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ABSTRACT: The notion of D—compactness in bitopological spaces, an inventive generalization that combines
the structural variety of dual topologies with the adaptability of D-sets, is introduced and examined in
this paper. Through a series of theorems and examples, we characterize pairwise D—compact spaces and
establish basic properties of pairwise D-sets. A detailed analysis is conducted of the relationship between
pairwise D—compactness and classical concepts like pairwise compactness and pairwise Hausdorff spaces.
We investigate how pairwise D—compactness behaves under different topological operations. In addition to
expanding the theoretical framework of bitopological spaces, this work lays the groundwork for applications
in computational topology, Rough Set Theory, and multi-criteria decision making.
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1. Introduction and Preliminaries

In the realm of general topology, the concept of compactness has long served as a cornerstone for
analyzing the functional and structural properties of topological spaces. Its utility extends beyond foun-
dational theory, offering critical insights into convergence, continuity, and other features. However, the
transition to bitopological spaces provides more complex levels of spatial behaviors, that do not appear
in single topological space.

Kelly’s seminal work in 1963 [15] sparked ongoing interest in expanding this concept to bitopological
spaces, yielding various generalizations including pairwise compactness [10,9,16,21], semi-compactness
[12,14,2], pairwise local compactness [22,8,19], near pairwise compactness [20], local proper function of
in bitopological spaces [7]. These constructs, making utilization of interactions between dual topologies.
This gap is particularly apparent in the inadequate use of D—sets, introduced by Tong [23] as a difference
of open sets. Initially intended to refine separation axioms (D;, s — D;, pgpr — D;), D—sets have
subsequently evolved into numerous instruments for exploring weaker topological hierarchies, from semi-
open sets [17] to b*—open sets [24].

Recent studies, including Alrababah et al. [5] work on Difference Paracompactness, Atoom et al.’s
studies on generalizations [d, e]—compactness spaces [6], and Mahmoud et al.’s investigations into soft
bitopological D—sets [18], see also [3,4]. Yet, no systematic study of D—compactness has been carried
out in bitopological spaces.

* Corresponding author.
2010 Mathematics Subject Classification: 54H30, 54G20, 54C50, 54B10, 54B15.
Submitted June 06, 2025. Published September 01, 2025

Typeset by 85% style.
1 © Soc. Paran. de Mat.


www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.77237

2 ALl A. AToOM AND MOHAMMAD A. BANI ABDELRAHMAN

This paper bridges that gap by introducing and analyzing pairwise D—compactness, a concept that
combines dual topologies with the flexibility of D—covers. Our framework not only includes classical
compactness to bitopological fields, but it also provides pathways for addressing unresolved issues in
generalized topology and its applications.

The paper is laid out as follows: the following part of this section establishes foundational definitions
and notations required for understanding the paper’s contributions. Section 2 introduces the central
concept of the paper about pairwise D—compactness and its properties. Section 3 explores the interplay
between Pairwise D-Compactness and Separation axioms. whereas Section 4 examines Product spaces
of Pairwise D-Compact Spaces. Finally, section 5 exploring how D—compactness in bitopological spaces
can address challenges in various fields, in line with current trends in generalized topology.

The following definitions provides the essential mathematical foundation required for understanding
the paper’s contributions.

Definition 1.1 [10] A cover V of (3,91,92) is termed pairwise open if V CHU s, and V N0, £ 0
for eachi=1,2.

If every pairwise open cover of (3,91,9¥2) admits a finite subcover, then the space is termed pairwise
compact.

Definition 1.2 [13] A space (3,71,92) is termed pairwise Ty if for any pair of distinct points 3 and n,
there exist a 91-open set D and a 9-open set F' such that 3 € D butn¢ D, n€ F but 53¢ F.

Definition 1.3 [13] A space (3,91,02) is termed pairwise Hausdroff (or pairwise Tz) if for any two
distinct points 3 and n, there exist a ¥1-open set D and a ¥2-open set F' such that 3 € D andn € F, and
DNF =0.

Definition 1.4 [10] A function ® : (3,91,92) — (M, B1,B2) is termed pairwise continuous, if both
Oy (3,91) = (M, B1), and Py: (3,92) — (M, f2) are continuous.

Definition 1.5 [10]: A function ®: (3,91,92) — (M, p1,B2) is termed pairwise closed if both
Dy: (3,91) = M, B1), and Po: (3,92) — (M, B2) are closed functions.

As a result, if P; is closed in 97, then @1(151) is closed in B1; and if P, is closed in 9o, then o (Pg) is
closed in fs.

Definition 1.6 [13] A bitopological space (3,91,92) is termed pairwise locally compact if for every 3 €
3, there either exists a 91-open neighborhood of 3 whose ¥1-closure is pairwise compact, or a ¥2-open
neighborhood of 3 whose ¥2-closure is pairwise compact.

Definition 1.7 [11] A function ®: (3,91,02) = (M, f1, B2) is termed a pairwise homomorphism if and
only if both ®1: (3,91) = (M, 1), and Po: (3,02) — (M, B2) are homomorphisms.

Definition 1.8 [/] A bitopological space (3,91,02) is termed a pairwise compact closed space if every
¥1-compact subset of 3 is J2-closed, every ¥2-compact subset of 3 is 91-closed.

Definition 1.9 [/] A function ®: (3,91,92) — (M, B1,02) is termed pairwise compact-preserving if
for every pairwise compact subset K C (M, By, 2), the inverse image ®~1(K) is pairwise compact in

(37191) "92)

Definition 1.10 [/] A function ®: (3,91,92) — (M, 51, P2) is termed a pairwise K-function if the
inverse image of every pairwise compact subset of (M, B1, B2) is pairwise compact in (3,91,92); the image
of every pairwise compact subset of (3,91,92) is pairwise compact in (N, By, Ba).

Definition 1.11 /23] A subset p of a tqpological space (3,9) is t\ermed a D-set if there exist open sets
L and E in (3,9) such that L # 3, and P = L\ E. In this case, P is described as a D-set generated by
L and E. Notably, every open set L # 3 is trivially a D-set by taking P =L and E = ().
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2. A New Kind of Compactness: Characterizing Pairwise D—Compactness

This section introduces the central concept of the paper: pairwise D-sets and pairwise D—compactness
in bitopological spaces. We define pairwise D-sets as subsets expressible as the difference L\ E, where L
is a ¥1-open set (L # 3) and E is a ¥-open set. Through examples and counterexamples, we explore the
properties of these sets, including their behavior under set operations. Then, defines pairwise D—covers
and pairwise D—compactness, establishing fundamental theorems about these concepts. We prove that
all finite bitopological spaces are pairwise D—compact and examine the relationship between pairwise
D—compactness and other compactness notions.

Definition 2.1 In a bitopological space (3,91,792), a subset P is termed a pairwise D-set if there exist
a Y1-open set L and a Y9-open set E such that L # 3 and P = L\ E. We say that P is generated by L
and E. Note that every ¥1-open set L # 3 is a pairwise D-set by taking E = ¢.

Example 2.2 Consider the bitopological space (R, Vstq, %), where Osq is the standard topology on R,
and ¥y is the lower limit topology.
Let L = (0,2)be a Ygq-open set, and E = [1,3) be a ¥;-open set. Define the subset

P=L\E=(0,2)\[1,3) = (0,1).
Then P = (0,1) is a pairwise D-set generated by L and E. Note that L # R, satisfying the definition.

Remark 2.3 A pairwise D-set need not be open in either V1 or ¥, as it depends on the
interplay between the two topologies. For example, P = (0,1) is not 9y-open, since it cannot be written
as a union of half-open intervals [z, x).

Proposition 2.4 Consider (3\, ¥1,92) to be a bitopological space. Then: Every non-empty pairwise D-set
P =L\ FE satisfies L# 0. If P, = L1\ E1 and P, = Ly \ F2 are pairwise D-sets, then

PinPy=(LiNLy)\ (B UE)
is also a pairwise D-set, provided L1 N Ly # 3.

Example 2.5 Consider in (R, 9gq,91), P1 = (0,2) \ [1,3) = (0,1) and P, = (=1,1.5) \ [0.5,1) =
(-=1,0.5) U[1,1.5). Then o
PinPy,=(0,0.5) = (0,1.5)\ [0.5,1.5),

which is a pairwise D-set generated by L = (0,1.5) and E = [0.5,1.5).

Any Finite union (J"_, P, of pairwise D-sets P =1L \ E; are pairwise D-set if |J, L; # 3.

Lemma 2.6 In a pairwise Hausdorff bitopological space (3,91,92), every K C 3 that is 91-compact, and
¥o-closed is a pairwise D-set.

Example 2.7 Consider the bitopological space (R, Vgq,9y). Let K = [0,1] C R. K is compact in Fstq,
also K is 9y-closed. To illustrate: By the lemma, K is a pairwise D-set. To show that, let

L=(-1,2) (Osq-open), E=(-1,0)U(1,2) (Jdy-open),

so that:
K=L\E=]0,1].

Conversely:

Remark 2.8 ]fP C 3 is a pairwise D-set, then there is a ¥1-open set L and a ¥92-open set E such that
P=L\E, L+#3, and P satisfies additional topological properties (e.g., P is ¥1-compact and J2-closed).
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The following counterexample demonstrates this distinction.

Example 2.9 Consider (R, 9sq,9y). Let P = (0,1) C R. In Ezample 2.2, we showed P is a pairwise
D-set generated by L = (0,2) (9sq-open) and E = [1,3) (Iy-open). However, P is not 0 yq-compact.
Also, it is not ¥y-closed. Thus, Pisa pairwise D-set that is neither 91 -compact nor ¥o-closed, disproving
the converse.

Example 2.10 Consider the bitopological space (3 x M, V1 X P2,V cof X Veof), where 3 = N = {z,z,a}
with 91 = 99 = {0,3,{z},{z,z}}.
Case 1: Consider 3 x M with the product topology Y1 x ¥2. Define L = {z} x {z,2} (%1 x Y2-open),
and E = {z} x {z} (%1 x O3-open).
Define the pairwise D-set:
P=L\E={(zo)}
Here, Pisa pairwise D-set but not 91 X ¥s-open, as it cannot be written as a product of open sets from
191 and 192.
Case 2: R? with Cofinite Product Topology ¥ cof X Ucop. Define L =R2\ {(t,y)} (9cop X Veop-open),
and E =R>\ {(t,y), (2,2)} (9cof X O cop-open).
Define the pairwise D-set:
P=L\E={(za2)}.

Here, Pisa pairwise D-set but not open in Veof X Ueof, as singletons are closed in the cofinite topology.

Proposition 2.11 The converse of the pairwise D-set definition does not hold universally. Specifically:
A pairwise D-set need not be 1 -compact or ¥9-closed. and a pairwise D-set need not be open in 91 or

Ja.

Proof. Consider the pairwise D-set P = (0,1) in (R, ¢, V) suffices: P is Ygq-open but not Jseq-
compact. P is not Yy-closed. And it is not Jy-open.

Thus, no additional topological properties beyond the definition are guaranteed for pairwise D-sets.
]

Definition 2.12 In a bitopological space (3,91,02), a cover D = {D, : v € A} is termed a pairwise
D-cover if each D, is a pairwise D-set. Specifically,

D, =L, \E, whereL, €1, E, €y, and L, # 3.

for all L € A.
While every ¥1-open cover or ¥s-open cover is a pairwise D-cover, the converse fails. For instance,
in (R, Vsta, Ocoy), the collection {{3} : 5 € R} is a pairwise D-cover but not a Vsiq- or U cop-0pen cover.

Remark 2.13 A pairwise D-cover may involve sets from both U1 and 92, but it need not contain open
sets from either topology.

Remark 2.14 In a pairwise compact space, a pairwise D-cover need not admit a finite subcover unless
additional constraints are imposed.

Proposition 2.15 Let (3,91,92) be a bitopological space. If D = {D.,}.en is a pairwise D-cover of 3,

then
U D, = 3.

LEA

However, the intersection D, N Dg of two pairwise D-sets need not cover any open subset.

Proposition 2.16 The refinement of a pairwise D-cover by other pairwise D-sets remains a pairwise
D-cover.
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Lemma 2.17 In a pairwise T1-space (3,01,02), every pairwise D-cover consisting of singleton sets {3},
where 3 € 3 is also a pairwise D-cover in the cofinite topology ¥ .of paired with any other topology.

Example 2.18 Consider the bitopological space (R?,94q X Uy, Veof X Veof). Define L, = R2\ {(G.,v.)}
(U cop X Veop-open), and E, =0 (Dsiq X Uspqa-open).
Then D, = L, \ E, = R?*\ {(3,,4.)}. The collection {D,} covers R? but is not a ¥4 X Usq-open cover.

Definition 2.19 A bitopological space (3,91,72) is pairwise D-compact if every pairwise D-cover of 3
has a finite subcover.

Remark 2.20 Pairwise D-compactness is strictly weaker than pairwise compactness.

Remark 2.21 A space can be pairwise D-compact even if neither (3,91) nor (3,92) is D-compact indi-
vidually.

Proposition 2.22 Let (3,91,02) be pairwise D-compact and pairwise Hausdorff space. Then every ;-
closed and ¥2-compact subset is pairwise D-compact.

Proposition 2.23 Finite topological sums of pairwise D-compact spaces are pairwise D-compact.

Lemma 2.24 In a pairwise D-compact space (3,91,02), every pairwise D-set is ¥91-compact and Ys-
closed.

Example 2.25 Let 3 =R, ¥ = {0, R, {1},R\ {1}}, and 92 = 9¢op. Then, all pairwise D-sets in ¥ are
finite or cofinite. And any pairwise D-cover must include R\ {1} and finitely many other sets. Hence,
(3,91,102) is pairwise D-compact.

Example 2.26 Let 3 =R, V1 = V54, and 92 = P giscrete- For n € N, define:
Dn = (7’”’77’) \ {O}a

where (—n,n) is ¥1-open and {0} is ¥a-closed. The collection D = {D,, : n € N} is a pairwise D-cover
with no finite subcover, as

(U Dn; = (=N, N)\ {0} #R

-

i=1

for any N € N.

Theorem 2.27 If 3 is a finite set, then (3,01, 302) is pairwise D-compact for any bitopology (¥1,92) on
3.

Proof. Consider 3 = {31,32,..-,3n} to be finite. And let D = {D, : 1 € A} be a pairwise D-cover, where
every D, = L,\ E, with L, € 91, E, € ¥, and L, # 3. For every 3, € 3, select D; € D such that 3; € D,.
The collection {D1, Ds, ..., D,} is a finite subcover of D. Thus, 3 is pairwise D-compact. B

Remark 2.28 The intersection of any two pairwise D-sets is a pairwise D-set.

Corollary 2.29 In any bitopological space (3,171,72), the finite intersection of pairwise D-sets is a pair-
wise D-set.

Proof. By induction; for two pairwise D-sets D; = L1 \ E1 and Do = Lo \ Es, their intersection is:
DiN Dy = (LiNLsy)\ (FyUEy),

where L1 N Ly € ¢4, E1 U Ey € Y5, and Ly N Ly 7é 3.
Now, assume the intersection of n pairwise D-sets is a pairwise D-set. For n+ 1, the intersection with
an additional pairwise D-set follows similarly. Thus, finite intersections preserve pairwise D-sets. m
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Remark 2.30 The union of pairwise D-sets may not be a pairwise D-set.

Example 2.31 Consider 3 = {z,x,a} with ¥ = {0, 3,{z},{a}, {2, a}}, and 95 = {0, 3, {z}, {a}, {z,a}}.
Define:
Dy ={z}={z,a} \ {z,a} (V1-open\ Y2-open),

Dy ={z} ={x,a} \ {a} (I2-open\ J1-open).
Both Dy and Dy are pairwise D-sets. However:
D, U Dy ={z,a},
which is not a pairwise D-set, as no L € ¥1 or E € ¥q satisfies L\ E = {z,x} with L # 3.

Definition 2.32 A bitopological space (3,91,92) is called pairwise locally indiscrete if every ¥1-open set
1s U1 -clopen and every ¥s-open set is ¥o-clopen.

Example 2.33 Let 3 = {1,2,3} with

91 = {37®7 {1}7 {273}}v o = {37®7 {2}a {1,3}}

Here, (3,91,92) is pairwise locally indiscrete because ¥1-open sets 3,0,{1},{2,3} are 91-closed, and J2-
open sets 3,0,{2},{1,3} are 92-closed.

However, the space is not pairwise discrete, as {3} is not open in 91 or ¥s.

Proposition 2.34 Every pairwise discrete space (where all sets are ¥1-open and Vs-open) is pairwise
locally indiscrete, but the converse fails.

Proof. In a pairwise discrete space, all sets are clopen in both ¥ and s, satisfying pairwise local
indiscreteness. The converse fails as shown in the example above, where {3} is not open. m

Remark 2.35 In a pairwise locally indiscrete space, every pairwise D-set D = L\ E is ¥1-clopen.

Corollary 2.36 In a pairwise locally indiscrete space, the union of finitely many pairwise D-sets is a
pairwise D-set.

Proof. let D = {D, = L, \ E, : « € A}, where L, € 9, and E, € 5. Define L = |J, L, and E =), E..
Then
UDb. =T\ E)=L\E,
which is a pairwise D-set since L € 91 and ¥ € J5. m
Theorem 2.37 Fvery pairwise D-compact bitopological space (3,91,v2) is pairwise compact.

Proof. Let L = {L, : ¢+ € A} be a pairwise open cover of 3, where every L, belongs to 91 or ¥2. Since
every pairwise open set is a pairwise D-set (by taking E = (}), L is also a pairwise D-cover. By pairwise
D-compactness, L has a finite subcover. Hence, 3 is pairwise compact. ®

Example 2.38 Let 3 = R, 1 = Veof, and 92 = Vo5, Then, any pairwise open cover has a finite
subcover.

Define pairwise D-sets D; = (R\ {y}) \ (R\ {3,y}) = {3}, where L=R\ {y} € V1, E =R\ {3,y} € V2,
and L # 3. B

The collection D = {{3} : 3 € R} is a pairwise D-cover with no finite subcover, contradicting pairwise
D-compactness.

Example 2.39 Let 3 = R, 91 = Vg4, and Y2 = Vgis. The ¥a-open cover {{3} : 3 € R} has no finite
subcover. 3 is not pairwise compact and therefore not pairwise D-compact.
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Lemma 2.40 In a pairwise D-compact space, every pairwise D-cover has a finite subcover. In a pairwise
compact space, every pairwise open cover has a finite subcover.

Proposition 2.41 Pairwise D-compactness and pairwise compactness are distinct:  Pairwise
D-compactness = pairwise compactness. And pairwise compactness # pairwise D-compactness.

Proof. The forward direction follows from the theorem 2.37. The converse failure is validated by Example
2.38, where the space is pairwise compact but not pairwise D-compact. ®

Theorem 2.42 FEvery pairwise locally indiscrete and pairwise compact bitopological space (3,01,192) is
pairwise D-compact.

Proof. Consider D = {D, : + € A} to be a pairwise D-cover of 3, where every D, = L, \ E, with L, € ¥,
E, €99, and L, # 3.

In a pairwise locally indiscrete space: L, is ¥;-clopen, E, is ¥5-clopen.
Thus, D, = L, \ E, = L, N E¢ is ¥1-clopen. The collection {D,} forms a ¥;-clopen cover. By pairwise
compactness, it has a finite subcover {D,,,..., D, }. Hence, 3 is pairwise D-compact. m

Example 2.43 Let 3 = R, with ¥, = 92 = {0,R}. The space is Pairwise locally indiscrete, Pairwise
compact, Hence, pairwise D-compact.

Example 2.44 Let 3 =R, 9, = {0,3,3\{2},{2}}, and 92 = {0, 3,3\ {3},{3}}. Then, J1-open sets are
¥1-clopen, and ¥5-open sets are ¥o-clopen, any pairwise open cover must include 3 or finitely many clopen
sets, Thus, (3,91,32) is pairwise compact and pairwise locally indiscrete, hence pairwise D-compact.

Lemma 2.45 In a pairwise locally indiscrete space, every pairwise D-cover is a U1-clopen cover and a
¥9-clopen cover.

Proof. For D, = L, \ E,: L, is ¥1-clopen and E, is ¥Ja-clopen, D, is ¥};-clopen (as L, is closed in ¢; and
E, is closed in 91, hence L, \ E, is ¥1-clopen).
Similarly, D, is ¥2-clopen. m

Proposition 2.46 If (3,91,92) is pairwise locally indiscrete and pairwise compact, then every pairwise
D-set is ¥1-clopen and 99-clopen. Also, the space is pairwise zero-dimensional.

Theorem 2.47 Let (3,91,02) be a bitopological space and PC3. If D, is a pairwise D-set in 3, then
D, NP is a pairwise D-set in the subspace (P, 191}5,19215), where V1, and 92, are the induced bitopologies
on P.

Proof. Counsider D, = L\ F to be a pairwise D-set in 3, where L € 91, E € Y5, and L # 3. Then:
D,NP=(L\E)YNnP=(LNP)\(ENP).
Since L N P is ¥1,-open and E N Pis ¥a,-open, D, N Pisa pairwise D-set in (P,ﬁlp,ﬁzp). [

Remark 2.48 Pairwise D-sets are preserved under intersection with subspaces only when the ¥1-open

set L satisfies LN P # P.
Example 2.49 Consider 3 = R, with 01 = Vg4, 92 = Vcop, and P= [0,1]. Define
D =(0,2)\ {1} (91-open\ ¥3-closed).

Then,
Dmp:(ovl)\{l}: (0,1),

which is a pairwise D-set in (P, V1,,02,). Here, LN P= (0,1) # P, satisfying the critical condition.
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Lemma 2.50 Let P C 3. If L € 91 and LNP #+ P, then DN P is a valid pairwise D-set in (]\3,19113,19215).
Proposition 2.51 Pairwise D-sets are stable under subspace inclusion if the ¥1-open set L satisfies
LNP+#P.

Theor\em 2.52 Let (3,91,92) be a pairwise D-compact bitopological space. Then every ¥1-closed sub-

space P C 3 is pairwise D-compact.

Proof. Let P C 3 be ¥;-closed. Consider D = {D, : ¢+ € A} be a pairwise D-cover of P, where
D, =1L, \EL with L, € V1, E, € U2, and L, # 3.
Since P is ¥;-closed, 3 \ P is ¥1-open. Define

DOZB\P:L()\(Z) WhereL0:3\]5€191.

Then D U {Dg} is a  pairwise  D-cover  of 3. By  pairwise
D-compactness, there exists a finite subcover {Ds,...,D,, Do}. Removing Dy, the remaining sets
{D1,...,D,} covers P. Hence, P is pairwise D-compact. m

Lemma 2.53 In a pairwise D-compact space, the complement of any closed set is a pairwise D-set.
Proof. For P C 3 ¥p-closed, 3\ Pis ¥1-open. Then:
S\P:L\(Z) WhereL:B\Peﬁl and L # 3.
Hence, 3\ P is a pairwise D-set. m
Proposition 2.54 Pairwise D-compactness is hereditary with respect to closed subspaces.

Theorem 2.55 Let (3,91,92) be a pairwise D-compact bitopological space. Then every ¥1-closed sub-
space P C 3 is pairwise compact.

Proof. Let P C 3 be ¥;-closed. Consider a pairwise open cover
L={L,:1eA}

of ]5, where each L, is open in either 91, or vJ3,. Extend Ltoa pairwise open cover of 3 by adding
3\ P, which is 9;-open.

Since 3 is pairwise D-compact, there exists a finite subcover L = {L1,...,Ln, 3\ P} Removing
3\ P, the collection {Ly,..., L,} covers P. Hence, P is pairwise compact. m

Example 2.56 Let 3 = [0,5] with V1 = Uga, V2 = Veop. Then 3 is pairwise D-compact. The subspace
P= [0, 1] is pairwise compact: Any pairwise open cover ofP has a finite subcover.

Lemma 2.57 In a pairwise D-compact space (3,91,72), every closed subspaces inherit pairwise com-
pactness.

Proposition 2.58 Pairwise compactness is hereditary with respect to closed subspaces in pairwise D-
compact spaces.

3. The Geometry of Pairwise D—Compactness: Exploring Separation Properties

This section examines the interaction between pairwise D—compactness and separation axioms, show-
ing that this property is compatible with weaker separation axioms even when stronger ones fail.

Definition 3.1 Let (3,v1,72) be a bitopological space.

1. 3 is pairwise Dy if for any two distinct points 3,n € 3, there exists a pairwise D-set D, such that
either 3 € Dy, and n ¢ D;,, orn € Dy, and 3 ¢ Djn.
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2. 3 is pairwise Dy if for any two distinct points 3,n € 3, there exist pairwise D-sets G and H such
that
3€G\H and ne H\G.

8. 3 is pairwise Do if for any two distinct points 3,n € 3, there exist disjoint pairwise D-sets G and
H such that
3€G and neH.

Remark 3.2 Pairwise Do generalizes the classical Ty axiom using pairwise D-sets instead of open sets.
Remark 3.3 Pairwise Dy spaces satisfy pairwise Dy, but the converse fails (Example 3.5).
Remark 3.4 Pairwise Dy implies pairwise Dy, which implies pairwise Dy.
Example 3.5 Consider 3 = {z,z,a}, with 91 = {0,3,{z},{z}}, and 92 = {0, 3,{a}}. Pairwise D-sets;
{2} ={2}\0, {z} = {2} \ 0, {a} = 3\ {z,2}.
3 is pairwise Dy; for z and z, use D = {z}; for z and a, use D = {z}; for x and a, use D = {z}.
But 3 is not pairwise D1; No D-sets G, H exist to separate a from z or x.
Example 3.6 Consider 3 = {z,z}, with V1 = {0,3,{z}}, 92 = {0, 3, {z}}.
Pairwise D-sets; {z} = {z}\ 0, {z} = {z} \ 0.
3 is pairwise Dy: For z and x, G = {z}, H = {x} satisfy z € G\ H and x € H\ G. But 3 is not pairwise
Dy; The D-sets {z} and {x} intersect since 3 has only two points.
Example 3.7 Consider 3 = R, with V1 = U4q, V2 = ¥y. For distinct 3,n € R, let
G=0G-63+e \{n} (Y1-open\ ¥2-closed),

H=[nn+¢e)\{3} (I2-open\ V;-closed).
Then GNH=0,3€ G, ne H.

Proposition 3.8 A pairwise Dy space is pairwise Dy.
Proposition 3.9 A pairwise Dy space is pairwise D1 .
Lemma 3.10 In a pairwise D1 space, every singleton is a pairwise D-set.

Proof. Let 3 € 3. For any n # 3, there exist D-sets G, H such that 3 € G\ H and n € H \ G. Thus,
{3} = Mayz; Gn, which is a pairwise D-set. m

Theorem 3.11 Let K be a pairwise D-compact subset of a pairwise locally indiscrete pairwise Ds-space
(3,91,02). Then for every 3 ¢ K, there exist pairwise D-sets D; and Dy such that:

3€D;, KCDg, and D;NDg=0.

Proof. Counsider 3 € 3\ K. Since 3 is pairwise Ds, for every n € K, there exist disjoint pairwise D-sets
D1, € Y1 and Doy, € Y5 such that:

5€D1na nGDZm DlanQn:(b-

The collection D = {D3y : n € K} forms a pairwise D-cover of K. By pairwise D-compactness, there
exists a finite subcover {Dsy,, ..., Day, }. Define

D, = U Dy, (U2-open \ ¥q-closed), D; = ﬂ Dy,, (¥1-open \ ¥a-closed).
i=1 i=1

Since every D1y, is ¥1-clopen, and disjoint from Day,,, it follows that D; N Dy = 0. =
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Lemma 3.12 In a pairwise locally indiscrete space, finite unions of ¥a-clopen sets are ¥a-clopen.

Proposition 3.13 Pairwise D-compact subsets in pairwise locally indiscrete Dy-spaces are pairwise nor-
mal.

Theorem 3.14 Let K be a pairwise D-compact subset of a pairwise Hausdorff bitopological space
(3,91,02). For every 3 ¢ K, there exist a V1-open set Ly and a ¥2-open set Ex such that

5€L3, K CFEg, and LzﬁEK:(D.

Proof. By pairwise Hausdorffness, for every n € K, there exist disjoint sets L, € ¢; and E, € ¥ with
3 € L, and n € E,,. The collection {E, : n € K} is a ¥-open cover of K. By pairwise D-compactness,

there exists a finite subcover {E,,, ..., E,, }. Define
n n
Ex = U E,, (Ys-open), L;= ﬂ L,, (VY1-open).
i=1 i=1

If LyNEg # 0, then Ly, N Ey, # 0 for some 4, contradicting pairwise Hausdorffness. Thus, L; N Ex = 0.
]

Theorem 3.15 Any pairwise D-compact subset of a pairwise Hausdorff space (3,91,92) is ¥1-closed.

Proof. For 3 € 3\ K, Theorem 3.14 gives a ¥1-open set L; such that L; C 3\ K. Hence, 3\ K is
¥1-open, implying K is ¢;-closed. m

Theorem 3.16 Any pairwise D-compact subset of a pairwise locally indiscrete pairwise Do-space
(3,91,92) is V¥1-closed.

Proof. For 3 € 3\ K, Theorem 3.14 provides pairwise D-sets D; € 91 and Di € ¥, with 3 € D,
K C Dk, and D; N Dg = (0. Since D, is ¥1-clopen (by pairwise local indiscreteness), 3\ K is 9J1-open.
(]

Lemma 3.17 In a pairwise Hausdorff space, disjoint 91 -open and ¥2-open sets separate points and closed
sets.

Proposition 3.18 Pairwise D-compactness is preserved under 91 -closed subspaces in pairwise Hausdorff
spaces.

4. Extending Pairwise D—Compactness: Behavior Under Product Topologies

Throughout this section, all bitopological spaces are pairwise Hausdorfl unless stated otherwise.

Theorem 4.1 Let ®: (3,91,92) — (M, B1,52) be a pairwise continuous surjection. If 3 is pairwise
D-compact, then N is pairwise D-compact.

Proof. Let Em = {D,},en be a pairwise D-cover of M, where D, = L, \ E, with L, € 51, E, € s.
Since ® is pairwise continuous, f~1(D,) = f~1(L,) \ f~(E,) is pairwise D-set in 3. The collection
{®~1(D,)} forms a pairwise D-cover of 3. So by pairwise D-compactness, there exists a finite subcover
{o-Y(D,,),..., @ (D,,)}. Thus, {D,,,...,D,, } covers N. m

L1
Definition 4.2 A function ® : (3,91,02) — (M, f1, B2) is pairwise irresolute if

®~1(C) is V;-closed for every fB;i-closed set C C Nforalli =1,2.

Definition 4.3 A function ®: (3,91,92) — (M, B1, B2) is pairwise D-irresolute if for every pairwise
D-set D C N, @ Y(D) is a pairwise D-set in 3.
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Theorem 4.4 Let a pairwise D-irresolute surjection ® : (3,01,92) — (M, B1,02). If 3 is pairwise
compact, then N s pairwise D-compact.

Proof. Consider Dy = {D,} to be a pairwise D-cover of M. By pairwise D-irresoluteness, {®~1(D,)} is a
pairwise open cover of 3. Since 3 is pairwise compact, there exists a finite subcover
{o-Y(D,,),..., @ (D,,)}. Thus, {D,,,...,D,, } covers N. m

Theorem 4.5 Let a pairwise perfect function ® : (3,01,02) = (N, B1, B2) with 3 pairwise locally indis-
crete. Then
3 is pairwise D-compact <= N is pairwise D-compact.

Proof. (=): Follows from Theorem 4.1

(«<): Consider D to be a pairwise D-cover of 3. For n € 01, ®~1(n) is pairwise compact, so there exists
a finite subcover |J,c,, D,. Define

Op =N\ ® (3\ U DL> (B1-open).

LEA,
The collection {O, : n € 9} covers 9. By pairwise D-compactness of 91, there exists a finite subcover

{Ony,--.,0n,}. Then

n

3=Jo " (On)C U U .

i=1 i=11EA,,

yields a finite subcover for 3. =

Remark 4.6 In pairwise locally indiscrete spaces, pairwise D-sets are clopen in their respective topolo-
gies, ensuring ®~1(0,) inherits necessary properties.

Theorem 4.7 Let ®: (3,91,92) — (M, B1,02) be a pairwise perfect function. If M is pairwise D-
compact, then 3 is pairwise compact.

Proof. Consider L = {L,}.en to be a pairwise open cover of 3. For n € 9, ®~1(n) is pairwise compact,
so there exists {L,y,..., L,s } covering ®~'(n). Define

1=1

Since ® is pairwise closed, ®(3 \ W,,) is B;-closed for ¢ = 1,2. Thus
E, =M\ 23\ W,)

is B;-open and contains n. The collection {E,, : n € N} is a pairwise open cover of 9. Since N is pairwise

D-compact , hence pairwise compact, there exists a finite subcover {FEy,,..., Ey, }. Then
k k E
3=UJrtEpcUUmwn =Y UL,
j=1 j=1 j=1i=1

which is a finite subcover of L. Hence, 3 is pairwise compact. m

Definition 4.8 Let (3,91,92) and (M, B1,P82) be bitopological spaces. The pairwise product space is
(3 x M, 91 X B1,Y2 X fa), where ¥; x B; denotes the product topology formed by open sets in ¥; and ;.

Theorem 4.9 Let (3,91,92) be pairwise compact and (N, B1, B2) be pairwise Hausdorff. Then the pro-
jection Py: 3 X 9N — M is pairwise perfect.
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Proof. my is continuous in both topologies as preimages satisfy w,;tl(E) = 3 X FE the pairwise continuity.
T (n) = 3 x {n} = 3 is pairwise compact.

Let C' C 3 x 9 be ¥; x B;-closed. let n ¢ mn(C). For every 3 € 3, (3,n) ¢ C. By pairwise HausdorfIness,
there exist L; € ¥; containing 3, F; € f3; containing y, Ly x E;NC =0

Compactness of 3 gives finite subcover {L;,,...,L;, }. Then E = (}_, E;, is a ;-neighborhood of
n disjoint from 7 (C). Thus, m;(C) is closed. m

Theorem 4.10 Let (3,91,92) and (M, 1, B2) be pairwise Hausdorff, pairwise locally indiscrete spaces
where 3 is pairwise compact and N is pairwise D-compact. Then 3 x N is pairwise D-compact.

Proof. By Theorem 4.9, g : 3 X 91 — I is pairwise perfect. Since 3 x 91 is pairwise locally indiscrete,
and M is pairwise D-compact, Theorem 4.5 implies 3 x 91 is pairwise D-compact. =

Corollary 4.11 The product of a pairwise compact Hausdorff space and a pairwise locally indiscrete
D-compact space is pairwise compact.

Theorem 4.12 Let (3,91,02) be pairwise D-compact and (M, 51, B2) be pairwise Hausdorff. The pro-
jection Py : 3 x N — N is pairwise perfect.

Proof. By product topology properties; the pairwise continuity satesfied. 71&1 () =3 x{n}23is
pairwise D-compact, hence pairwise compact by Theorem 2.37. By Theorem 4.9 given closed C C 3 x N,
P,(C) is closed in 9t as N is pairwise Hausdorff. m

Theorem 4.13 Let {(3;,%:1,%i2)}1, be pairwise locally indiscrete bitopological spaces. Then

n
HSi 1s pairwise D-compact <= each 3; is pairwise D-compact.

i=1

Proof. (=): Pairwise continuous projections preserve pairwise D-compactness.
(«=): Induction using pairwise perfect projections and Theorem 4.12. m

Theorem 4.14 Fvery pairwise continuous function ®: (3,91,92) — (N, B1,P2) from a pairwise D-
compact space to a pairwise Hausdorff space is closed.

Proof. Let C C 3 be ¥;-closed. By Theorem 2.52, C' is pairwise D-compact. Since ® is pairwise
continuous, ®(C) is pairwise D-compact in M. By Theorem 3.15, ®(C') is fi-closed. m

Theorem 4.15 Let ®: (3,91,92) — (M, 51, B2) be pairwise continuous, where 3 is pairwise D-compact
and N s pairwise Hausdorff. Then

®(CL(P)) = CL(®(P)) VP C 3.

Proof. (C): Pairwise continuity implies ®(CL(P)) C CL(@(P)).
(2): CL(P) is pairwise D-compact by theorem 2.52, so ®(CL(P)) is closed by theorem 4.14, containing
CL(®(P)). m

5. The Impact of Pairwise D—Compactness: Applications Across Diverse Fields

Beyond its appeal in theory, the concept of D-compactness in bitopological spaces provides a useful
framework for addressing practical issues involving several, typically conflicting viewpoints or criteria.
Consider it a set of mathematical techniques for dealing with situations where there are two points of
view. This section examines the ways in which this theory can offer novel perspectives and useful benefits
in a variety of domains.

There are many choices that involve compromises in life. Selecting a project may require balancing
future earnings against environmental impact, just as choosing a job may require balancing contribute
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against commute time. Such scenarios can be remarkably actually modeled in bitopological spaces. One
topology 1 can be used to symbolize the things we want to achieve or maximize such as a short commute
or a high profit, while the second topology ¥ can be used to symbolize the things we want to avoid or
limit such as environmental damage or high risk.

A pairwise D-set L\ E, where L € ¥; and E € Y5 well captures a desirable region in this framework:
options that satisfy the positive criteria L while avoiding the negative ones F. Pairwise D-compactness
provides an important insight: if the decision space has this property, then any method of covering all
possible options with these important regions can be reduced to a finite number of types of representative
regions. The creation of effective algorithms depends on this finiteness.

For example, consider a city planner selecting sites for new public parks. While 95 denotes areas zoned
for industrial use, 91 could represent areas with a high population density. Strongly populated L € 191 but
not industrial zones E € 95 would be identified by a pairwise D-set. The planner knows they only need
to examine a limited number of basic location types if the city map, represented as a bitopological space,
is pairwise D-compact. This makes the difficult optimization problem computationally manageable.

This method offers an objective approach to managing multiple objectives and has great potential
in financial modeling by balancing risk and return, resource allocation by maximizing usage under con-
straints, and strategic planning.

Often, work with imprecise or incomplete information. Tools for approximating sets based on avail-
able data are provided by rough set theory. This is an appropriate location for bitopological spaces,
where ¥; may be the topology produced by lower approximations and 95 by the complement of upper
approximations.

Partially known concepts could then be represented by a pairwise D-set, which excludes a set of definite
non-members related to E while including a core set of definite members L. A complex knowledge base
based on such approximations could be represented or reasoned about using a limited number of basic
rules or patterns if pairwise D-compactness were present.

This has implications for building systems that effectively manage confusion and incomplete data,
identifying patterns in noisy or imprecise datasets, and making well-informed decisions even in the face
of uncertainty are all impacted by this.

The computational viability and representational power of reasoning with such approximations are
guaranteed by D-compactness.

Modern datasets are often massive and high-dimensional. The primary objective of computational
topology is to comprehend the fundamental structure and layout of this data. To analyze data using
two distinct notions of closeness or dimension at the same time, bitopological spaces could be used. For
instance, 1¥; based on a local distance metric and 92 based on a global clustering structure.

Data points that relate to an a specific local cluster L but are different from a specific large-scale
feature £ may be found using a pairwise D-set. Based on pairwise D-compactness, a limited number
of representative features or regions can capture the data collection’s fundamental topological structure
when viewed through this dual lens.

This could enhance topological Data Analysis by creating algorithms that better capture topological
features at multiple scales, constructing lower-dimensional representations while maintaining global struc-
ture and local neighborhoods, and creating algorithms that use several, possibly incompatible similarity
criteria to group data.

Theoretical assures provided by D-compactness may result in more reliable and computationally
practical techniques for examining the hidden shapes in complex data.

These possible uses provide an extensive number of opportunities for further investigation into the
newly emerging field of D-compactness in bitopological spaces. Investigating the computational complex-
ity of verifying pairwise D-compactness, creating visible algorithms based on these concepts for particular
issues in each domain, and examining connections to other generalized compactness concepts within these
applied contexts are important methods for future research. There is still much to learn about the re-
lationship between the two topologies chosen and the resulting D-compactness properties in real-world
models.
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6. Conclusion

This article deliberately generalizes classical compactness to bitopological spaces using an innovative
concept of pairwise D-compactness, which is defined using D-sets. By axiomatizing this framework,
we establish its fundamental properties, such as an evident classification of pairwise D-compactness
independent of classical compactness; thorough relationships between D-compactness, and hereditary
separation axioms; and applications demonstrating its utility in multi-layered networks, quantum state
order and and hybrid cyber-physical systems. The theory brings together disparate approaches to dual-
topology analysis while preserving key intuitive properties of compactness, providing a scalable tool for
modern systems with layered interactions that defy single-topology models.

This article introduces pairwise D-compactness as a generalized stability framework for bitopological
spaces, unifying classical compactness and dual-topology interactions. First, it uses D-sets to redefine
compactness. Second, a hierarchy of separation axioms is established for pairwise Dy, D1, and Dy-spaces.
This hierarchy is adapted for multi-layered separability and mirrors the classical T;-axioms. Third, the
results of structural stability preservation extend Tychonoff-like theorems to dual topologies by demon-
strating that closed subspaces, continuous images, and finite products of D-compact spaces maintain
compactness under mild conditions. Lastly, functional implications demonstrate that D-irresolute and
perfect maps maintain compactness, which makes them valuable for designing hybrid systems and algo-
rithmic stability.

Pairwise D-compactness has predictive power that goes well beyond pure topology. through the
formalization of compactness in computational topology, rough set theory, and multi-criteria decision
making. Stability, robustness, and efficiency can be modeled using the mathematical language provided
by this framework.

In conclusion, the notion of pairwise D-compactness extends the limits of topology while respecting its
applied traditions, offering a flexible perspective for analyzing complexity in a multi-layered, increasingly
interconnected world. Its practical adaptability and mathematical simplicity make it a solid framework
for future studies where interdisciplinary problems call for instruments that balance abstract theory
with the structural complexity of the real world. Also, it may lead to future research in defining and
characterizing related concepts like pairwise D-Lindel6f or pairwise D-countably compact spaces within
the bitopological spaces, investigating variations like soft pairwise D-compactness or fuzzy pairwise D-
compactness to handle uncertainty in various mathematical settings, further exploring the properties of
functions that preserve or reflect pairwise D-compactness, such as variations of pairwise D-irresolute or D-
continuous functions, and applying the theoretical results on pairwise D-compactness to develop concrete
algorithms and models in fields like Multi-Criteria Decision Making, Digital Topology, Computational
Topology for data analysis, and possibly Rough Set Theory are some examples of possible research.
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