂ N be an
MC3-submanifold of N such that φ ⋔ W . Then, by the transversality theorem, S = φ−1(W ) is an
MC3-submanifold of M, and TS = (Tφ)−1(TW ). Since Lemma 3.1 implies Tφ ⋔ TW , applying the
transversality theorem again yields

T(TS) = (T(Tφ))−1(T(TW )).

Consequently, for a given spray S on M, Equation (2.13) implies

AS,S = (T(Tφ) ◦ S)−1(T(TW )).

Suppose F1 is a closed subset of the Fréchet space F that splits it. Let F2 be one of its complements, i.e.,
F = F1 ⊕ F2. Let S be an MCk-submanifold modeled on F1.

Theorem 3.4 Let M be a nuclear MCk-Fréchet manifold, and let S be the submanifold of M introduced
above. If S is a closed MC3-submanifold of M such that S

∣∣
TS

⋔ T(TS), then S is spray-invariant with
respect to S if and only if

∀v ∈ S(T(TS)), DS(v)(S(v)) ∈ TS(v)(T(TS)). (3.4)

Proof: Define T (TS) as the set of elements w ∈ T(TM)) such that τ2(w) ∈ TS, and there exists a chart
ϕ : U → F at τ(τ2(w)) satisfying the following conditions:

• ϕ(U ∩ S) = ϕ(U) ∩ F1,

• D(Dϕ)(τ2(w))(w) ∈ F1 × F.

This definition is independent of the choice of chart. The definition directly implies

D(Dϕ)
(
T(TU)

)
∩ T (TS))

)
= (ϕ(U) ∩ F1)× F1 × F1 × F.

This implies that T (TS) is a submanifold of T(TM) modeled on F1 × F1 × F1 × F. Moreover, since S on
M maps TS into T (TS), and

D(Dϕ) ◦ (S
∣∣
TS

) ◦ (Dφ)−1
(
ϕ(U) ∩ F1

)
× F1 ⊂ F1 × F1 × F1 × F.

we find that the image of S
∣∣
TS

lies in T (TS). Now, the transversality assumption implies

D
(
S
∣∣
TS

(v)
)
(Tv(TS)) + TS(v)(T(TS)) = TS(v)(T (TS)), for v ∈ S−1(T(TS)).
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Therefore, by Equation (2.13) and Theorem 3.2, AS,S = S−1(T(TS)) is an MC1-Fréchet submanifold
of TS, and its tangent space at v ∈ AS,S is given by

Tv(AS,S) = DS(v)−1
(
TS(v)(T(TS))

)
.

Consequently, by Theorem 3.2, S is spray-invariant with respect to S if and only if

∀v ∈ AS,S , S(v) ∈ Tv(AS,S)

which is equivalent to the condition stated in (3.4). 2

Remark 3.1 In Theorem 3.4, explicitly verifying the transversality condition can be very difficult. The
infinite-dimensional nature of T(TS), together with the complexity of identifying suitable complements in
the modeling space, poses significant analytical challenges even in relatively simple settings.

4. Aspects of Banach and Hilbert Manifolds

In contrast to Fréchet manifolds, for Banach manifolds there is a well-developed framework for the
existence, uniqueness, and regularity of ordinary differential equations. This allows for the application of
tools such as geodesic flows to characterize invariance.

We use the same notations as before. Regarding differentiability, Definition 1.1 applies to Banach
spaces as well; however, Banach spaces admit an equivalent formulation (see [8]).

In Section 2, Definitions 2.5 and 2.6, along with Theorems 2.1, 2.2, 2.4, and 2.3, and their consequences,
remain valid for Banach manifolds as well. This follows from the fact that all prerequisite results hold in
the Banach setting. In particular, relevant properties of sprays are discussed in [8], while adjacent cones
are treated in [13].

In Section 3, an analogous of Theorem 3.4 holds for arbitrary Banach manifolds, since the transver-
sality theorem is available in this context. However, as previously observed, verifying the transversality
condition remains challenging even for Banach and Hilbert manifolds.

Theorem 3.2 relies on the Nagumo-Brezis Theorem for nuclear manifolds. However, no infinite-
dimensional Banach manifold is nuclear. Nevertheless, a variant of the Nagumo-Brezis Theorem is avail-
able for arbitrary Banach manifolds of class Ck, with k ≥ 2; see [15]. Thus, Theorem 3.2 holds for
arbitrary Banach manifolds of class at least C4.

Theorem 4.1 Let B be a Ck-Banach manifold, k ≥ 4, and S ⊂ B a subset such that AS,S is non-empty
and closed. Then, S is spray-invariant if and only if S is adjacent tangent to AS,S when regarded as a
vector field on TB.

Example 4.1 Consider the Banach manifold M = Ck(S1,R) equipped with the flat spray S(f, v) =
(f, v, v, 0), whose geodesics are affine paths γ(t) = f + tv.

Let N be a fixed non-negative integer. Define the set S as follows

S :=

f ∈ M | f(θ) = a0 +

N∑
j=1

(aj cos(jθ) + bj sin(jθ)) for some aj , bj ∈ R

 .

The set S is a finite-dimensional linear subspace of M and therefore a smooth submanifold. Thus, the
adjacent cone TfS at a point f ∈ S is the tangent space, i.e., TfS = S.

The admissibility condition for a velocity v at a point f ∈ S is simply v ∈ TfS = S. Thus, the
admissible set is

AS,S = {(f, v) ∈ TM | f ∈ S, v ∈ S} = S × S.

As a finite-dimensional subspace, S is a closed subset of M. Consequently, the product set S × S is a
closed subset of the product space M×M. Therefore, AS,S is closed.

The spray S assigns the vector (v, 0) to the point (f, v) ∈ TM. We show that this vector is in the
tangent cone T(f,v)AS,S. Since AS,S = S × S is a linear subspace, its tangent cone at any point is the
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space itself. We check if (v, 0) ∈ S × S. This requires v ∈ S and 0 ∈ S. Both are true since (f, v) ∈ AS,S

and S is a linear subspace containing the zero function. Thus, the spray is adjacent tangent to AS,S.
Therefore by Theorem 4.1 the subspace S is spray-invariant.

We assume that B is a Banach manifold of class Ck with k ≥ 4, and that S is a spray on B of class C2.
Recall that the geodesic flow is the mapping Φt : TB → TB that satisfies Φt(v) = g′v(t), where gv : I → B
is the unique geodesic with initial tangent v ∈ TB.

Theorem 4.2 A closed subset S ⊂ B is spray-invariant if and only if its admissible set AS,S is invariant
under the geodesic flow Φt.

Proof: Assume S is spray-invariant. Let v ∈ AS,S . By definition of the admissible set, the geodesic
γv(t) = τ(Φt(v)) satisfies γv(t) ∈ S for all t in its maximal interval I. By Theorem 2.1, the tangent field
γ′v(t) = Φt(v) remains in AS,S . Thus, Φt(v) ∈ AS,S for all t ∈ I, proving AS,S is Φt-invariant.

Conversely, assume AS,S is Φt-invariant. Let γ : I → B be a geodesic with γ(0) ∈ S and γ′(0) ∈ AS,S .
By spray invariance we have

∀t ∈ I, γ′(t) = Φt(γ
′(0)) ∈ AS,S .

Then Theorem 2.1 implies γ(t) = τ(γ′(t)) ∈ S for all t ∈ I. Hence, S is spray-invariant. 2

The spray S induces a unique torsion-free covariant derivative ∇B (VIII, §2, Theorem 2.1, [8]). Let
g : I → B be a C2-curve. We say that a lift γ : I → TB of g is g-parallel if ∇B

g′γ = 0. A curve g is a

geodesic for the spray if and only if ∇B
g′g

′ = 0, that is, if and only if g′ is g-parallel.
Manifolds modeled on self-dual Banach spaces, including Hilbert spaces, admit canonical sprays in-

duced by pseudo-Riemannian metrics (VIII, §7, Theorem 7.1, [8]). This theorem also holds for Hilbert
Riemannian manifolds, as the proof does not rely on the indefiniteness of the pseudo-Riemannian metric.
Instead, it depends only on the metric being smooth and non-degenerate, properties that Riemannian
metrics also possess.

Consider canonical sprays on Hilbert Riemannian manifolds. Suppose that H is a Hilbert Riemannian
manifold and that S ⊂ H is a C1-submanifold with the induced metric (or Levi-Civita) covariant derivative
∇S defined by canonical spray S. There exists a canonical symmetric bilinear bundle map, known as
the second fundamental form (see [8, IX, §1, Propositions 1.2 and 1.3]). This map is given by the Gauss
formula as follows

∇H
XYx(x) = ∇S

XY (x) + II(X(x), Y (x)),

for any x ∈ S vector fields X,Y of S near s, and the extension Yx of Y near x.
Suppose that S ⊂ H is spray-invariant, and Let γ : I → H be a geodesic with γ(0) ∈ S and γ′(0) ∈ AS,S .

Then
0 = ∇γ′(t)γ

′(t) in Tγ(t)S ∀t ∈ I.

By the Gauss formula
∇H
γ′γ′ = ∇S

γ′γ′ + II(γ′, γ′),

since the total derivative is tangent to S, its normal component must vanish, i.e., II(γ′(t), γ′(t)) = 0 for
all t ∈ I. A polarization identity is given by

II(X,Y ) =
1

2
(II(X + Y,X + Y )− II(X,X)− II(Y, Y )) .

If this identity could be applied for arbitrary X,Y ∈ TS, then the vanishing of II(X,X) would imply the
vanishing of II(X,Y ). However, spray-invariance only gives us the condition II(Z,Z) = 0 for vectors Z
in AS,S . It does not guarantee that X + Y is also such a tangent vector, and hence we cannot conclude
that II(X + Y,X + Y ) = 0 unless AS,S = TS.

Example 4.2 Consider the Hilbert manifold M = H1(S1, S2), the space of maps from the circle S1

into the 2-sphere S2 whose first derivatives are square-integrable. By the Sobolev embedding theorem

(1− 1

2
> 0), every map in this space is continuous.
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Let SS2 be the canonical geodesic spray on the finite-dimensional manifold S2. We define a spray S

on the loop space M by applying the target spray pointwise. For any (f, v) ∈ TM, the spray S(f, v) is
the second-order vector field along f given by

S(f, v)(θ) := SS2(f(θ), v(θ)).

The geodesics of S are defined as the paths γ(t) in M that satisfy the pointwise geodesic equation for S2:

∇S2

γ′(θ)γ
′(θ) = 0 for each θ ∈ S1.

Since unique solutions for this ODE exist on the compact manifold S2 for any initial condition, this spray
is well-defined. Its geodesics are, by construction, precisely the pointwise geodesics of the target manifold
S2.

Let C ⊂ S2 be a great circle, which is a totally geodesic submanifold. Define the subset of constant
loops on this circle:

S :=
{
f ∈ M

∣∣∃p ∈ C such that f(θ) = p for all θ ∈ S1
}
.

This set S is a closed C∞-submanifold of M. The tangent space TfS at a point f(θ) = p ∈ S consists
of constant vector fields v(θ) = v0 where v0 ∈ TpC.

We first determine the admissible set AS,S. A vector v = (f, u) ∈ TS is in AS,S if the acceleration of
its geodesic, γ′′v (0), is tangent to S. For the spray S, this acceleration is computed pointwise:

γ′′v (0)(θ) = ∇S2

u(θ)u(θ).

Since u(θ) = u0 is a constant vector tangent to the great circle C, and C is itself a geodesic on S2, the

self-covariant derivative ∇S2

u0
u0 is zero. The zero vector field is tangent to S. This condition holds for all

vectors v ∈ TS. Therefore, the admissible set is the entire tangent bundle of S:

AS,S = TS.

Therefore, by Theorem 2.2 for Hilbert manifolds, S is a totally geodesic submanifold.

Example 4.3 Let H = ℓ2, the separable Hilbert space of square-summable sequences with standard inner
product

⟨x, y⟩ =
∞∑
i=1

xiyi,

and let {en}n∈N denote its standard orthonormal basis. Define the subset

S := {x ∈ H | only finitely many coordinates of x are nonzero} .

This is the space of finite sequences, and can be expressed as a countable union :

S =

∞⋃
k=1

Hk, where Hk := span(e1, . . . , ek).

Each Hk is a finite-dimensional linear subspace of H. Consider the flat spray of ℓ2. Let x ∈ S and
v ∈ TxS. Then there exists k such that both x, v ∈ Hk. The geodesic starting at x with tangent v is given
by γ(t) = x+ tv. Since Hk is a linear subspace, γ(t) ∈ Hk ⊂ S for all t ∈ R. Thus, S is spray-invariant.
The set S is not a smooth submanifold of H, since it is not locally homeomorphic to a Hilbert space. It is
a stratified space, built from the smooth finite-dimensional submanifolds Hk. We consider a stratification
of S into strata Si:

Si = Hi \Hi−1.

Let Si and Sj be two strata. We consider the following cases :
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• Case 1: i < j
Si = Hi. Since Hi ⊂ Hj, but Hi contains vectors with at most i nonzero components, while
Sj contains vectors with exactly j > i nonzero components, it follows that Hi ∩ Sj = ∅. Thus,
Si ∩ Sj = ∅.

• Case 2: i = j
Trivially, Si = Hi, and Si ∩ Si = Si ̸= ∅. Furthermore, Si ⊂ Si by definition.

• Case 3: i > j
We have Hj ⊂ Hi, and Sj = Hj \Hj−1 ⊂ Hi. Hence, Si ∩ Sj = Sj ̸= ∅, and Sj ⊂ Si.

In all cases, the frontier condition is satisfied for the decomposition S =
⊔∞
k=1 Sk. Thus, this decomposi-

tion defines a stratification of S.
Each Hk is totally geodesic in H due to the flatness of the ambient geometry. However, the union S

is not totally geodesic as a whole, since it lacks a global smooth structure: the second fundamental form
is not defined across strata.
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