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Chaotic Oscillations in a New 2-D Discrete Dynamical System with Hidden Parameter

El-hafsi Boukhalfa® and Tarek Nouioua

ABSTRACT: The main purpose of this work is to present a new 2-D chaotic discrete dynamical system.
By studying its basic properties, such as determining its fixed points and their stability types based on
bifurcation parameter values, and using Lyapunov exponents, we identify chaotic oscillations for certain values
of the parameter a, regardless of the value of the second parameter b. This implies that b has no effect on the
system’s dynamics, making it a distinctive feature, henceforth referred to as the hidden parameter. The system,
denoted by B, , exhibits several useful characteristics, including its quadratic form, the differentiability of its
corresponding function, and the absence of the parameter b in its eigenvalues, allowing for arbitrary selection
of b and simplified calculations. Simulation results validate the chaotic behavior.

Key Words: Chaotic dynamical system, discrete system, fixed points, Lyapunov exponents, bifur-
cation analysis, Hidden parameter.
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1. Introduction

Chaotic dynamical systems have proven effective in numerous fields, including information and com-
munication security [3,8], cryptography [4,7,12], and the generation of pseudo-random number sequences
(PRNG) [5]. These systems are used to obscure images and texts to prevent tracking and espionage,
and to create pseudo-random sequences for codes and product series, enhancing brand protection and
reducing counterfeiting.

Several studies focus on the behavior of dynamical systems [1,2,6,11,15], particularly in the search
for chaotic oscillations through fundamental mathematical steps [1,13,14,18]. After establishing chaotic
behavior, these systems are applied as models in the aforementioned fields by scientists and researchers.
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This paper presents a new system defined by mathematical formulas, followed by an in-depth study
to demonstrate chaotic oscillations via period-doubling bifurcation. We start by identifying fixed points
and their stability types through eigenvalue analysis, followed by Lyapunov exponents to characterize the
behavior of trajectories for certain values of a, independent of b. This property distinguishes our model.
Simulation work validates our mathematical results.

2. Formulation and Basic Properties

Consider the 2-D discrete dynamical system B, ; defined by:

By {x’““ = azk(1 - y), a,b € R. (2.1)
’ Yr+1 = by,
Proposition 2.1 The system (2.1) has the following properties:

1. It is defined for all (z,y) € R2.

2. It is symmetric for all (x,y) € R2.

8. It has a quadratic form.

4. It is defined by a function of class C>°(R?).

Proof: The system’s components are polynomial expressions, hence defined for all (z,y) € R? and
quadratic in nature.
Let f : R2 — R? be the associated function defined by:

fan = ("0 ). wrer

Clearly, f € C>(R?), as it is a polynomial function.
To prove symmetry, compute:

s = (RN = () = e

Thus, f is an odd function, confirming the system’s symmetry. O

3. Fixed Points and Period Doubling
3.1. Fixed Points
Let the function f : R? — R? be defined by:

)]

The fixed points of the system (2.1) satisfy:

z = az(l-y?),
y = bx.

For x # 0, from the first equation:

1 a-1 —1
l=al-3?) = y?=1--=2 Y
a
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. _ _ y . . _ (l—l .
From the second equation, y = br = x = {. Substituting y = £,/ %=

1 /ja—1
=+ .
v b a

Thus, the fixed points are:

1 j/a—1 Ja—1 1 -1 -1
P1: 7 a4 3 a4 5 P2: _\/a a_\/a )
b a a b a a

provided a # 0 and b # 0.
3.2. Stability

The Jacobian matrix of the system (2.1) is:

Df(,y) = [“(1 oY) _25“”’] -

At the fixed point Py (%\ / ale, . %), the Jacobian is:
a(l—22h) —2a-fyfet oot _ 1 -2
b 0 b 0

3.2.1. Eigenvalues for Pi. For the matrix

Df(Pl):

the characteristic polynomial is:
det(A— X)) = XA —1)+2(a—1) =X\ = A+2(a—1).

The discriminant is: 9
A=1-8a—-1)=9—-8a>0, fora<§.

The eigenvalues are:

A\ 1—+v9—8a \ 1++/9—8a
1=, 2= —F.
2

2
For |A1] < 1:

1-9-3%
—1<fa<1 — 3<—\9—Ra<l.

3

--3<—-vV9-8a = 3>v9-8c = 9>9-8s = a>0.-—-/9-8a<1 = 9—8a>—1,

which is always true.
Thus, [A;| <1 for a € (0, 2).
For [Aq| < 1:

1++v/9-8
—1<%<1 — —3<v9-8a<l.

- v/9 — 8a > —3, which is always true. - v/9-8a <1 = 9-8a<1 = a>1.
Thus, |A2| < 1 for a € (1, %).

Remark 3.1 The parameter b does not appear in the eigenvalues, indicating that its choice is arbitrary

and does not affect the stability of the fixed points.
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Case 1 For a € (1, %), [A1] < 1 and |A2] < 1, so P; is asymptotically stable.
Case 2 For a € (0,1), |\1| <1 and |A2| > 1, so P; is a saddle.
Case 3 For a <0, |\1] > 1 and |A2| > 1, so P is unstable.

Lemma 3.1 For all (z,y) € R%:

Proof: Compute:

Df(—a,—y) = F‘l‘é‘yy) ‘Q“‘}fx‘yq _ P(lgyz) 295] _ D (o).

O

At the fixed point P (—%,/‘IT_l, —1/ “T_l), the Jacobian is identical to that at P; by Lemma 3.1, so
the stability analysis for P» is the same as for P;.

3.2.2. FEigenvalues for P,. The characteristic polynomial and eigenvalues for P, are identical to those for
Py, confirming the same stability conditions.

3.3. Period Doubling
To find 2-cycles, compute f2(z,y) = f(f(z,y)) = (z,y):

1—y?)(1 - (bx)2)) T
2(2,y) = <“ (ax(l —y = (7). 3.5
[ (z,y) b(aw(l _yz)) y (3.5)
This gives:
20(1 —42)(1 — b?2?) =
a®x( y2)( x?) =z, (3.6)
bax(l—y?) =y.
From the second equation:
Y 2
= —" b 1. .
v i A 0D (3.7)
Substitute into the first equation:
Y Y ? Y
2 —L— - (1-0 | ——L— = —. 3.8
* (aatym) y)< Bi—y)) | = - 38
Simplify:
2
Y 1
1- = . 3.9
(- )~ 39
Multiply through by ab?(1 — y?):
272 2 Y’
b°(1 — l—-—————=) =1 3.10
=) (1- s (3.10)
This simplifies to:
a’y* —2a*y* +a? —1=0. (3.11)
Let t = y2:
a’t* —2d*t +a®> —1=0. (3.12)
Solutions are:
a—1 a+1

t= , t= P for a # 0. (3.13)
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Thus:

-1 1
Y12 =k aa , Yza == al— . (3.14)

Corresponding z-values are:

For y; = \/“sz ry = %\/g, giving P2 = P.

For y, = —\/aaj: To = —%\E, giving P = P;.

For y3 = \/GT?: T3 = %\/g, giving P} = (%@, %1)

For y4 = *\/QT?: Ty = f%\/“TT, giving P2 = (f%\/“a?, 7\/@)

Thus, the 2-cycle points are P and P7, with P} and P3 being fixed points.

4. Lyapunov Exponents

Lyapunov exponents quantify sensitivity to initial conditions (SIC) and distinguish chaotic from stable
behavior:

1. If a Lyapunov exponent is positive, the system exhibits SIC and is chaotic.
2. If all Lyapunov exponents are non-positive, the system is stable or periodic.
The Jacobian matrix is:
J(x,y) = (a(lbyQ) 26”‘”) : (4.1)
At Py, the Jacobian is:

ﬂﬂﬁ«éﬁﬂ). (4.2)

The eigenvalues are:

A1 = A 4.3
1 ) ) 2 9 ( )
The Lyapunov exponents are:
1++v9-38 1-v9-8
Byl | Y228 a4 (4.4)
2 2
Theorem 4.1 The system (2.1) is chaotic for a < 1.
Proof:
1++v9-38 1++v/9-38
Elzln‘+2a >0 < %>1 = V9-8a>1<+= a<l.
O

Remark 4.1 E5 <0 for a < %, as |1—8a Vg_sa‘ <1.

The bifurcation diagram for a with b = 0.6 is shown in Figure 2.
The bifurcation diagram for b with a = —1 is shown in Figure 3.
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Figure 2: Bifurcation diagram of system (2.1) for a with b = 0.6.

Bifurcation Diagram fora= —1
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Figure 3: Bifurcation diagram of system (2.1) for b with a = —1.



CHAOTIC OSCILLATIONS IN A NEwW 2-D DISCRETE DYNAMICAL SYSTEM WITH HIDDEN PARAMETER 7

5. Dynamics of the System

Lyapunov exponents quantify SIC and separate chaotic from stable behaviors. We numerically inves-
tigate the dynamics of system (2.1) with respect to parameters a and b.
The system is:

B o =an( ),
ab -
Y1 = by
Simulations use initial conditions zy = 0.25, yo = bxyp.
5.1. Periodic Trajectories: b =0.6,2, a € (1, %)

For £k = 0,1,...,50: - For b = 0.6, yo = 0.15, test a
a=1,1.06,1.12.

= 1,1.06,1.12. - For b = 2, yo = 0.5, test

a=1.0,b=06 a=1.0, b=2.0
0.250 x 0.5 k
0.225 1 — vk — yk
0.4
0.200
% 0.175 ERER
£ 0150 £
0.2 4
0.125 A
0.100 4 0.1 4
0.075 L— : : . : : | | | | I |
0 10 20 30 40 50 0 10 20 30 40 50
k k
a=1.06, b=0.6 a=1.06, b=2.0
0.40 ]
05 ok
035 vk
0.4
0304
v v
E] E
g 0.25 4 g
020 4 ﬁ— 0.2 1 L
0.15 4
: . . . : r 014+ T T - - -
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k k
a=1.12, b=0.6 a=1.12, b=2.0
0.50 xk
05 045 — yk
0.40
0.4
El 035
2 0.3 £ 030
0.25
0.2+ 0201\
1 0.15 : : +
0 10 20 30 40 50 o 10 20 30 40 50

Figure 4: Periodic trajectories for 1 < a < %, for any b.

The coordinates (xg, yx) exhibit periodicity, as shown in Figure 4.

5.2. Saddle Point

For k = 0,1,...,50, with b = 0.6, yo = 0.15, test a =

a=0.4,0.6,0.8.

0.4,0.6,0.8. For b =

The trajectories tend toward a saddle point, as shown in Figure 5.

5.3. Chaotic Oscillations

2, yo = 0.5, test

For k = 0,1,...,50, with a < 0 (where E; > 0): - For b = 0.6, yo = 0.15, test a = —0.4,—0.6, —1.
~For b= 0.8, yo = 0.2, test a = —0.4, 0.6, —1. - For b= 1, yo = 0.25, test a = —0.4, —0.6, —1. - For
b=2,yo=0.5, test a = —0.4,—-0.6, —1.



Value

Value

value

Value

Value

Value

E. BOUKHALFA AND T. NOUIOUA

a=0.4, b=0.6 a=0.4, b=2.0
0.25 4 xk 0.5 1 xk
— yk — yk
0.20 4 b 0.4 4 kA
0.15 4 M 0.3+
=
0.10 4 8 0.2 4
0.05 4 0.1+
0.00 4 0.0
0 10 20 30 40 50 0 10 20 30 40 50
k k
a=0.6, b=0.6 a=0.6, b=2.0
0.254 xk 0.5 1 xk
— yk — yk
0.20 4 L 0.4 4 L
0.15 1 @ 0.3+
=
0.10 £ 0.2 4
0.05 4 014
0.00 + 0.0 1
] 10 20 30 40 50 ] 10 20 30 40 50
k k
a=0.8, b=0.6 a=0.8, b=2.0
0.25 1 xk 0.5 1 xk
— yk — yk
0.20 1 Y- 0.4+ Y-
0.15 - " 0.3+
2
0.10 4 2 0.2
0.05 1 0.1+
0.00 4 0.04
0 10 20 30 40 50 0 10 20 30 40 50
k k
Figure 5: Saddle point for 0 < a < 1, for any b.
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Figure 6: Chaotic oscillations for a = —1, b = 0.6.
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5.4. Bounded and Unbounded Orbits

For a € (1,2), where [A\;| <1 and [z < 1:
Tp1 = axg(l — yi) = azxp(l — bei).

Yk+1 = bxg, = bk+2x0.

I |0 < 1, img oo Yet1 = 0. - If || > 1, limg o0 Y1 = 00.
For x:
_ 2.3
Tr1 = axp — ab xy.

This forms a polynomial Pyk (zq, 5™ T2). If |b] < 1, 2 — 0; if [b] > 1, 2, — oo.

6. Basins of Attraction

The basins of attraction for a = —1, b = 0.6 are shown in Figure 7. Numerical simulations used a grid
of 10* initial conditions with Az = Ay = 0.01. The fractal-like boundaries indicate chaotic behavior.

O Fixed Points

Yie

Figure 7: Basin of attraction for system (2.1) with ¢ = —1, b = 0.6. Blue regions converge to stable
orbits, red zones diverge, and green areas show transient chaos.

7. Conclusion

Discrete chaotic systems have applications in weather prediction [9], population dynamics [12], neural
networks [10,16,17], and security [3,8]. This paper presents a new 2-D chaotic discrete dynamical system
with a hidden parameter b, which does not affect the dynamics, distinguishing it from previous models.
The system has a quadratic form and is analyzed through bifurcation diagrams and Lyapunov stability
theory. Numerical simulations in Python validate the results, suggesting applications in PRNG for secure
encryption and product protection.
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