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Investigation of Torsional Waves Propagation in a Sandwiched and Initially Stressed Dry
Sandy Gibson Poroelastic Dissipative Isotropic Solid

Ch. Balu'*, M. Ramesh?, B. Radhika®, and P. Malla Reddy*

ABSTRACT: In this paper, torsional waves in sandwiched solids are investigated in the framework of Biot’s
incremental theory. The solid consists of dry sandy Gibson poroelastic dissipative isotropic cylindrical solid
sandwiched between two heterogeneous isotropic poroelastic cylindrical solids, all are initially stressed. The
solutions for the problems of torsional waves in upper heterogeneous poroelastic cylindrical solid, dry sandy
Gibson poroelastic cylindrical middle solid, and lower heterogeneous poroelastic cylindrical solids are presented.
The solution of the problem reduced to that of Whittaker’s differential equation. Frequency equation is
obtained from the boundary conditions of displacement components and stresses which are assumed to be
continuous at the interfaces between upper solid and middle, and middle solid and lower solid. The solid
under consideration is dissipative, the frequency equation is implicit and complex valued. Employing the
values in the frequency equation, the frequency and attenuation coefficient against heterogeneous parameter
at fixed sandy parameter, gravity parameter and initial stress are computed. The values are computed using
the bisection method implemented in MATLAB.
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1. Introduction

Seismic wave research has been used to pinpoint the epicenter of earthquakes and provides valuable
insights into the layered structure of the Earth. Large-scale waves are produced by earthquakes, and one
of the surface waves that may be seen after multiple global trips is a torsional wave. The systematic study
of these waves has significant consequences for both human safety and scientific interest in the composition
and history of the Earth. In addition, torsional waves produced artificially also yield information about
the arrangement of rock layers for oil exploration and, on a smaller scale, about the stiffness of superficial
layers for Engineering applications. In general, the Earth contains heterogeneous layers and has significant
effect on propagation of elastic waves. In particular, the Earth crust is made of diversity of igneous,
metamorphic and sedimentary rocks. These rocks are capable to generate magnetic field due to presence
of iron, nickel, and cobalt, etc in them, and are magneto poroelastic in nature. In the frame work of Biot’s
theory [1], the effect of boundaries on torsional vibrations in a poroelastic composite cylinder was reported
in the papers [2]-[3]. Axially symmetric vibrations of composite poroelastic cylinder were investigated
by Reddy and Tajuddin [4]. Poromechanic analysis of a fully saturated transversely isotropic hollow
cylinder was made by Kanj et. al. [5]. Radial vibrations in thick-walled transversely isotropic poroelastic
cylindrical bone in presence of dissipative were studied by Reddy and Sandhya [6]. Torsional vibrations
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in thick-walled cylindrical bone in the framework of transversely isotropic Poroelasticity were investigated
by Sandhya and Reddy [7]. Torsional vibrations in composite transversely isotropic poroelastic cylinders
were studied by Sandhya et. al. [8]. In the paper [8], poroelastic composite cylinder consists of two
concentric cylindrical layers of different materials. It is established that Berea sandstone and Shale rock
exhibit transversely isotropic behavior at low effective stress [9]-[10]. Kundu et. al. [11] investigated
propagation of a torsional surface wave in a non-homogeneous anisotropic layer over a heterogeneous
half-space, under assumption that homogeneity varies exponentially with depth. Shear waves in magneto-
elastic transversely isotropic layer bonded between two heterogeneous elastic media was studied by Kundu
et. al. [12]. Torsional surface wave propagation in anisotropic layer sandwiched between heterogeneous
half-space was studied by Vaishnav et. al. [13]. In the paper [13], the dispersion relation of torsional
surface waves was obtained for heterogeneous, initially stressed solid. Studies of torsional vibrations in
isotropic poroelastic cylinder were reported in the papers [14][15][16]. However, torsional waves in shell
sandwiched between two heterogeneous transversely poroelastic cylindrical shell is not yet considered.
Therefore, in the present paper, the same is investigated. The rest of the paper is organized as follows:
In section 2, geometry, formulation and solution of the problem are presented. Boundary conditions and
frequency equation are presented in section 3. In section 4, numerical results are discussed. Finally,
conclusion is given in section 5.

2. Geometry, Formulation and Solution of the Problem

Consider the isotropic poroelastic cylindrical solid sandwiched between two inhomogeneous poroelas-
tic solid, all under gravity field and initial stress. The equations of motion in this case are as follows:

8;;7' %6250 3;; Orr ; 966 _ paaag +paaa;z — g—;(ﬂnui + p12U;) + b%(ui —U)
8;;9 %8;099 8;22 2(:«0 paaa;z _ g—;(ﬂnvi + p12Vi) + b%(vi Vi)
8:97;2 %8522 + 3;? + 0;2 _p’% = af;(pnwi + p1aWi) + b%(wi —-Wy)  (2.1)
% B %(plzui +p22Ui) — b%(ui - Ui)
% = %Z(Plﬂ% + p2aW;) — b%(wi — W)

where (u;, v;,w;) and (U;, Vi, W;)(i = 1,2, 3) are the displacement components of solid and fluid, respec-
tively, oy, 000,0.2,0r.,0r9 and oy, are the stress components, p;; are mass coefficients, b is disspative
co-efficient, t is time, s is fluid pressure, p is initial stress. For torsional waves in cylindrical solids, it is
convenient to consider the cylindrical polar coordinate system (r, 6, z). The strain-displacement relations
in the cylindrical system are

_Ow o _Oui o _L(0w Ov v
= T 9 T 9\ e T ar T )

1 8ui 8w1 _1 81]1' 18wi
6”22(az+ar)’629_2(0z+rae)' (22)

The rotational components are given by

wo=35\a: o )* " 2\ar " a0 ) :
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The problem of torsional waves in the upper heterogeneous poroelastic cylindrical solid, the dry sandy
gibson poroelastic cylindrical middle solid, and the lower heterogeneous poroelastic cylindrical solid are
presented in the following three subsections.

2.1. Upper heterogeneous poroelastic cylindrical solid

Let (u1,v1,w;) and (Uy, Vi, W1) be the displacement vectors of the solid and fluid parts, respectively,
in the homogeneous cylindrical solid initially stressed poroelastic M7 (say). For torsional vibrations,u; =
wy = 0,v1 = v1(r, 2,t) and Uy = Wy = 0,Vy = Vi(r, z,t). In this case, the equations of motion (2.1) are
reduced to the following:

80r0 60'92 20'T9 awz B 82 o
or - 0z + r == @(Pum + p12V1) + bg(vl - W),
2
0
0= g (pravi + p22i) = bz (01 = VA). (2.0

The upper cylindrical solid is assumed to be heterogeneous along axial direction with respect to mass
coefficients and initial stress. Therefore, one can have

p11 = prio(1 + a12)e”, p12 = p1ao(1 + a12)e’?, (2.5)
p22 = pa2o(1l + a12)e”, p1 = proo(l + a12)e”
where p110, p120, p220 are initial values of mass coefficients, «; is heterogeneity parameter and pig is

initial value of initial stress. Using stress- strain relations, Eq. (2.5) in Eq. (2.4) gives the following
equations:

vy proo(l +a12)e?** 0%vy  Nov, N
N or? (V- 2 )822 T r or r2t
8%vq 9*°Vi ax ovi  OVi
(pm R T )uww)@ +b< o o )
82111 82‘/1 az 8’[11 6V1
0= (p120 8t2 + £220 atQ ) (1 + O[lz)e —b <8t — 7815 ) . (26)

For harmonic torsional waves, the displacement components can be taken as follows:
v1 (1, 2, 1) = hy(2)J1(kr)e™t Vi (r, 2,t) = Hy(2)Jy (kr)e™t. (2.7)

In Eq. (2.7), J1 is Bessel’s function of the first order and the first kind, &k is wave number, w is wave
frequency, and i is complex unity. Substitution of Eq. (2.7) in Eq. (2.6) gives

d*h
d21+q1h1—0 (2.8)
Solution of Eq. (2.8) is
hi(z) = (1% 4 coe” 7). (2.9)

In Eq. (2.9), ¢1 and ¢y are arbitrary constants, and

/L2 —4
VE A9 L aN(@N — prio(1 + onz)et

q1 = 2 )

)

1 —1 2N
22N — proo(1 + 12)e™ (proow’(1 + a1 2)e™ —ibw — PO

2 -1
( p120w?(1 + a1 2)e” S ibw) (p220w2(1 + alz)eaz2 — ibw) ) .

Substitution of Eq. (2.9) in Eq. (2.8) gives
H,(z) = D1 D3 hy(2), (2.10)
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where D1 = p1og(1 + a12)e® + ibw™! and Dy = pago(1 + a12)e? — ibw™1.
Substituting Eq. (2.9) in Eq. (2.7), and then using stress- displacement relations, the following stress
components are obtained

(or6)m, = —N(ci1e”* + CQe_Q1Z)J1(kT)eiwt’

(062)m, = N(cre?? — 026_‘112)(]1(]#)61'@.

(2.11)

2.2. Dry sandy Gibson poroelastic cylindrical middle solid

Let (ug,vq,wq) and (Us, Vo, W3) be the solid and fluid displacement components, respectively, in the
sandwiched dry sandy gibson poroelastic isotropic cylindrical solid (M) (say). For torsional waves, Eq.
(2.1) can be written as

00r¢ 4 0oy, . 20,9 . 6wr+
or 0z r b2 0z
0 P110 — Piao P110 = Plagy O 1 dvg  wy 2 0
L (py — (PO L1204 0 ) — (PLO T Pi20y,, € 2 (B02 12y 9 Va) + b (vq — V&
0z (P2 = ( P220 J92)e:0) = P220 “or 2< or r ) ot? (pr10v2 + praoV) + ot (v2 2)
0? 0
0= ﬁ(mmvz + pazoVa) — b (va — V2)

ot
(2.12)

In the above equation, g is acceleration due to gravity, ps is compressive initial stress. Also, N = nu,
where 7 is sandy parameter and p is the modulus of rigidity.

vy | nudvy  nu p2 1, pi0—pi v p110 — pi
8r22 r 87’2 ErAcha 22 a 5(( Hopzzo “)92)) 8z22 —( 1100220 “o2)
0%vy 0?V; Ovy OV
= b _
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920y 02V vy Vs
= —p (=222 2.1
0 (Pno o2 T P20 55 ) <6t 815) (2.13)

For torsional harmonic waves, the displacement components can be expressed as
va(r, 2,t) = ho(2)Jy (kr)e™t, Va(r, 2, t) = Ha(2)Jy (kr)e™t. (2.14)

Substitution of Eq. (2.14) in Eq. (2.13) gives

d?hy 5
2 gzho =0, (2.15)
where,
20220 np — (p220 — P320)92
2 220 2
q = k J k"l‘
° (2(n)? — (p220 — P%m))gZJl(kT) 2pa20 ) 1(kr)

ne p12ow? + ibw

+np— (p110 — plag)922p220)k> J1 (kr) + (pTyow® — ibw — 2 a0 — ibw

)1 (k).

Solution of Eq. (2.15) is
ha(z) = (c3e??® + cye™12%). (2.16)

In Eq. (2.16), ¢3 and ¢4 are arbitrary constants. Substitution of Eq. (2.16) in Eq. (2.14) gives

Hy(z) = —D3Dy "hy(2), (2.17)
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where D3 = p120 + ibw™! and Dy = P220 — ibw™ L
Substituting Eq. (2.16) in Eq. (2.14), and then using stress- displacement relations, the following stress
components are obtained

(0r0) vy = —np(cse®® + coe™ %)y (kr)e™t,
(092) 1, = Nuga(cze®®® — cue™922).Jy (kr)e™t.

(2.18)
2.3. Lower heterogeneous poroelastic cylindrical solid

For the lower heterogeneous poroelastic cylindrical solid Ms (say), let (us,vs,w3) and (Us, Vs, W3)
be the displacement components of solid and fluid parts, respectively. For the torsional vibrations, the
equations of motion are reduced to the following:

aarg 20’T9 80’92 80.)2 - 32 0
or + r + 52 P T o (p11vs + p12V3) Hﬁ(”“”’ —Va),
0? 0
0= o2 (p12v3 + p22V3) — ba(”S - Va). (2.19)

As in the earlier cases, the lower solid is assumed to be heterogeneous with respect to the mass coefficients
and initial stress, then one can have
p11 = pr(1+ azz)e™, p12 = ps(1 + azz)e”,
pa2 = po(1l + azz)e, p3 = p3(1 + azz)e”, (2.20)
where pr, ps, pg are initial values of mass coefficients, and ps is initial value of initial stress. Using

stress-strain relation and Eq. (2.20) in Eq. (2.19) gives,

0%vs N Ovs N p3(1 + azz)e?® 0%v;
EAIRACIN S N —
or? + r Or 7203 + 2 ) 0z2

Pvg OV e o (s OV
= (Ploatz + 0208]52> (14 asz)e™ +b ( — ) ,

N

ot ot

82113 62‘/3 Ovs V3
= —_— 1 Vbl =—-—=. 2.21
0 <p208t2 P30 8t2>( +asz)e b(at 8t> (221)
For harmonic torsional waves, the displacement components can be taken as follows:
v3(r, 2, 1) = ha(2)J1(kr)e™! Va(r, z,t) = H3(2)Jy(kr)e™t. (2.22)
Substitution of Eq. (2.22) in Eq. (2.21) gives
d?hs3 9
Substitution of hs(z) = gb(z)e# in Eq. (2.23) gives
R 1
// - _Z =
o () + (L — o) =0, (2.24)

where, R = z(—L? — 4¢3 + 1). The Eq. (2.24) is the standard Whittaker’s equation, and its solution is
given by
¢(Z) = Cg,W,R’()(—Z) + CGWR’O(Z). (225)

In the above, C5 and Cg are arbitrary constants. Substituting Eq. (2.25) and Eq. (2.22), and using
stress-displacement relations, the following stress components are obtained.

(0r0) 0, = —N(csW_po + c6Wroo)J1 (kr)e™?,

(00205 = Naz(csW_ro — csWr,0)J1 (kr)e™t.
(2.26)
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3. Boundary Conditions and Frequency Equation

The displacement components and stresses are assumed to be continuous at z = aj, the interface
between upper cylindrical solid M; and middle cylindrical solid M, . That is,

(v1)a, = (v2) 01,
(UTG)MI - (JTO)Mg
(002) 01, = (002) M, (3.1)

The displacement components and stresses are assumed to be continuous at z = as, the interface middle
cylindrical solid Ms and lower cylindrical solid Mj3. That is,

(v2) M, = (v3) 01,
(0r0) M, = (0r0) M
(UGz)Mg = (UOZ)Mg (32)

The above boundary conditions lead to the system of homogeneous equations in C{s. For non-trivial
solution,

|Bij| :07 (Za .7: ]-a 23 33 4a 5; 6) (33)

4. Numerical Results

In the presence of dissipation(b), frequency equations (3.3) is implicit and complex valued. If the
identifies cos(x + 1y) = cosx coshy — isinz sinhy and sin(z + iy) = sinzcoshy + icosz sinhy are used, the
following explicit complex valued frequency equation for Eq. (3.3) is obtained:

bl +i|by| =0. (4, =1, 2, 3, 4, 5, 6). (4.1)

These real and imaginary parts together give frequency and attenuation coefficient. For numerical pro-
cess, the following materials are used. Both upper and lower cylindrical solids are assumed to be of Berea
sandstone saturated with water [9] (say Mat-II). The Berea sandstone is a building material, and is a
host of oil and natural gas. The parameter values of the said material are as follows:

p11 = 2407.64kg/m?>, p1o = —266kg/m3, pae = 456kg/m>.

Middle cylindrical solid is assumed to be of Shale Rock [10] (say Mat-I). The Shale rock is formed from
mud consist of thin layers, and is most common Shale rock for hydrocarbons (natural gas and petroleum).
This rock is a building material, particularly in elevations work. The parameter values of the said mate-
rial are as follows:

p11 = 1398.72kg/m?, p1o = —257.28kg/m?, pay = T71.84kg/m>.

Employing the values in Eq. (4.1), the implicit relation between frequency and attenuation coefficient
against heterogeneous parameter at fixed sandy parameter, gravity parameter and initial stress at Mat-I
and Mat-II, respectively are computed. The values are computed using the bisection method imple-
mented in MATLAB. The attenuation coefficient Q1 = 21){2%). In the above formula, Im(w)is frequency
of imaginary part in Eq.(4.1), and Re(w)is frequency of real part in Eq. (4.1). The results are depicted
in Figures 1-4. Figures 1-4 depict the variation of frequency and attenuation coefficient against hetero-
geneous parameter when sandy parameter, gravity parameter and initial stress are constants for Mat-I
and Mat-II, respectively. From Figures 1, 3 and 4, it is clear that the frequency values are, in general,
greater than that of attenuation coefficient. From Figure 2, it is clear that, in general, the frequency and
attenuation coefficient values are independent.
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Figure 1: Variation of frequency and attenuation coefficient against heterogeneous parameter at fixed
sandy parameter = 2.5 an
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Figure 2: Variation of frequency and attenuation coefficient against heterogeneous parameter at fixed
sandy parameter= 2.5 and gravity parameter= 0.5, p = 2 at Mat-II.
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Figure 3: Variation of frequency and attenuation coeflicient against heterogeneous parameter at fixed
sandy parameter= 3.5 and gravity parameterl.5,p = 2 at Mat-I.
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Figure 4: Variation of frequency and attenuation coefficient against heterogeneous parameter at fixed
sandy parameter= 3.5 and gravity parameter= 1.5, p = 2 at Mat-II.

5. Conclusion

Torsional waves in poroelastic sandwiched between two heterogeneous isotropic poroelastic solid, all

under initial stress are investigated in the frame work of Biot’s incremental theory. Employing the bound-
ary conditions at the interfaces, frequency equation is obtained. Frequency and attenuation coefficient
are computed against heterogeneous parameter at fixed initial stress, sandy parameter, and gravity pa-
rameter at Mat-I and Mat-II. From numerical results, it is clear, in general, the frequency values are
greater than that of attenuation coefficient.
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