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Disconnected Captive Domination in Graphs

Zainab A. Hassan and Mohammed A. Abdlhusein*

ABSTRACT: Presents a novel domination in this paper paradigm on graphs known as disconnected captive
domination. A disconnected captive dominating set is the appropriate subset in graph’s vertices, if D is a total
dominating set, and every vertex of D dominates at least one vertex from V — D, and subgraph G[V — D] is
disconnected. The disconnected captive domination number in G, represented by 7v4.q(G) means least cardi-
nality over all disconnected captive dominating sets of G. Limits and characteristics of disconnected captive
domination are examined in relation to a graph’s order, size, minimum degree, and maximum degree. Lastly,
disconnected captive domination in complement graphs is described, and disconnected captive dominating sets
for a number of graphs were identified by examining their attributes and using the suggested model.
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nating set, domination number and total domination number
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1. Introduction

Assume that G = (V,E) has size m = |E| and order n = |V|. N(v) = {uwv,uv € E defines v
open neighborhood, while N[v] = N(v) U {v}} defines its closed neighborhood. Subgraph in G created
vertices of D is represented by the symbol G[D] [16,27]. There is no appropriate subset that may be
used as a dominating set in the minimal dominating set D of G. The domination number (G) is the
cardinality of the minimum dominating set D in G [14,24]. Several types of domination were intro-
duced due to the real life problems. Some types setting conditions on dominating set elements, such as
[1,2,3,4,5,6,7,9,10,11,13,26,28,29], or on elements from V — D, such as [20] or on both as in [8]. Prior
research has looked into the transformation of neighborhood topology obtained from undirected graphs,
as well as the creation of topological graphs with numerous properties and new forms of discrete topo-
logical graphs [21,22,23].

Captive domination in graphs is a special type of dominating set where G has a total dominating set
and every vertex of D dominates at least one vertex from V' — D [12,25]. Then the set is considered total
dominating set, a set in which an isolated element cannot exist [15]. Total domination number in G,
represented as 7:(G), cardinality of a minimum total dominating set in G. Due to their importance in
many applications, numerous types of dominating models were developed based on the goal of domination
[17,18,19].

Here, total domination existed accompanied by a new requirement. DC AD is the new type of domina-
tion, every vertex in D dominates at least one vertex from V' — D, and subgraph G[V — D] is disconnected.
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Additionally, a graph G ’s DC' AD number has many boundaries based on its order. In some graph families
and for the complement of some specific graphs, the DC'AD number notion is established.

2. Definition and Properties

DCAD is described in this section along with its limitations and characteristics. Any graph with this
kind of domination has order, minimum degree, maximum degree, along with other features examined.

Definition 2.1 Consider G = (V, E) be a simple, undirected, finite, nontrivial graph with no isolated
vertices. If G[D] had not an isolated vertices ( D a total dominating set), and every vertex of D is
adjacent at least one vertex from V — D, and G[V — D] is a disconnected subgraph, then D C V(G) is a
disconnected captive dominating set, and represented by DCADS. For example, see Fig 1.

Definition 2.2 If there is no appropriate DCAD subset, a disconnected captive dominating set D of G
is minimum and is represented by MDCADS.

Definition 2.3 The least among all minimal DCAD in G indicates that a minimal DCADS of G is
MINIMUM.

Definition 2.4 The DCAD number in G, represented as vq.~ set, is the smallest cardinality among all
DCADS of G.

(a) Minimum dominating set (b) MDCADS

Figure 1: The dominating set and DCADS.

Two vertices in D dominate every vertex of V. — D in G, in which G[D] contains an isolated vertez,
as shown in Fig. 1(a). Three vertices of D dominate all other vertices in V. — D of G in Fig. 1 (b),
where G[V — D] is a disconnected graph, and G[D] had not an isolated vertex.

Observation 2.5 For any graph G = (n,m), there is the information that follows, with DCADS and
DCAD number viea(G) :

1. G has an order n > 4.

|D| > 2.

|V —D| > 2.

I(G) > 1,A(G) > 2.

deg(u) >2 VYueD.

Ifue D, then Nu)yND # & and N(u)NV — D # &.
FEach support vertex belongs to D.

YG) € 1(G) < Vdea(G).

o N> T e
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Observation 2.6
1. G does not have a DCADS if G it contains a component Py, or Ps.
2. Yica(G) < n —r, where r is the number of pendent vertices of graph G, indicates DCAD.

Theorem 2.7 G = (n,m) is any graph with DCADS and DCAD number vi.o(G) has the following
boundaries:

2

} (= 4ea(G)) S m < (” ) + Yiea(G)-

Proof: The requirements of two situations that rely on the borders are demonstrated as follows, assum-
ing that D is a graph G ’s vgcq— set:

Case 1. In order to demonstrate that [W%(G)—‘ + (n — Yaca(G)) < m, suppose that G[V — D] is null

graph. Since G[D] had not an isolated vertices according to Definition 2.1, assume that m; represent
|D|

T .
definition, a graph with a DCADS has every vertex in V — D has at least one edge incident to it, where
me = |V — D|. Thus, my +msy = [%1 + |V —-D|= F“%(G)—‘ + (7 — Ydea(G)) equals number of edges.

number of edges of G[D], where m; = [ G has as few edges as feasible as a result. According to its

Consequently, m > {%(G)—‘ + (7 — Yaea(G)) in general.

Case 2. Let’s assume that G[D] is a complete subgraph with the highest number of edges and that
G[V — D] is a union of the complete subgraph and isolated vertex. When G[D] = K;_; U K; so that
|E(G[V — D])| = ma, where m; and mq are the number of edges of G[D] and G[V — D], respectively.

Thus,
my = \DHg)—ll _ Ydca(Ydca—1)

2
My = [V—D—-1{[V-D—-2| _ (n—Ydca—1)(n—Ydca—2)

2 2

Based on Definition DCAD a maximum of |V — D| edges connecting every vertex of D to V — D, so

that each vertex of D dominates all vertices in V' — D. After that, |D||V — D| = Ygea(n— Ydea) = m3 is

number of the edges connecting D to V' — D. Then, m < mj + ms + m3 equals the number of edges in G.
ca(Ydca—1 —Ydeca—1)(N—Ydca—2

S 1d (’Yéi ) + (n=7q )2(71 Jd ) + NYdea — 7§ca

< (n;l) + VYdca-

This is the upper limit in general.

For G = Py where Ygeq (P1) = 2 and m = 3 see Fig 3 (a), the lower limit is acute. While G = Fj

where Ygeq (F3) = 2 and m = 5 see Fig 2, the upper limit is acute. O
Vs
Lo ] Lo Vg

Figure 2: Ygeq (F3) = 2
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Theorem 2.8 DCAD number of any G be vica(G), we have 2 < Yo (G) < {%"]

Proof: The conditions of two cases that rely on borders are demonstrated as below, assuming D is of G.
Case 1. By DCADS definition, the lower bound is true.

Case 2. When there are k components in G, every which is triangle, the upper bound remains valid.

Each component’s DC'AD number is equal to two. This means that, V4. (G) < (%”]

Where Ygeq (Bn.n) = 2, there will be a steep lower bound when G = B, ,,, see Fig 6. Where 4.4 (Cs) = 4,
there will be a steep lower bound when G = Cg, see Fig 4 (c). O

3. Disconnected Captive Domination of Some Graphs

Some graphs, including the path, cycle, star, complete, barbell and double fan graphs, are investigated
using the DC' AD model.

Proposition 3.1 Only when n = 3,5,6, and 9 does P, have no DCAD.

Proof: Assuming that V (P,) = {v1,v2,..., 00},
1. If n = 3, based on Observation 2.5 (5 and 6), then P; has no DCAD.

2. When n = 5,6, according to Definition 2.1, and Observation 2.5, support vertices (apart from the
pendant vertex) belong to DCADS, in addition their neighboring vertices. Although, a set is a
total dominating set, it has no a DCADS.

3. If n = 9, the dominating set includes all support vertices, in addition their neighboring vertices,
with the exception of the pendent vertices. This set does not dominate the vs vertex, as per the
DCAD definition. It is not possible to add the two vertices {v4,v6} to D since they need to be in
V —D.

Theorem 3.2 Given path graph Py, (n >4) and n # 5,6,9,Vgcq (Pn) = 2 {ﬂ]

Proof: Assume that vy, vs,...,v, the vertices in P,, and assume that D C V (P,) so that:
{U2+4i,v3+4i,i:071,...7% — 1} Zf nEO(m0d4)
D= {Ug+4i,1}3+4i,i 20,1,..., ’V%—‘ —2} U{Un_l,’t)n_g} ’Lf n= 3(m0d4)
{vo+ai, 03440, 0 =0,1,..., [ 2] =3} U{vn_1,Vn—2,0n—1,Vn_5} if n = 2(mod4)
{vosai, v344i, i =0,1,..., [2] =4} U{vp—1,Vn—2,Vn—4,Vn_5,0n—7,Vp_g} if n=1(mod4)

Four vertices are the most that might be disconnected captive dominated by two vertices. Therefore,
from any four consecutive vertices, then can select the midpoint of the vertices. Thus, the following four
cases exist.

Case 1. The DCADS is clearly represented by vertices of the D = {v2+4i,v3+4i,i =0,1,..., % — 1}
where n = 0(mod4). In this instance, set D ’s neighboring vertices all have maximum neighborhood. So,
there isn’t a DCADS whose cardinality is smaller than |D|. Thus, D is the MDCADS and G[V — D]
is a disconnected graph. Consequently, Yica (Pn) = 5.

Case 2. Assume that D; = {02+4i,vg+4i,i =0,1,..., {%] — 2}, if n = 3(mod4). It’s obvious that
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Dy is the MDCADS to vertices {v1, v, v3,...,v,—3} in the exact same way as in proof of Case 1. Thus,
{Vn—2,vn_1, vy} are the leftover vertices of P, that are not dominated by set D;. The DCADS condition
is not met if the two vertices in D; are selected in the same way, which indicates that {v,_1,v,} will
dominate the three remaining vertices. Since D = Dy U {v,—1,v,}, no vertex of V. — D is dominated by
the v,, vertex. Hence, D = Dy U {v,_1,vn—2}, and G[V — D] is a disconnected graph. Consequently,
Ydeca (Pn) = ‘Dl U {Un—2yvn—1}‘ =2 ’V%—I

Case 3. Assume that Dy = {1)2+47;, U314i, 8 =0,1,..., [%1 — 3} when n = 2(mod 4). Once more, it is ev-
ident that is Dy the M DC ADS to vertices {v1, va, vs, ..., Vn—¢} in the exact same way as we did of proof in
Case 1. Set Dy does not dominate the leftover vertices of P,,, which are {v,—5,Vn—4, Un—3,Vn—2,Vn_1, Upn }.
The two vertices {v,_4,v,—3} cannot be selected to dominate the vertices {v,_s5,Vn—_4,Vn—3,Vn_2}.
In Case 2 in the same way. The vertices {v,—1,v,} must be part of the dominating set if they are
added to Dy. Based on Observation 2.5, the vertex v, cannot be included to dominant set in Case
2 for the same reason. Thus, D = D; U {v,_1,v,—2} and G[V — D] is a disconnected graph, and
Vdca (Pn) = ‘D2 U {Un—57vn—4yvn—3avn—27vn—1}‘ =2 ’V%—I .

Case 4. Let D3 = {vz+4l, V3y4i, b =0,1,. [Z] — 4}, where n = 1(mod4). Once more, it is evi-
dent that set D3 is the MDCADS to Vertlces {vl, V2,V3,...,Un_9} in the exact same way as we did
in demonstration of Case 1. Thus, {v,,_8, Un—7,Vn—g, ...,V are the leftover vertices of P, that are not

dominated by D3. The vertex v,, cannot be included to dominant set in Case 2 for the same reason. Con-
sequently, Yaca (Pp) = |Ds U {vpn—1,Vn—2,Vn—4,Vn—5,Vn—7,Un—s}| = 2 [%] and G[V— D] is disconnected
graph. From every instance mentioned above yaeq (Pn) = 2 [%].

To demonstrate that D is an MDCADS in each of the earlier cases. Assume that D’ is a DCADS
in G such that |D’| < |D|. This means that either there at least one vertex of V' — D does not dominated
by any vertex from D or G [D’] has an isolated vertex. Combining this contraction with the DCADS

notion. Thus, D is the MDCADS and D’ is not DCADS. For example, see Fig 3. ]
7 2 3 V4 v 17 17 v !7 v 17 1? U v.VvV
4 11,10
0 ° ® 0 1 a2 6 0 gll 12
(a) P, (b) Pi3
n = 0(mod4) n = 1(mod4)
W oV V3 Uy v50 1, VW V, V3 V3 vs U5 0, 1, U 0
(c) Py (d) Pyo
n = 3(mod4) n = 2(mod4)

Figure 3: DCADS of P,.

Proposition 3.3 Only when n = 3,4, and 5 does Cy, have no DCAD.

Proof: Suppose that V (C,) = {v1,vs,...,v,} then,

1. When n = 3,4, since there exist two vertices in D, then each vertex of D dominates one vertex,
but G[D] is connected graph. Thus, C3 and Cy have no DCAD.

2. When n = 5, suppose that V' (C5) = {v1,v2, v3,v4, v5}. Assume that v; and vy belong to dominating
set D. Thus, vs and vz should belong to V' — D based on Definition 2.1. So, G[D] has an isolated
vertex if vertex vy belongs to set D. Based on Observation 2.5 (5) D has no total set.
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Theorem 3.4 Any cycle graph Cy,, (n > 6) and n # 3,4,5,Vacq (Cn) =2 [2].

Proof: Given C,, with vertices vy, v, ..., vy, let D C V (C},) so that:

{’024,_41‘,’03_;'_41‘,1' 1071,...7 % — 1} Zf nEO,3(H10d4)
D = ’U2+4Z‘,’U3+4i,i :O,l,..., % -2 U{Un_l,vn} Zf n= 2(m0d4)
Vo44i, V3444, =0,1,.. ., % -3 U{vn,4,vn,3,vn,1,vn} ifn= 1(mod4)

The most number of vertices that can, as stated in Theorem 3.2. Therefore, from any four successive
vertices, we can select the middle vertices. Thus, the following four situations exist.
Case 1. Let D = {v2+4i,v3+4¢,i =0,1,..., % — 1} when n = 0,3(mod4). In the exact same way of
proof Theorem 3.2 (Case 1). D is the MDCADS. Consequently, Y4cq (Cr) = |D| =2 [2].

Case 2. Assume that D; = {v2+4i,v3+4i,i =0,1,..., (%-‘ - 2} if n = 2(mod4). Tt’s obvious that
set Dy is MDCADS to vertices {v1,v2,v3,...,Un_2} in the exact same way in proof of Case 1. Thus,
{vn—1, v, } are the leftover vertices in C,, that are not dominated by D;. In event that the two vertices are
selected in the exact same way as of Dy, then D = Dy U{v,—1,v,} and G[V — D] is disconnected graph.
At that point, the DCADS a requirement is met. Consequently, Ygeq (Cr) = | D1 U{vp_1,vn} =2 {%]

Case 3. Assume that Dy = {v2+4i,v3+4i,i =0,1,..., [ﬂ —3} where n = 1(mod4). Once more,
it is evident that Do is the MDCADS to vertices {vi,vs,v3,...,0,—5} in the exact same way we

did in demonstration of Case 1. Set D; does not dominate the leftover vertices from C,, which are
{Un—4, Un_3,Vn—2,0n_1,v,}. The vertex v, has no dominated by any vertex of this set if two ver-
tices {vn—3,vn—2} are selected to dominate the remaining vertices. Hence, vieq (Cr) =| D2 U {vp_q,
Un—3,Vn—1,Un} ’ =2 (%—‘ , and subgraph G[V — D] is disconnected.

In three instances mentioned above, the set D is an M DCADS, and the proof of this is comparable
to that Theorem 3.2. For example, see Fig 4. O

(a) Cg Ab) Cy4

n = 0(mod4) n = 3(mod4)

(c) Cs (D) Co

Figure 4: MDCADS of C,,.
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Proposition 3.5 There is no DCAD in a star graph S, (n > 3).

Proof: Based on definition bipartite graph known as star graph K; ,. If v; € D, it dominates n > 3
end vertices, where v; € S, support vertex adjacent pendant vertices uy,us, ..., u,. However, the vertex
of G[D] is isolated. If v; ¢ D, each vertex of n > 3 end vertices dominates only v1. However, the graph
in G[D] has an isolated vertices, if uj,v; € D, since u; does not dominate any vertex in V — D. Tt is
contradictory, S,, does not have a DCADS as a result. O

Proposition 3.6 There is no DCADS in any complete graph K, .

Proof: Every vertex in DCADS can dominates one or more vertices, and since every vertex in K, is
connected all other vertices. Accordingly, there is two vertices of D dominates all vertices in V' — D of
K,. Then, G[D] had not an isolated vertex, however G[V — D] is connected graph. K, does not have a

DCADS. For example, see Fig 5. O
K, K

Figure 5: K, has no DCAD.

Proposition 3.7 Any graph of the barbell By, ,(n > 3), has DCAD and Yico (Bnn) = 2.

Proof: Considering that K, has no DC'AD according to Proposition 3.6 and that B, , has two copies
from K, connected by a bridge. Then, two adjacent vertices of B,, , must be present in D. So that
each one vertex in D dominates n — 1 of vertices in K, in each copy of the complete graph, and the
graph G[V — D] is disconnected. When two vertices that belong to D must be the bridge’s location. For
example, see Fig 6. O

) /// \\\
b

By 5 Bs s

Figure 6: MDCADS of B,, .



8 ZAINAB A. HASSAN AND MOHAMMED A. ABDLHUSEIN

Proposition 3.8 Assuming that G is the double fan graph (Pn + 1232), we have

_ 2 ifn=2
Yaea (Pn+ K2) = {3 ifn>3

Proof: If n = 2, let D = {vy,v2} = V (P2), because all of the vertices of Ky adjacent every vertex of
P,. After that, every vertex in D dominates all vertices of K5 and G[V — D] is disconnected graph. So
Ydca (Pn + KZ) =2

Ifn > 3, assume that D =V (f(g) and one vertex of {va, v3, ..., v,—1}. After that, D has three vertices
that dominate all vertices of V' — D, and subgraph G[V — D] is disconnected. Thus, Ygcq (P" + KQ) =3.
For example, see Fig 7.

In three instances mentioned above, the set D is an M DCADS, and the proof of this is comparable
to that of Theorem 3.2. O

~

P+ K, P,+ K, P;+K,

Figure 7: MDCADS in P, + K.

4. Disconnected Captive Domination for Complement Graphs

This section defines the DCAD for several complement graphs include the complement path, cycle,
wheel, complete, bipartite complete, fan, and double fan graphs.

Observation 4.1 Consider a graph G where A(G) =n — 1. After that, G has no DCADS.

Theorem 4.2 Assume that P, is a path graph, after that P, has DCAD if and only if n > 4, then
_ 2 ifn=4

ca Pn =

d ( ) {n -3 ifn>5

Proof: If n = 4, let D contains the two support vertices in Py, then each vertex of D dominates one
vertex of V' — D and G[V — D] is disconnected graph. Thus, Ygeq (Pn) =2.

If n > 5, suppose that D include all vertices except three consecutive vertices, where v; and v, belongs
to D. Each vertex of V' — D adjacent one or more vertices from D in P, thus, each of them is dominated
by at least one vertex from D. However, each vertex in D adjacent at least two from three vertices in V—D.

In three instances mentioned above, the set D is an M DCADS, and the proof of this is comparable
to that of Theorem 3.2. For example, see Fig 8. O
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Ydca (1?4) = 2.

Figure 8: DCAD in P,.

Proposition 4.3 Only when n = 3,4,5, then C,, has no DCAD.

Proof: When Cs is null graph and Cy = P, U P, then C3 and C4 have no DCAD.

If n = 5, there exists three vertices of D dominates two vertices in V — D, but the subgraph G[V —
D] is connected. Then, C5 has no DCAD. O

Theorem 4.4 Suppose that C,, is a cycle graph in n > 3, after that C,, has DCAD if and only if n > 6,

- 4 ifn==~6

Proof: If n = 6, let D contains all vertices except two non-adjacent vertices of Cs. Each vertex of V — D
adjacent three vertices of D in Cg, thus each of them is dominated by three vertices of D. However, each
vertex in D adjacent one or two vertices from two vertices in V — D, and G[V — D] is disconnected graph.
Thus, Yica (Oﬁ) =4.

If n > 7, let D contains all vertices except three consecutive vertices. Every vertex in V — D is
adjacent three or more vertices from D in C,,, thus each of them is dominated by at least three vertices
from D. However, each vertex in D adjacent at least two from three vertices of V' — D, and G[V— D] is
disconnected graph.

In three instances mentioned above, the set D is an M DCAD.S, and the proof of this is comparable
to that of Theorem 3.2. For example, see Fig 9. O
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e ! v
1
k-2 . .
- / \ vs v vUa
- vs
= U3
\0/ l d
Vs Vs
Ce Cs

Figure 9: MCADS in C,,.

Theorem 4.5 For any Ky m a complete bipartite graph then Ky.m has DCAD if and only if n > 3 and
m > 3, we have Yieq (Knm) =4.

Proof: For n,m > 3, there are two graphs (K, and K,,) with no DCAD by Proposition 3.6. However,

K, m has two components. Then, two vertices of K,, dominate all other vertices of K_’n, and two vertices
of K,, dominate all other vertices of K,,. Therefore, D contains four vertices from K, ,, and G[V — D]

is disconnected graph. So, Y4ea (I_{n,m) =4.

To demonstrate that D is a MDCADS. If D’ is a DCADS of G where |D’| < |D|, after that either
one copy of K, or K,, is not dominated by any vertex from D’, or G [D’] has an isolated vertex. Thus,
D’ is not a DCADS, but D is MDCADS. For example, see Fig 10. O

C—&———>F | S— S——
v \_//

Kaa Kgs K54

Figure 10: MDCAD in I_(n’m.

Observation 4.6
1. K,, has no DCAD and W,, has no DCAD.
2. F, has no DCAD and P, + K+ has no DCAD.
5. Conclusion

The term ” DCAD 7 refers to a new type of control. The DCAD number is correlated with the
graph’s order, size, minimum degree, and maximum degree. This piece of labor generates a range from
conventional and modified graphs that allow the domination number to be computed.
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