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Disconnected Captive Domination in Graphs

Zainab A. Hassan and Mohammed A. Abdlhusein∗

abstract: Presents a novel domination in this paper paradigm on graphs known as disconnected captive
domination. A disconnected captive dominating set is the appropriate subset in graph’s vertices, if D is a total
dominating set, and every vertex of D dominates at least one vertex from V −D, and subgraph G[V −D] is
disconnected. The disconnected captive domination number in G, represented by γdca(G) means least cardi-
nality over all disconnected captive dominating sets of G. Limits and characteristics of disconnected captive
domination are examined in relation to a graph’s order, size, minimum degree, and maximum degree. Lastly,
disconnected captive domination in complement graphs is described, and disconnected captive dominating sets
for a number of graphs were identified by examining their attributes and using the suggested model.

Key Words:Disconnected captive domination, minimum disconnected captive domination, domi-
nating set, domination number and total domination number
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1. Introduction

Assume that G = (V,E) has size m = |E| and order n = |V |. N(v) = {uv, uv ∈ E defines v
open neighborhood, while N [v] = N(v) ∪ {v}} defines its closed neighborhood. Subgraph in G created
vertices of D is represented by the symbol G[D] [16,27]. There is no appropriate subset that may be
used as a dominating set in the minimal dominating set D of G. The domination number γ(G) is the
cardinality of the minimum dominating set D in G [14,24]. Several types of domination were intro-
duced due to the real life problems. Some types setting conditions on dominating set elements, such as
[1,2,3,4,5,6,7,9,10,11,13,26,28,29], or on elements from V − D, such as [20] or on both as in [8]. Prior
research has looked into the transformation of neighborhood topology obtained from undirected graphs,
as well as the creation of topological graphs with numerous properties and new forms of discrete topo-
logical graphs [21,22,23].

Captive domination in graphs is a special type of dominating set where G has a total dominating set
and every vertex of D dominates at least one vertex from V −D [12,25]. Then the set is considered total
dominating set, a set in which an isolated element cannot exist [15]. Total domination number in G,
represented as γt(G), cardinality of a minimum total dominating set in G. Due to their importance in
many applications, numerous types of dominating models were developed based on the goal of domination
[17,18,19].

Here, total domination existed accompanied by a new requirement. DCAD is the new type of domina-
tion, every vertex in D dominates at least one vertex from V −D, and subgraph G[V −D] is disconnected.
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Additionally, a graph G ’sDCAD number has many boundaries based on its order. In some graph families
and for the complement of some specific graphs, the DCAD number notion is established.

2. Definition and Properties

DCAD is described in this section along with its limitations and characteristics. Any graph with this
kind of domination has order, minimum degree, maximum degree, along with other features examined.

Definition 2.1 Consider G = (V,E) be a simple, undirected, finite, nontrivial graph with no isolated
vertices. If G[D] had not an isolated vertices ( D a total dominating set), and every vertex of D is
adjacent at least one vertex from V −D, and G[V −D] is a disconnected subgraph, then D ⊆ V (G) is a
disconnected captive dominating set, and represented by DCADS. For example, see Fig 1.

Definition 2.2 If there is no appropriate DCAD subset, a disconnected captive dominating set D of G
is minimum and is represented by MDCADS.

Definition 2.3 The least among all minimal DCAD in G indicates that a minimal DCADS of G is
minimum.

Definition 2.4 The DCAD number in G, represented as γdc
−set, is the smallest cardinality among all

DCADS of G.

Figure 1: The dominating set and DCADS.

Two vertices in D dominate every vertex of V −D in G, in which G[D] contains an isolated vertex,
as shown in Fig. 1(a). Three vertices of D dominate all other vertices in V − D of G in Fig. 1 (b),
where G[V −D] is a disconnected graph, and G[D] had not an isolated vertex.

Observation 2.5 For any graph G = (n,m), there is the information that follows, with DCADS and
DCAD number γdca(G) :

1. G has an order n ≥ 4.

2. |D| ≥ 2.

3. |V −D| ≥ 2.

4. δ(G) ≥ 1,∆(G) ≥ 2.

5. deg(u) ≥ 2 ∀u ∈ D.

6. If u ∈ D, then N(u) ∩D ̸= ∅ and N(u) ∩ V −D ̸= ∅.

7. Each support vertex belongs to D.

8. γ(G) ≤ γt(G) ≤ γdca(G).
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Observation 2.6

1. G does not have a DCADS if G it contains a component P2, or P3.

2. γdca(G) ≤ n− r, where r is the number of pendent vertices of graph G, indicates DCAD.

Theorem 2.7 G = (n,m) is any graph with DCADS and DCAD number γdca(G) has the following
boundaries: ⌈

γdca(G)

2

⌉
+ (n− γdca(G)) ≤ m ≤

(
n− 1

2

)
+ γdca(G).

Proof: The requirements of two situations that rely on the borders are demonstrated as follows, assum-
ing that D is a graph G ’s γdca− set:

Case 1. In order to demonstrate that
⌈
γdca(G)

2

⌉
+ (n− γdca(G)) ≤ m, suppose that G[V − D] is null

graph. Since G[D] had not an isolated vertices according to Definition 2.1, assume that m1 represent

number of edges of G[D], where m1 =
⌈
|D|
2

⌉
. G has as few edges as feasible as a result. According to its

definition, a graph with a DCADS has every vertex in V −D has at least one edge incident to it, where

m2 = |V −D|. Thus, m1 +m2 =
⌈
|D|
2

⌉
+ |V −D| =

⌈
γdca(G)

2

⌉
+ (n− γdca(G)) equals number of edges.

Consequently, m ≥
⌈
γdca(G)

2

⌉
+ (n− γdca(G)) in general.

Case 2. Let’s assume that G[D] is a complete subgraph with the highest number of edges and that
G[V − D] is a union of the complete subgraph and isolated vertex. When G[D] = Kt−1 ∪ K1 so that
|E(G[V − D])| = m2, where m1 and m2 are the number of edges of G[D] and G[V − D], respectively.
Thus,

m1 = |D||D−1|
2 = γdca(γdca−1)

2

m2 = |V−D−1||V−D−2|
2 = (n−γdca−1)(n−γdca−2)

2
Based on Definition DCAD a maximum of |V − D| edges connecting every vertex of D to V − D, so
that each vertex of D dominates all vertices in V −D. After that, |D||V −D| = γdca(n− γdca) = m3 is
number of the edges connecting D to V −D. Then, m ≤ m1+m2+m3 equals the number of edges in G.

≤ γdca(γdca−1)
2 + (n−γdca−1)(n−γdca−2)

2 + nγdca − γ2
dca

≤
(
n−1
2

)
+ γdca.

This is the upper limit in general.

For G = P4 where γdca (P4) = 2 and m = 3 see Fig 3 (a), the lower limit is acute. While G = F3

where γdca (F3) = 2 and m = 5 see Fig 2, the upper limit is acute. 2

Figure 2: γdca (F3) = 2
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Theorem 2.8 DCAD number of any G be γdca(G), we have 2 ≤ γdca(G) ≤
⌈
2n
3

⌉
.

Proof: The conditions of two cases that rely on borders are demonstrated as below, assuming D is of G.

Case 1. By DCADS definition, the lower bound is true.

Case 2. When there are k components in G, every which is triangle, the upper bound remains valid.
Each component’s DCAD number is equal to two. This means that, γdca(G) ≤

⌈
2n
3

⌉
.

Where γdca (Bn,n) = 2, there will be a steep lower bound when G = Bn,n, see Fig 6. Where γdca (C6) = 4,
there will be a steep lower bound when G = C6, see Fig 4 (c). 2

3. Disconnected Captive Domination of Some Graphs

Some graphs, including the path, cycle, star, complete, barbell and double fan graphs, are investigated
using the DCAD model.

Proposition 3.1 Only when n = 3, 5, 6, and 9 does Pn have no DCAD.

Proof: Assuming that V (Pn) = {v1, v2, . . . , vn},

1. If n = 3, based on Observation 2.5 (5 and 6), then P3 has no DCAD.

2. When n = 5, 6, according to Definition 2.1, and Observation 2.5, support vertices (apart from the
pendant vertex) belong to DCADS, in addition their neighboring vertices. Although, a set is a
total dominating set, it has no a DCADS.

3. If n = 9, the dominating set includes all support vertices, in addition their neighboring vertices,
with the exception of the pendent vertices. This set does not dominate the v5 vertex, as per the
DCAD definition. It is not possible to add the two vertices {v4, v6} to D since they need to be in
V −D.

2

Theorem 3.2 Given path graph Pn, (n ≥ 4) and n ̸= 5, 6, 9, γdca (Pn) = 2
⌈
n
4

⌉
.

Proof: Assume that v1, v2, . . . , vn the vertices in Pn, and assume that D ⊆ V (Pn) so that:

D =


{
v2+4i, v3+4i, i = 0, 1, . . . , n

4 − 1
}

if n ≡ 0(mod4){
v2+4i, v3+4i, i = 0, 1, . . . ,

⌈
n
4

⌉
− 2

}
∪ {vn−1, vn−2} if n ≡ 3(mod4){

v2+4i, v3+4i, i = 0, 1, . . . ,
⌈
n
4

⌉
− 3

}
∪ {vn−1, vn−2, vn−4, vn−5} if n ≡ 2(mod4){

v2+4i, v3+4i, i = 0, 1, . . . ,
⌈
n
4

⌉
− 4

}
∪ {vn−1, vn−2, vn−4, vn−5, vn−7, vn−8} if n ≡ 1(mod4)

Four vertices are the most that might be disconnected captive dominated by two vertices. Therefore,
from any four consecutive vertices, then can select the midpoint of the vertices. Thus, the following four
cases exist.

Case 1. The DCADS is clearly represented by vertices of the D =
{
v2+4i, v3+4i, i = 0, 1, . . . , n

4 − 1
}

where n ≡ 0(mod4). In this instance, set D ’s neighboring vertices all have maximum neighborhood. So,
there isn’t a DCADS whose cardinality is smaller than |D|. Thus, D is the MDCADS and G[V −D]
is a disconnected graph. Consequently, γdca (Pn) =

n
2 .

Case 2. Assume that D1 =
{
v2+4i, v3+4i, i = 0, 1, . . . ,

⌈
n
4

⌉
− 2

}
, if n ≡ 3(mod4). It’s obvious that
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D1 is the MDCADS to vertices {v1, v2, v3, . . . , vn−3} in the exact same way as in proof of Case 1. Thus,
{vn−2, vn−1, vn} are the leftover vertices of Pn that are not dominated by set D1. The DCADS condition
is not met if the two vertices in D1 are selected in the same way, which indicates that {vn−1, vn} will
dominate the three remaining vertices. Since D = D1 ∪ {vn−1, vn}, no vertex of V −D is dominated by
the vn vertex. Hence, D = D1 ∪ {vn−1, vn−2}, and G[V − D] is a disconnected graph. Consequently,
γdca (Pn) = |D1 ∪ {vn−2, vn−1}| = 2

⌈
n
4

⌉
.

Case 3. Assume that D2 =
{
v2+4i, v3+4i, i = 0, 1, . . . ,

⌈
n
4

⌉
− 3

}
when n ≡ 2(mod 4). Once more, it is ev-

ident that isD2 theMDCADS to vertices {v1, v2, v3, . . . , vn−6} in the exact same way as we did of proof in
Case 1. SetD2 does not dominate the leftover vertices of Pn, which are {vn−5, vn−4 , vn−3, vn−2, vn−1, vn}.
The two vertices {vn−4, vn−3} cannot be selected to dominate the vertices {vn−5, vn−4, vn−3, vn−2}.
In Case 2 in the same way. The vertices {vn−1, vn} must be part of the dominating set if they are
added to D2. Based on Observation 2.5, the vertex vn cannot be included to dominant set in Case
2 for the same reason. Thus, D = D1 ∪ {vn−1, vn−2} and G[V − D] is a disconnected graph, and
γdca (Pn) = |D2 ∪ {vn−5, vn−4, vn−3, vn−2, vn−1}| = 2

⌈
n
4

⌉
.

Case 4. Let D3 =
{
v2+4i, v3+4i, i = 0, 1, . . . ,

⌈
n
4

⌉
− 4

}
, where n ≡ 1(mod4). Once more, it is evi-

dent that set D3 is the MDCADS to vertices {v1, v2, v3, . . . , vn−9} in the exact same way as we did
in demonstration of Case 1. Thus, {vn−8, vn−7, vn−6, . . . , vn} are the leftover vertices of Pn that are not
dominated by D3. The vertex vn cannot be included to dominant set in Case 2 for the same reason. Con-
sequently, γdca (Pn) = |D3 ∪ {vn−1, vn−2, vn−4, vn−5, vn−7, vn−8}| = 2

⌈
n
4

⌉
and G[V− D] is disconnected

graph. From every instance mentioned above γdca (Pn) = 2
⌈
n
4

⌉
.

To demonstrate that D is an MDCADS in each of the earlier cases. Assume that D′ is a DCADS
in G such that |D′| < |D|. This means that either there at least one vertex of V −D does not dominated
by any vertex from D or G [D′] has an isolated vertex. Combining this contraction with the DCADS
notion. Thus, D is the MDCADS and D′ is not DCADS. For example, see Fig 3. 2

Figure 3: DCADS of Pn.

Proposition 3.3 Only when n = 3, 4, and 5 does Cn have no DCAD.

Proof: Suppose that V (Cn) = {v1, v2, . . . , vn} then,

1. When n = 3, 4, since there exist two vertices in D, then each vertex of D dominates one vertex,
but G[D] is connected graph. Thus, C3 and C4 have no DCAD.

2. When n = 5, suppose that V (C5) = {v1, v2, v3, v4, v5}. Assume that v1 and v2 belong to dominating
set D. Thus, v5 and v3 should belong to V −D based on Definition 2.1. So, G[D] has an isolated
vertex if vertex v4 belongs to set D. Based on Observation 2.5 (5) D has no total set.
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2

Theorem 3.4 Any cycle graph Cn, (n ≥ 6) and n ̸= 3, 4, 5, γdca (Cn) = 2
⌈
n
4

⌉
.

Proof: Given Cn with vertices v1, v2, . . . , vn, let D ⊆ V (Cn) so that:

D =


{
v2+4i, v3+4i, i = 0, 1, . . . ,

∣∣n
4

∣∣− 1
}

if n ≡ 0, 3(mod4){
v2+4i, v3+4i, i = 0, 1, . . . ,

∣∣n
4

∣∣− 2
}
∪ {vn−1, vn} if n ≡ 2(mod4){

v2+4i, v3+4i, i = 0, 1, . . . ,
∣∣n
4

∣∣− 3
}
∪ {vn−4, vn−3, vn−1, vn} if n ≡ 1(mod4)

The most number of vertices that can, as stated in Theorem 3.2. Therefore, from any four successive
vertices, we can select the middle vertices. Thus, the following four situations exist.

Case 1. Let D =
{
v2+4i, v3+4i, i = 0, 1, . . . , n

4 − 1
}

when n ≡ 0, 3(mod4). In the exact same way of

proof Theorem 3.2 (Case 1). D is the MDCADS. Consequently, γdca (Cn) = |D| = 2
⌈
n
4

⌉
.

Case 2. Assume that D1 =
{
v2+4i, v3+4i, i = 0, 1, . . . ,

⌈
n
4

⌉
− 2

}
if n ≡ 2(mod4). It’s obvious that

set D1 is MDCADS to vertices {v1, v2, v3, . . . , vn−2} in the exact same way in proof of Case 1. Thus,
{vn−1, vn} are the leftover vertices in Cn that are not dominated by D1. In event that the two vertices are
selected in the exact same way as of D1, then D = D1 ∪ {vn−1, vn} and G[V −D] is disconnected graph.
At that point, the DCADS a requirement is met. Consequently, γdca (Cn) = |D1 ∪ {vn−1, vn}| = 2

⌈
n
4

⌉
.

Case 3. Assume that D2 =
{
v2+4i, v3+4i, i = 0, 1, . . . ,

⌈
n
4

⌉
− 3

}
where n ≡ 1(mod4). Once more,

it is evident that D2 is the MDCADS to vertices {v1, v2, v3, . . . , vn−5} in the exact same way we
did in demonstration of Case 1. Set D1 does not dominate the leftover vertices from Cn, which are
{vn−4 , vn−3, vn−2, vn−1, vn}. The vertex vn has no dominated by any vertex of this set if two ver-
tices {vn−3, vn−2} are selected to dominate the remaining vertices. Hence, γdca (Cn) =| D2 ∪ {vn−4 ,
vn−3, vn−1, vn}

∣∣= 2
⌈
n
4

⌉
, and subgraph G[V −D] is disconnected.

In three instances mentioned above, the set D is an MDCADS, and the proof of this is comparable
to that Theorem 3.2. For example, see Fig 4. 2

Figure 4: MDCADS of Cn.
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Proposition 3.5 There is no DCAD in a star graph Sn(n ≥ 3).

Proof: Based on definition bipartite graph known as star graph K1,n. If v1 ∈ D, it dominates n ≥ 3
end vertices, where v1 ∈ Sn support vertex adjacent pendant vertices u1, u2, . . . , un. However, the vertex
of G[D] is isolated. If v1 /∈ D, each vertex of n ≥ 3 end vertices dominates only v1. However, the graph
in G[D] has an isolated vertices, if u1, v1 ∈ D, since u1 does not dominate any vertex in V − D. It is
contradictory, Sn does not have a DCADS as a result. 2

Proposition 3.6 There is no DCADS in any complete graph Kn.

Proof: Every vertex in DCADS can dominates one or more vertices, and since every vertex in Kn is
connected all other vertices. Accordingly, there is two vertices of D dominates all vertices in V −D of
Kn. Then, G[D] had not an isolated vertex, however G[V −D] is connected graph. Kn does not have a
DCADS. For example, see Fig 5. 2

Figure 5: Kn has no DCAD.

Proposition 3.7 Any graph of the barbell Bn,n(n ≥ 3), has DCAD and γdca (Bn,n) = 2.

Proof: Considering that Kn has no DCAD according to Proposition 3.6 and that Bn,n has two copies
from Kn connected by a bridge. Then, two adjacent vertices of Bn,n must be present in D. So that
each one vertex in D dominates n − 1 of vertices in Kn in each copy of the complete graph, and the
graph G[V −D] is disconnected. When two vertices that belong to D must be the bridge’s location. For
example, see Fig 6. 2

Figure 6: MDCADS of Bn,n.
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Proposition 3.8 Assuming that G is the double fan graph
(
Pn + k̄2

)
, we have

γdca
(
Pn + K̄2

)
=

{
2 if n = 2

3 if n ≥ 3

Proof: If n = 2, let D = {v1, v2} = V (P2), because all of the vertices of K̄2 adjacent every vertex of
P2. After that, every vertex in D dominates all vertices of K̄2 and G[V −D] is disconnected graph. So
γdca

(
Pn + K̄2

)
= 2.

If n ≥ 3, assume thatD = V
(
K̄2

)
and one vertex of {v2, v3, . . . , vn−1}. After that,D has three vertices

that dominate all vertices of V −D, and subgraph G[V −D] is disconnected. Thus, γdca
(
Pn + K̄2

)
= 3.

For example, see Fig 7.

In three instances mentioned above, the set D is an MDCADS, and the proof of this is comparable
to that of Theorem 3.2. 2

Figure 7: MDCADS in P2 + K̄2.

4. Disconnected Captive Domination for Complement Graphs

This section defines the DCAD for several complement graphs include the complement path, cycle,
wheel, complete, bipartite complete, fan, and double fan graphs.

Observation 4.1 Consider a graph G where ∆(G) = n− 1. After that, Ḡ has no DCADS.

Theorem 4.2 Assume that Pn is a path graph, after that P̄n has DCAD if and only if n ≥ 4, then

γdca
(
P̄n

)
=

{
2 if n = 4

n− 3 if n ≥ 5

Proof: If n = 4, let D contains the two support vertices in P̄4, then each vertex of D dominates one
vertex of V −D and G[V −D] is disconnected graph. Thus, γdca

(
P̄n

)
= 2.

If n ≥ 5, suppose that D include all vertices except three consecutive vertices, where v1 and vn belongs
to D. Each vertex of V −D adjacent one or more vertices from D in P̄n, thus, each of them is dominated
by at least one vertex fromD. However, each vertex inD adjacent at least two from three vertices in V−D.

In three instances mentioned above, the set D is an MDCADS, and the proof of this is comparable
to that of Theorem 3.2. For example, see Fig 8. 2
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Figure 8: DCAD in P̄n.

Proposition 4.3 Only when n = 3, 4, 5, then C̄n has no DCAD.

Proof: When C̄3 is null graph and C̄4 = P2 ∪ P2, then C̄3 and C̄4 have no DCAD.

If n = 5, there exists three vertices of D dominates two vertices in V −D, but the subgraph G[V−
D] is connected. Then, C̄5 has no DCAD. 2

Theorem 4.4 Suppose that Cn is a cycle graph in n ≥ 3, after that C̄n has DCAD if and only if n ≥ 6,

then γdca
(
C̄n

)
=

{
4 if n = 6

n− 3 if n ≥ 7

Proof: If n = 6, let D contains all vertices except two non-adjacent vertices of C̄6. Each vertex of V −D
adjacent three vertices of D in C̄6, thus each of them is dominated by three vertices of D. However, each
vertex in D adjacent one or two vertices from two vertices in V −D, and G[V −D] is disconnected graph.
Thus, γdca

(
C̄6

)
= 4.

If n ≥ 7, let D contains all vertices except three consecutive vertices. Every vertex in V − D is
adjacent three or more vertices from D in C̄n, thus each of them is dominated by at least three vertices
from D. However, each vertex in D adjacent at least two from three vertices of V −D, and G[V− D] is
disconnected graph.

In three instances mentioned above, the set D is an MDCADS, and the proof of this is comparable
to that of Theorem 3.2. For example, see Fig 9. 2
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Figure 9: MCADS in C̄n.

Theorem 4.5 For any Kn,m a complete bipartite graph then K̄n,m has DCAD if and only if n ≥ 3 and
m ≥ 3, we have γdca

(
K̄n,m

)
= 4.

Proof: For n,m ≥ 3, there are two graphs (Kn and Km) with no DCAD by Proposition 3.6. However,
K̄n,m has two components. Then, two vertices of Kn dominate all other vertices of Kn, and two vertices
of Km dominate all other vertices of Km. Therefore, D contains four vertices from K̄n,m and G[V −D]
is disconnected graph. So, γdca

(
K̄n,m

)
= 4.

To demonstrate that D is a MDCADS. If D′ is a DCADS of G where |D′| < |D|, after that either
one copy of Kn or Km is not dominated by any vertex from D′, or G [D′] has an isolated vertex. Thus,
D′ is not a DCADS, but D is MDCADS. For example, see Fig 10. 2

Figure 10: MDCAD in K̄n,m.

Observation 4.6

1. K̄n has no DCAD and W̄n has no DCAD.

2. F̄n has no DCAD and P̄n + K̄2 has no DCAD.

5. Conclusion

The term ” DCAD ” refers to a new type of control. The DCAD number is correlated with the
graph’s order, size, minimum degree, and maximum degree. This piece of labor generates a range from
conventional and modified graphs that allow the domination number to be computed.
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