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abstract: The notion of D−compactness in bitopological spaces, an inventive generalization that combines
the structural variety of dual topologies with the adaptability of D-sets, is introduced and examined in
this paper. Through a series of theorems and examples, we characterize pairwise D−compact spaces and
establish basic properties of pairwise D-sets. A detailed analysis is conducted of the relationship between
pairwise D−compactness and classical concepts like pairwise compactness and pairwise Hausdorff spaces.
We investigate how pairwise D−compactness behaves under different topological operations. In addition to
expanding the theoretical framework of bitopological spaces, this work lays the groundwork for applications
in computational topology, Rough Set Theory, and multi-criteria decision making.
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1. Introduction and Preliminaries

In the realm of general topology, the concept of compactness has long served as a cornerstone for
analyzing the functional and structural properties of topological spaces. Its utility extends beyond foun-
dational theory, offering critical insights into convergence, continuity, and other features. However, the
transition to bitopological spaces provides more complex levels of spatial behaviors, that do not appear
in single topological space.

Kelly’s seminal work in 1963 [15] sparked ongoing interest in expanding this concept to bitopological
spaces, yielding various generalizations including pairwise compactness [10,9,16,21], semi-compactness
[12,14,2], pairwise local compactness [22,8,19], near pairwise compactness [20], local proper function of
in bitopological spaces [7]. These constructs, making utilization of interactions between dual topologies.
This gap is particularly apparent in the inadequate use of D−sets, introduced by Tong [23] as a difference
of open sets. Initially intended to refine separation axioms (Di, s − Di, pgpr − Di), D−sets have
subsequently evolved into numerous instruments for exploring weaker topological hierarchies, from semi-
open sets [17] to b♯−open sets [24].

Recent studies, including Alrababah et al. [5] work on Difference Paracompactness, Atoom et al.’s
studies on generalizations [d, e]−compactness spaces [6], and Mahmoud et al.’s investigations into soft
bitopological D−sets [18], see also [3,4]. Yet, no systematic study of D−compactness has been carried
out in bitopological spaces.
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This paper bridges that gap by introducing and analyzing pairwise D−compactness, a concept that
combines dual topologies with the flexibility of D−covers. Our framework not only includes classical
compactness to bitopological fields, but it also provides pathways for addressing unresolved issues in
generalized topology and its applications.

The paper is laid out as follows: the following part of this section establishes foundational definitions
and notations required for understanding the paper’s contributions. Section 2 introduces the central
concept of the paper about pairwise D−compactness and its properties. Section 3 explores the interplay
between Pairwise D-Compactness and Separation axioms. whereas Section 4 examines Product spaces
of Pairwise D-Compact Spaces. Finally, section 5 exploring how D−compactness in bitopological spaces
can address challenges in various fields, in line with current trends in generalized topology.

The following definitions provides the essential mathematical foundation required for understanding
the paper’s contributions.

Definition 1.1 [10] A cover V̂ of (Z, ϑ1, ϑ2) is termed pairwise open if V̂ ⊆ ϑ1 ∪ ϑ2, and V̂ ∩ϑi ̸= ∅
for each i = 1, 2.

If every pairwise open cover of (Z, ϑ1, ϑ2) admits a finite subcover, then the space is termed pairwise
compact.

Definition 1.2 [13] A space (Z, ϑ1, ϑ2) is termed pairwise T1 if for any pair of distinct points z and n,
there exist a ϑ1-open set D and a ϑ2-open set F such that z ∈ D but n /∈ D, n ∈ F but z /∈ F .

Definition 1.3 [13] A space (Z, ϑ1, ϑ2) is termed pairwise Hausdroff (or pairwise T2) if for any two
distinct points z and n, there exist a ϑ1-open set D and a ϑ2-open set F such that z ∈ D and n ∈ F , and
D ∩ F = ∅.

Definition 1.4 [10] A function Φ : (Z, ϑ1, ϑ2) → (N, β1, β2) is termed pairwise continuous, if both
Φ1 : (Z, ϑ1) → (N, β1), and Φ2 : (Z, ϑ2) → (N, β2) are continuous.

Definition 1.5 [10]: A function Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) is termed pairwise closed if both
Φ1 : (Z, ϑ1) → (N, β1), and Φ2 : (Z, ϑ2) → (N, β2) are closed functions.

As a result, if P̀1 is closed in ϑ1, then Φ1(P̀1) is closed in β1; and if P̀2 is closed in ϑ2, then Φ2(P̀2) is
closed in β2.

Definition 1.6 [13] A bitopological space (Z, ϑ1, ϑ2) is termed pairwise locally compact if for every z ∈
Z, there either exists a ϑ1-open neighborhood of z whose ϑ1-closure is pairwise compact, or a ϑ2-open
neighborhood of z whose ϑ2-closure is pairwise compact.

Definition 1.7 [11] A function Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) is termed a pairwise homomorphism if and
only if both Φ1 : (Z, ϑ1) → (N, β1), and Φ2 : (Z, ϑ2) → (N, β2) are homomorphisms.

Definition 1.8 [4] A bitopological space (Z, ϑ1, ϑ2) is termed a pairwise compact closed space if every
ϑ1-compact subset of Z is ϑ2-closed, every ϑ2-compact subset of Z is ϑ1-closed.

Definition 1.9 [4] A function Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) is termed pairwise compact-preserving if
for every pairwise compact subset K ⊆ (N, β1, β2), the inverse image Φ−1(K) is pairwise compact in
(Z, ϑ1, ϑ2).

Definition 1.10 [4] A function Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) is termed a pairwise K-function if the
inverse image of every pairwise compact subset of (N, β1, β2) is pairwise compact in (Z, ϑ1, ϑ2); the image
of every pairwise compact subset of (Z, ϑ1, ϑ2) is pairwise compact in (N, β1, β2).

Definition 1.11 [23] A subset P̀ of a topological space (Z, ϑ) is termed a D-set if there exist open sets
L and E in (Z, ϑ) such that L ̸= Z, and P̀ = L \ E. In this case, P̀ is described as a D-set generated by
L and E. Notably, every open set L ̸= Z is trivially a D-set by taking P̀ = L and E = ∅.
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2. A New Kind of Compactness: Characterizing Pairwise D−Compactness

This section introduces the central concept of the paper: pairwiseD-sets and pairwiseD−compactness
in bitopological spaces. We define pairwise D-sets as subsets expressible as the difference L \E, where L
is a ϑ1-open set (L ̸= Z) and E is a ϑ2-open set. Through examples and counterexamples, we explore the
properties of these sets, including their behavior under set operations. Then, defines pairwise D−covers
and pairwise D−compactness, establishing fundamental theorems about these concepts. We prove that
all finite bitopological spaces are pairwise D−compact and examine the relationship between pairwise
D−compactness and other compactness notions.

Definition 2.1 In a bitopological space (Z, ϑ1, ϑ2), a subset P̀ is termed a pairwise D-set if there exist
a ϑ1-open set L and a ϑ2-open set E such that L ̸= Z and P̀ = L \ E. We say that P̀ is generated by L
and E. Note that every ϑ1-open set L ̸= Z is a pairwise D-set by taking E = ϕ.

Example 2.2 Consider the bitopological space (R, ϑstd, ϑll), where ϑstd is the standard topology on R,
and ϑll is the lower limit topology.

Let L = (0, 2)be a ϑstd-open set, and E = [1, 3) be a ϑll-open set. Define the subset

P̀ = L \ E = (0, 2) \ [1, 3) = (0, 1).

Then P̀ = (0, 1) is a pairwise D-set generated by L and E. Note that L ̸= R, satisfying the definition.

Remark 2.3 A pairwise D-set need not be open in either ϑ1 or ϑ2, as it depends on the
interplay between the two topologies. For example, P̀ = (0, 1) is not ϑll-open, since it cannot be written
as a union of half-open intervals [z, x).

Proposition 2.4 Consider (Z, ϑ1, ϑ2) to be a bitopological space. Then: Every non-empty pairwise D-set
P̀ = L \ E satisfies L ̸= ∅. If P̀1 = L1 \ E1 and P̀2 = L2 \ E2 are pairwise D-sets, then

P̀1 ∩ P̀2 = (L1 ∩ L2) \ (E1 ∪ E2)

is also a pairwise D-set, provided L1 ∩ L2 ̸= Z.

Example 2.5 Consider in (R, ϑstd, ϑll), P̀1 = (0, 2) \ [1, 3) = (0, 1) and P̀2 = (−1, 1.5) \ [0.5, 1) =
(−1, 0.5) ∪ [1, 1.5). Then

P̀1 ∩ P̀2 = (0, 0.5) = (0, 1.5) \ [0.5, 1.5),

which is a pairwise D-set generated by L = (0, 1.5) and E = [0.5, 1.5).

Any Finite union
⋃n

i=1 P̀i of pairwise D-sets P̀i = Li \ Ei are pairwise D-set if
⋃

i Li ̸= Z.

Lemma 2.6 In a pairwise Hausdorff bitopological space (Z, ϑ1, ϑ2), every K ⊆ Z that is ϑ1-compact, and
ϑ2-closed is a pairwise D-set.

Example 2.7 Consider the bitopological space (R, ϑstd, ϑll). Let K = [0, 1] ⊂ R. K is compact in ϑstd,
also K is ϑll-closed. To illustrate: By the lemma, K is a pairwise D-set. To show that, let

L = (−1, 2) (ϑstd-open), E = (−1, 0) ∪ (1, 2) (ϑll-open),

so that:
K = L \ E = [0, 1].

Conversely:

Remark 2.8 If P̀ ⊂ Z is a pairwise D-set, then there is a ϑ1-open set L and a ϑ2-open set E such that
P̀ = L\E, L ̸= Z, and P̀ satisfies additional topological properties (e.g., P̀ is ϑ1-compact and ϑ2-closed).
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The following counterexample demonstrates this distinction.

Example 2.9 Consider (R, ϑstd, ϑll). Let P̀ = (0, 1) ⊂ R. In Example 2.2, we showed P̀ is a pairwise
D-set generated by L = (0, 2) (ϑstd-open) and E = [1, 3) (ϑll-open). However, P̀ is not ϑstd-compact.
Also, it is not ϑll-closed. Thus, P̀ is a pairwise D-set that is neither ϑ1-compact nor ϑ2-closed, disproving
the converse.

Example 2.10 Consider the bitopological space (Z × N, ϑ1 × ϑ2, ϑcof × ϑcof), where Z = N = {z, x, a}
with ϑ1 = ϑ2 = {∅,Z, {z}, {z, x}}.

Case 1: Consider Z×N with the product topology ϑ1 × ϑ2. Define L = {z} × {z, x} (ϑ1 × ϑ2-open),
and E = {z} × {z} (ϑ1 × ϑ2-open).

Define the pairwise D-set:

P̀ = L \ E = {(z, x)}.

Here, P̀ is a pairwise D-set but not ϑ1 × ϑ2-open, as it cannot be written as a product of open sets from
ϑ1 and ϑ2.

Case 2: R2 with Cofinite Product Topology ϑcof × ϑcof. Define L = R2 \ {(t, y)} (ϑcof × ϑcof-open),
and E = R2 \ {(t, y), (z, x)} (ϑcof × ϑcof-open).

Define the pairwise D-set:

P̀ = L \ E = {(z, x)}.

Here, P̀ is a pairwise D-set but not open in ϑcof × ϑcof, as singletons are closed in the cofinite topology.

Proposition 2.11 The converse of the pairwise D-set definition does not hold universally. Specifically:
A pairwise D-set need not be ϑ1-compact or ϑ2-closed. and a pairwise D-set need not be open in ϑ1 or
ϑ2.

Proof. Consider the pairwise D-set P̀ = (0, 1) in (R, ϑstd, ϑll) suffices: P̀ is ϑstd-open but not ϑstd-
compact. P̀ is not ϑll-closed. And it is not ϑll-open.

Thus, no additional topological properties beyond the definition are guaranteed for pairwise D-sets.

Definition 2.12 In a bitopological space (Z, ϑ1, ϑ2), a cover D̃ = {Dι : ι ∈ Λ} is termed a pairwise
D-cover if each Dι is a pairwise D-set. Specifically,

Dι = Lι \ Eι, where Lι ∈ ϑ1, Eι ∈ ϑ2, and Lι ̸= Z.

for all ι ∈ Λ.
While every ϑ1-open cover or ϑ2-open cover is a pairwise D-cover, the converse fails. For instance,

in (R, ϑstd, ϑcof), the collection {{z} : z ∈ R} is a pairwise D-cover but not a ϑstd- or ϑcof-open cover.

Remark 2.13 A pairwise D-cover may involve sets from both ϑ1 and ϑ2, but it need not contain open
sets from either topology.

Remark 2.14 In a pairwise compact space, a pairwise D-cover need not admit a finite subcover unless
additional constraints are imposed.

Proposition 2.15 Let (Z, ϑ1, ϑ2) be a bitopological space. If D̃ = {Dι}ι∈Λ is a pairwise D-cover of Z,
then ⋃

ι∈Λ

Dι = Z.

However, the intersection Dι ∩Dβ of two pairwise D-sets need not cover any open subset.

Proposition 2.16 The refinement of a pairwise D-cover by other pairwise D-sets remains a pairwise
D-cover.
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Lemma 2.17 In a pairwise T1-space (Z, ϑ1, ϑ2), every pairwise D-cover consisting of singleton sets {z},
where z ∈ Z is also a pairwise D-cover in the cofinite topology ϑcof paired with any other topology.

Example 2.18 Consider the bitopological space (R2, ϑstd × ϑstd, ϑcof × ϑcof). Define Lι = R2 \ {(zι, yι)}
(ϑcof × ϑcof-open), and Eι = ∅ (ϑstd × ϑstd-open).
Then Dι = Lι \ Eι = R2 \ {(zι, yι)}. The collection {Dι} covers R2 but is not a ϑstd × ϑstd-open cover.

Definition 2.19 A bitopological space (Z, ϑ1, ϑ2) is pairwise D-compact if every pairwise D-cover of Z
has a finite subcover.

Remark 2.20 Pairwise D-compactness is strictly weaker than pairwise compactness.

Remark 2.21 A space can be pairwise D-compact even if neither (Z, ϑ1) nor (Z, ϑ2) is D-compact indi-
vidually.

Proposition 2.22 Let (Z, ϑ1, ϑ2) be pairwise D-compact and pairwise Hausdorff space. Then every ϑ1-
closed and ϑ2-compact subset is pairwise D-compact.

Proposition 2.23 Finite topological sums of pairwise D-compact spaces are pairwise D-compact.

Lemma 2.24 In a pairwise D-compact space (Z, ϑ1, ϑ2), every pairwise D-set is ϑ1-compact and ϑ2-
closed.

Example 2.25 Let Z = R, ϑ1 = {∅,R, {1},R \ {1}}, and ϑ2 = ϑcof. Then, all pairwise D-sets in ϑ1 are
finite or cofinite. And any pairwise D-cover must include R \ {1} and finitely many other sets. Hence,
(Z, ϑ1, ϑ2) is pairwise D-compact.

Example 2.26 Let Z = R, ϑ1 = ϑstd, and ϑ2 = ϑdiscrete. For n ∈ N, define:

Dn = (−n, n) \ {0},

where (−n, n) is ϑ1-open and {0} is ϑ2-closed. The collection D̃ = {Dn : n ∈ N} is a pairwise D-cover
with no finite subcover, as

(

k⋃
i=1

Dni
= (−N,N) \ {0} ̸= R

for any N ∈ N.

Theorem 2.27 If Z is a finite set, then (Z, ϑ1, ϑ2) is pairwise D-compact for any bitopology (ϑ1, ϑ2) on
Z.

Proof. Consider Z = {z1, z2, . . . , zn} to be finite. And let D̃ = {Dι : ι ∈ Λ} be a pairwise D-cover, where

every Dι = Lι \Eι with Lι ∈ ϑ1, Eι ∈ ϑ2, and Lι ̸= Z. For every zi ∈ Z, select Di ∈ D̃ such that zi ∈ Di.

The collection {D1, D2, . . . , Dn} is a finite subcover of D̃. Thus, Z is pairwise D-compact.

Remark 2.28 The intersection of any two pairwise D-sets is a pairwise D-set.

Corollary 2.29 In any bitopological space (Z, ϑ1, ϑ2), the finite intersection of pairwise D-sets is a pair-
wise D-set.

Proof. By induction; for two pairwise D-sets D1 = L1 \ E1 and D2 = L2 \ E2, their intersection is:

D1 ∩D2 = (L1 ∩ L2) \ (E1 ∪ E2),

where L1 ∩ L2 ∈ ϑ1, E1 ∪ E2 ∈ ϑ2, and L1 ∩ L2 ̸= Z.
Now, assume the intersection of n pairwise D-sets is a pairwise D-set. For n+1, the intersection with

an additional pairwise D-set follows similarly. Thus, finite intersections preserve pairwise D-sets.
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Remark 2.30 The union of pairwise D-sets may not be a pairwise D-set.

Example 2.31 Consider Z = {z, x, a} with ϑ1 = {∅,Z, {z}, {a}, {z, a}}, and ϑ2 = {∅,Z, {x}, {a}, {x, a}}.
Define:

D1 = {z} = {z, a} \ {x, a} (ϑ1-open \ ϑ2-open),

D2 = {x} = {x, a} \ {a} (ϑ2-open \ ϑ1-open).

Both D1 and D2 are pairwise D-sets. However:

D1 ∪D2 = {z, x},

which is not a pairwise D-set, as no L ∈ ϑ1 or E ∈ ϑ2 satisfies L \ E = {z, x} with L ̸= Z.

Definition 2.32 A bitopological space (Z, ϑ1, ϑ2) is called pairwise locally indiscrete if every ϑ1-open set
is ϑ1-clopen and every ϑ2-open set is ϑ2-clopen.

Example 2.33 Let Z = {1, 2, 3} with

ϑ1 = {Z, ∅, {1}, {2, 3}}, ϑ2 = {Z, ∅, {2}, {1, 3}}.

Here, (Z, ϑ1, ϑ2) is pairwise locally indiscrete because ϑ1-open sets Z, ∅, {1}, {2, 3} are ϑ1-closed, and ϑ2-
open sets Z, ∅, {2}, {1, 3} are ϑ2-closed.
However, the space is not pairwise discrete, as {3} is not open in ϑ1 or ϑ2.

Proposition 2.34 Every pairwise discrete space (where all sets are ϑ1-open and ϑ2-open) is pairwise
locally indiscrete, but the converse fails.

Proof. In a pairwise discrete space, all sets are clopen in both ϑ1 and ϑ2, satisfying pairwise local
indiscreteness. The converse fails as shown in the example above, where {3} is not open.

Remark 2.35 In a pairwise locally indiscrete space, every pairwise D-set D = L \ E is ϑ1-clopen.

Corollary 2.36 In a pairwise locally indiscrete space, the union of finitely many pairwise D-sets is a
pairwise D-set.

Proof. let D̃ = {Dι = Lι \ Eι : ι ∈ Λ}, where Lι ∈ ϑ1 and Eι ∈ ϑ2. Define L =
⋃

ι Lι and E =
⋂

ι Eι.
Then ⋃

ι

Dι =
⋃
ι

(Lι \ Eι) = L \ E,

which is a pairwise D-set since L ∈ ϑ1 and E ∈ ϑ2.

Theorem 2.37 Every pairwise D-compact bitopological space (Z, ϑ1, ϑ2) is pairwise compact.

Proof. Let L̃ = {Lι : ι ∈ Λ} be a pairwise open cover of Z, where every Lι belongs to ϑ1 or ϑ2. Since

every pairwise open set is a pairwise D-set (by taking E = ∅), L̃ is also a pairwise D-cover. By pairwise

D-compactness, L̃ has a finite subcover. Hence, Z is pairwise compact.

Example 2.38 Let Z = R, ϑ1 = ϑcof, and ϑ2 = ϑcof. Then, any pairwise open cover has a finite
subcover.
Define pairwise D-sets Dz = (R \ {y}) \ (R \ {z, y}) = {z}, where L = R \ {y} ∈ ϑ1, E = R \ {z, y} ∈ ϑ2,
and L ̸= Z.
The collection D̃ = {{z} : z ∈ R} is a pairwise D-cover with no finite subcover, contradicting pairwise
D-compactness.

Example 2.39 Let Z = R, ϑ1 = ϑstd, and ϑ2 = ϑdis. The ϑ2-open cover {{z} : z ∈ R} has no finite
subcover. Z is not pairwise compact and therefore not pairwise D-compact.
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Lemma 2.40 In a pairwise D-compact space, every pairwise D-cover has a finite subcover. In a pairwise
compact space, every pairwise open cover has a finite subcover.

Proposition 2.41 Pairwise D-compactness and pairwise compactness are distinct: Pairwise
D-compactness ⇒ pairwise compactness. And pairwise compactness ⇏ pairwise D-compactness.

Proof. The forward direction follows from the theorem 2.37. The converse failure is validated by Example
2.38, where the space is pairwise compact but not pairwise D-compact.

Theorem 2.42 Every pairwise locally indiscrete and pairwise compact bitopological space (Z, ϑ1, ϑ2) is
pairwise D-compact.

Proof. Consider D̃ = {Dι : ι ∈ Λ} to be a pairwise D-cover of Z, where every Dι = Lι \Eι with Lι ∈ ϑ1,
Eι ∈ ϑ2, and Lι ̸= Z.

In a pairwise locally indiscrete space: Lι is ϑ1-clopen, Eι is ϑ2-clopen.
Thus, Dι = Lι \ Eι = Lι ∩ Ec

ι is ϑ1-clopen. The collection {Dι} forms a ϑ1-clopen cover. By pairwise
compactness, it has a finite subcover {Dι1 , . . . , Dιn}. Hence, Z is pairwise D-compact.

Example 2.43 Let Z = R, with ϑ1 = ϑ2 = {∅,R}. The space is Pairwise locally indiscrete, Pairwise
compact, Hence, pairwise D-compact.

Example 2.44 Let Z = R, ϑ1 = {∅,Z,Z\{2}, {2}}, and ϑ2 = {∅,Z,Z\{3}, {3}}. Then, ϑ1-open sets are
ϑ1-clopen, and ϑ2-open sets are ϑ2-clopen, any pairwise open cover must include Z or finitely many clopen
sets, Thus, (Z, ϑ1, ϑ2) is pairwise compact and pairwise locally indiscrete, hence pairwise D-compact.

Lemma 2.45 In a pairwise locally indiscrete space, every pairwise D-cover is a ϑ1-clopen cover and a
ϑ2-clopen cover.

Proof. For Dι = Lι \Eι: Lι is ϑ1-clopen and Eι is ϑ2-clopen, Dι is ϑ1-clopen (as Lι is closed in ϑ1 and
Eι is closed in ϑ1, hence Lι \ Eι is ϑ1-clopen).

Similarly, Dι is ϑ2-clopen.

Proposition 2.46 If (Z, ϑ1, ϑ2) is pairwise locally indiscrete and pairwise compact, then every pairwise
D-set is ϑ1-clopen and ϑ2-clopen. Also, the space is pairwise zero-dimensional.

Theorem 2.47 Let (Z, ϑ1, ϑ2) be a bitopological space and P̀ ⊆ Z. If Dι is a pairwise D-set in Z, then
Dι ∩ P̀ is a pairwise D-set in the subspace (P̀ , ϑ1P̀

, ϑ2P̀
), where ϑ1P̀

and ϑ2P̀
are the induced bitopologies

on P̀ .

Proof. Consider Dι = L \ E to be a pairwise D-set in Z, where L ∈ ϑ1, E ∈ ϑ2, and L ̸= Z. Then:

Dι ∩ P̀ = (L \ E) ∩ P̀ = (L ∩ P̀ ) \ (E ∩ P̀ ).

Since L ∩ P̀ is ϑ1P̀
-open and E ∩ P̀ is ϑ2P̀

-open, Dι ∩ P̀ is a pairwise D-set in (P̀ , ϑ1P̀
, ϑ2P̀

).

Remark 2.48 Pairwise D-sets are preserved under intersection with subspaces only when the ϑ1-open
set L satisfies L ∩ P̀ ̸= P̀ .

Example 2.49 Consider Z = R, with ϑ1 = ϑstd, ϑ2 = ϑcof, and P̀ = [0, 1]. Define

D = (0, 2) \ {1} (ϑ1-open \ ϑ2-closed).

Then,
D ∩ P̀ = (0, 1) \ {1} = (0, 1),

which is a pairwise D-set in (P̀ , ϑ1P̀
, ϑ2P̀

). Here, L ∩ P̀ = (0, 1) ̸= P̀ , satisfying the critical condition.
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Lemma 2.50 Let P̀ ⊆ Z. If L ∈ ϑ1 and L∩P̀ ̸= P̀ , then D∩P̀ is a valid pairwise D-set in (P̀ , ϑ1P̀
, ϑ2P̀

).

Proposition 2.51 Pairwise D-sets are stable under subspace inclusion if the ϑ1-open set L satisfies
L ∩ P̀ ̸= P̀ .

Theorem 2.52 Let (Z, ϑ1, ϑ2) be a pairwise D-compact bitopological space. Then every ϑ1-closed sub-
space P̀ ⊆ Z is pairwise D-compact.

Proof. Let P̀ ⊆ Z be ϑ1-closed. Consider D̃ = {Dι : ι ∈ Λ} be a pairwise D-cover of P̀ , where
Dι = Lι \ Eι with Lι ∈ ϑ1, Eι ∈ ϑ2, and Lι ̸= Z.

Since P̀ is ϑ1-closed, Z \ P̀ is ϑ1-open. Define

D0 = Z \ P̀ = L0 \ ∅ where L0 = Z \ P̀ ∈ ϑ1.

Then D̃ ∪ {D0} is a pairwise D-cover of Z. By pairwise
D-compactness, there exists a finite subcover {D1, . . . , Dn, D0}. Removing D0, the remaining sets
{D1, . . . , Dn} covers P̀ . Hence, P̀ is pairwise D-compact.

Lemma 2.53 In a pairwise D-compact space, the complement of any closed set is a pairwise D-set.

Proof. For P̀ ⊆ Z ϑ1-closed, Z \ P̀ is ϑ1-open. Then:

Z \ P̀ = L \ ∅ where L = Z \ P̀ ∈ ϑ1 and L ̸= Z.

Hence, Z \ P̀ is a pairwise D-set.

Proposition 2.54 Pairwise D-compactness is hereditary with respect to closed subspaces.

Theorem 2.55 Let (Z, ϑ1, ϑ2) be a pairwise D-compact bitopological space. Then every ϑ1-closed sub-
space P̀ ⊆ Z is pairwise compact.

Proof. Let P̀ ⊆ Z be ϑ1-closed. Consider a pairwise open cover

L̃ = {Lι : ι ∈ Λ}

of P̀ , where each Lι is open in either ϑ1P̀
or ϑ2P̀

. Extend L̃ to a pairwise open cover of Z by adding

Z \ P̀ , which is ϑ1-open.

Since Z is pairwise D-compact, there exists a finite subcover L̃∗ = {L1, . . . , Ln,Z \ P̀}. Removing
Z \ P̀ , the collection {L1, . . . , Ln} covers P̀ . Hence, P̀ is pairwise compact.

Example 2.56 Let Z = [0, 5] with ϑ1 = ϑstd, ϑ2 = ϑcof. Then Z is pairwise D-compact. The subspace

P̀ = [0, 1] is pairwise compact: Any pairwise open cover of P̀ has a finite subcover.

Lemma 2.57 In a pairwise D-compact space (Z, ϑ1, ϑ2), every closed subspaces inherit pairwise com-
pactness.

Proposition 2.58 Pairwise compactness is hereditary with respect to closed subspaces in pairwise D-
compact spaces.

3. The Geometry of Pairwise D−Compactness: Exploring Separation Properties

This section examines the interaction between pairwise D−compactness and separation axioms, show-
ing that this property is compatible with weaker separation axioms even when stronger ones fail.

Definition 3.1 Let (Z, ϑ1, ϑ2) be a bitopological space.

1. Z is pairwise D0 if for any two distinct points z, n ∈ Z, there exists a pairwise D-set Dxn such that
either z ∈ Dzn and n /∈ Dzn, or n ∈ Dzn and z /∈ Dzn.
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2. Z is pairwise D1 if for any two distinct points z, n ∈ Z, there exist pairwise D-sets G and H such
that

z ∈ G \H and n ∈ H \G.

3. Z is pairwise D2 if for any two distinct points z, n ∈ z, there exist disjoint pairwise D-sets G and
H such that

z ∈ G and n ∈ H.

Remark 3.2 Pairwise D0 generalizes the classical T0 axiom using pairwise D-sets instead of open sets.

Remark 3.3 Pairwise D1 spaces satisfy pairwise D0, but the converse fails (Example 3.5).

Remark 3.4 Pairwise D2 implies pairwise D1, which implies pairwise D0.

Example 3.5 Consider Z = {z, x, a}, with ϑ1 = {∅,Z, {z}, {x}}, and ϑ2 = {∅,Z, {a}}. Pairwise D-sets;
{z} = {z} \ ∅, {x} = {x} \ ∅, {a} = Z \ {z, x}.
Z is pairwise D0; for z and x, use D = {z}; for z and a, use D = {z}; for x and a, use D = {x}.
But Z is not pairwise D1; No D-sets G,H exist to separate a from z or x.

Example 3.6 Consider Z = {z, x}, with ϑ1 = {∅,Z, {z}}, ϑ2 = {∅,Z, {x}}.
Pairwise D-sets; {z} = {z} \ ∅, {x} = {x} \ ∅.
Z is pairwise D1: For z and x, G = {z}, H = {x} satisfy z ∈ G\H and x ∈ H \G. But Z is not pairwise
D2; The D-sets {z} and {x} intersect since Z has only two points.

Example 3.7 Consider Z = R, with ϑ1 = ϑstd, ϑ2 = ϑll. For distinct z, n ∈ R, let

G = (z− ϵ, z+ ϵ) \ {n} (ϑ1-open \ ϑ2-closed),

H = [n, n+ ϵ) \ {z} (ϑ2-open \ ϑ1-closed).

Then G ∩H = ∅, z ∈ G, n ∈ H.

Proposition 3.8 A pairwise D1 space is pairwise D0.

Proposition 3.9 A pairwise D2 space is pairwise D1.

Lemma 3.10 In a pairwise D1 space, every singleton is a pairwise D-set.

Proof. Let z ∈ Z. For any n ̸= z, there exist D-sets G,H such that z ∈ G \ H and n ∈ H \ G. Thus,
{z} =

⋂
n̸=z Gn, which is a pairwise D-set.

Theorem 3.11 Let K be a pairwise D-compact subset of a pairwise locally indiscrete pairwise D2-space
(Z, ϑ1, ϑ2). Then for every z /∈ K, there exist pairwise D-sets Dz and DK such that:

z ∈ Dz, K ⊆ DK , and Dz ∩DK = ∅.

Proof. Consider z ∈ Z \K. Since Z is pairwise D2, for every n ∈ K, there exist disjoint pairwise D-sets
D1n ∈ ϑ1 and D2n ∈ ϑ2 such that:

z ∈ D1n, n ∈ D2n, D1n ∩D2n = ∅.

The collection D̃ = {D2n : n ∈ K} forms a pairwise D-cover of K. By pairwise D-compactness, there
exists a finite subcover {D2y1

, . . . , D2yn
}. Define

Dn =

n⋃
i=1

D2ni (ϑ2-open \ ϑ1-closed), Dz =

n⋂
i=1

D1ni (ϑ1-open \ ϑ2-closed).

Since every D1ni
is ϑ1-clopen, and disjoint from D2ni

, it follows that Dz ∩Dn = ∅.
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Lemma 3.12 In a pairwise locally indiscrete space, finite unions of ϑ2-clopen sets are ϑ2-clopen.

Proposition 3.13 Pairwise D-compact subsets in pairwise locally indiscrete D2-spaces are pairwise nor-
mal.

Theorem 3.14 Let K be a pairwise D-compact subset of a pairwise Hausdorff bitopological space
(Z, ϑ1, ϑ2). For every z /∈ K, there exist a ϑ1-open set Lz and a ϑ2-open set EK such that

z ∈ Lz, K ⊆ EK , and Lz ∩ EK = ∅.

Proof. By pairwise Hausdorffness, for every n ∈ K, there exist disjoint sets Ln ∈ ϑ1 and En ∈ ϑ2 with
z ∈ Ln and n ∈ En. The collection {En : n ∈ K} is a ϑ2-open cover of K. By pairwise D-compactness,
there exists a finite subcover {En1 , . . . , Enn}. Define

EK =

n⋃
i=1

Eni (ϑ2-open), Lz =

n⋂
i=1

Lni (ϑ1-open).

If Lz ∩EK ̸= ∅, then Lni
∩Eni

̸= ∅ for some i, contradicting pairwise Hausdorffness. Thus, Lz ∩EK = ∅.

Theorem 3.15 Any pairwise D-compact subset of a pairwise Hausdorff space (Z, ϑ1, ϑ2) is ϑ1-closed.

Proof. For z ∈ Z \ K, Theorem 3.14 gives a ϑ1-open set Lz such that Lz ⊆ Z \ K. Hence, Z \ K is
ϑ1-open, implying K is ϑ1-closed.

Theorem 3.16 Any pairwise D-compact subset of a pairwise locally indiscrete pairwise D2-space
(Z, ϑ1, ϑ2) is ϑ1-closed.

Proof. For Z ∈ Z \ K, Theorem 3.14 provides pairwise D-sets Dz ∈ ϑ1 and DK ∈ ϑ2 with z ∈ Dz,
K ⊆ DK , and Dz ∩DK = ∅. Since Dz is ϑ1-clopen (by pairwise local indiscreteness), Z \K is ϑ1-open.

Lemma 3.17 In a pairwise Hausdorff space, disjoint ϑ1-open and ϑ2-open sets separate points and closed
sets.

Proposition 3.18 Pairwise D-compactness is preserved under ϑ1-closed subspaces in pairwise Hausdorff
spaces.

4. Extending Pairwise D−Compactness: Behavior Under Product Topologies

Throughout this section, all bitopological spaces are pairwise Hausdorff unless stated otherwise.

Theorem 4.1 Let Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) be a pairwise continuous surjection. If Z is pairwise
D-compact, then N is pairwise D-compact.

Proof. Let D̃N = {Dι}ι∈Λ be a pairwise D-cover of N, where Dι = Lι \ Eι with Lι ∈ β1, Eι ∈ β2.
Since Φ is pairwise continuous, f−1(Dι) = f−1(Lι) \ f−1(Eι) is pairwise D-set in Z. The collection
{Φ−1(Dι)} forms a pairwise D-cover of Z. So by pairwise D-compactness, there exists a finite subcover
{Φ−1(Dι1), . . . ,Φ

−1(Dιn)}. Thus, {Dι1 , . . . , Dιn} covers N.

Definition 4.2 A function Φ : (Z, ϑ1, ϑ2) → (N, β1, β2) is pairwise irresolute if

Φ−1(C) is ϑi-closed for every βi-closed set C ⊆ Nforalli = 1, 2.

Definition 4.3 A function Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) is pairwise D-irresolute if for every pairwise
D-set D ⊆ N, Φ−1(D) is a pairwise D-set in Z.
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Theorem 4.4 Let a pairwise D-irresolute surjection Φ : (Z, ϑ1, ϑ2) → (N, β1, β2). If Z is pairwise
compact, then N is pairwise D-compact.

Proof. Consider D̃N = {Dι} to be a pairwise D-cover of N. By pairwise D-irresoluteness, {Φ−1(Dι)} is a
pairwise open cover of Z. Since Z is pairwise compact, there exists a finite subcover
{Φ−1(Dι1), . . . ,Φ

−1(Dιn)}. Thus, {Dι1 , . . . , Dιn} covers N.

Theorem 4.5 Let a pairwise perfect function Φ : (Z, ϑ1, ϑ2) → (N, β1, β2) with Z pairwise locally indis-
crete. Then

Z is pairwise D-compact ⇐⇒ N is pairwise D-compact.

Proof. (⇒): Follows from Theorem 4.1

(⇐): Consider D̃ to be a pairwise D-cover of Z. For n ∈ N, Φ−1(n) is pairwise compact, so there exists
a finite subcover

⋃
ι∈Λn

Dι. Define

On = N \ Φ

(
Z \

⋃
ι∈Λn

Dι

)
(β1-open).

The collection {On : n ∈ N} covers N. By pairwise D-compactness of N, there exists a finite subcover
{On1 , . . . , Onn}. Then

Z =

n⋃
i=1

Φ−1(Oni
) ⊆

n⋃
i=1

⋃
ι∈Λni

Dι,

yields a finite subcover for Z.

Remark 4.6 In pairwise locally indiscrete spaces, pairwise D-sets are clopen in their respective topolo-
gies, ensuring Φ−1(On) inherits necessary properties.

Theorem 4.7 Let Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) be a pairwise perfect function. If N is pairwise D-
compact, then Z is pairwise compact.

Proof. Consider L̃ = {Lι}ι∈Λ to be a pairwise open cover of Z. For n ∈ N, Φ−1(n) is pairwise compact,
so there exists {Lιn1

, . . . , Lιnnn
} covering Φ−1(n). Define

Wn =

nn⋃
i=1

Lιni
.

Since Φ is pairwise closed, Φ(Z \Wn) is βi-closed for i = 1, 2. Thus

En = N \ Φ(Z \Wn)

is βi-open and contains n. The collection {En : n ∈ N} is a pairwise open cover of N. Since N is pairwise
D-compact , hence pairwise compact, there exists a finite subcover {En1

, . . . , Enk
}. Then

Z =

k⋃
j=1

f−1(Enj
) ⊆

k⋃
j=1

Wnj
=

k⋃
j=1

nnj⋃
i=1

L
ι
nj
i
,

which is a finite subcover of L̃. Hence, Z is pairwise compact.

Definition 4.8 Let (Z, ϑ1, ϑ2) and (N, β1, β2) be bitopological spaces. The pairwise product space is
(Z×N, ϑ1 × β1, ϑ2 × β2), where ϑi × βi denotes the product topology formed by open sets in ϑi and βi.

Theorem 4.9 Let (Z, ϑ1, ϑ2) be pairwise compact and (N, β1, β2) be pairwise Hausdorff. Then the pro-
jection Pn : Z×N → N is pairwise perfect.
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Proof. πN is continuous in both topologies as preimages satisfy π−1
N (E) = Z×E the pairwise continuity.

π−1
N (n) = Z× {n} ∼= Z is pairwise compact.

Let C ⊆ Z×N be ϑi × βi-closed. let n /∈ πN(C). For every z ∈ Z, (z, n) /∈ C. By pairwise Hausdorffness,
there exist Lz ∈ ϑj containing z, Ez ∈ βi containing y, Lz × Ez ∩ C = ∅

Compactness of Z gives finite subcover {Lz1 , . . . , Lzn}. Then E =
⋂n

k=1 Ezk is a βi-neighborhood of
n disjoint from πN(C). Thus, πN(C) is closed.

Theorem 4.10 Let (Z, ϑ1, ϑ2) and (N, β1, β2) be pairwise Hausdorff, pairwise locally indiscrete spaces
where Z is pairwise compact and N is pairwise D-compact. Then Z×N is pairwise D-compact.

Proof. By Theorem 4.9, πN : Z×N → N is pairwise perfect. Since Z×N is pairwise locally indiscrete,
and N is pairwise D-compact, Theorem 4.5 implies Z×N is pairwise D-compact.

Corollary 4.11 The product of a pairwise compact Hausdorff space and a pairwise locally indiscrete
D-compact space is pairwise compact.

Theorem 4.12 Let (Z, ϑ1, ϑ2) be pairwise D-compact and (N, β1, β2) be pairwise Hausdorff. The pro-
jection Pn : Z×N → N is pairwise perfect.

Proof. By product topology properties; the pairwise continuity satesfied. π−1
N (n) = Z × {n} ∼= Z is

pairwise D-compact, hence pairwise compact by Theorem 2.37. By Theorem 4.9 given closed C ⊆ Z×N,
Pn(C) is closed in N as N is pairwise Hausdorff.

Theorem 4.13 Let {(Zi, ϑi1, ϑi2)}ni=1 be pairwise locally indiscrete bitopological spaces. Then

n∏
i=1

Zi is pairwise D-compact ⇐⇒ each Zi is pairwise D-compact.

Proof. (⇒): Pairwise continuous projections preserve pairwise D-compactness.
(⇐): Induction using pairwise perfect projections and Theorem 4.12.

Theorem 4.14 Every pairwise continuous function Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) from a pairwise D-
compact space to a pairwise Hausdorff space is closed.

Proof. Let C ⊆ Z be ϑ1-closed. By Theorem 2.52, C is pairwise D-compact. Since Φ is pairwise
continuous, Φ(C) is pairwise D-compact in N. By Theorem 3.15, Φ(C) is β1-closed.

Theorem 4.15 Let Φ: (Z, ϑ1, ϑ2) → (N, β1, β2) be pairwise continuous, where Z is pairwise D-compact
and N is pairwise Hausdorff. Then

Φ(CL(P̀ )) = CL(Φ(P̀ )) ∀P̀ ⊆ Z.

Proof. (⊆): Pairwise continuity implies Φ(CL(P̀ )) ⊆ CL(Φ(P̀ )).
(⊇): CL(P̀ ) is pairwise D-compact by theorem 2.52, so Φ(CL(P̀ )) is closed by theorem 4.14, containing
CL(Φ(P̀ )).

5. The Impact of Pairwise D−Compactness: Applications Across Diverse Fields

Beyond its appeal in theory, the concept of D-compactness in bitopological spaces provides a useful
framework for addressing practical issues involving several, typically conflicting viewpoints or criteria.
Consider it a set of mathematical techniques for dealing with situations where there are two points of
view. This section examines the ways in which this theory can offer novel perspectives and useful benefits
in a variety of domains.

There are many choices that involve compromises in life. Selecting a project may require balancing
future earnings against environmental impact, just as choosing a job may require balancing contribute
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against commute time. Such scenarios can be remarkably actually modeled in bitopological spaces. One
topology ϑ1 can be used to symbolize the things we want to achieve or maximize such as a short commute
or a high profit, while the second topology ϑ2 can be used to symbolize the things we want to avoid or
limit such as environmental damage or high risk.

A pairwise D-set L \E, where L ∈ ϑ1 and E ∈ ϑ2 well captures a desirable region in this framework:
options that satisfy the positive criteria L while avoiding the negative ones E. Pairwise D-compactness
provides an important insight: if the decision space has this property, then any method of covering all
possible options with these important regions can be reduced to a finite number of types of representative
regions. The creation of effective algorithms depends on this finiteness.

For example, consider a city planner selecting sites for new public parks. While ϑ2 denotes areas zoned
for industrial use, ϑ1 could represent areas with a high population density. Strongly populated L ∈ ϑ1 but
not industrial zones E ∈ ϑ2 would be identified by a pairwise D-set. The planner knows they only need
to examine a limited number of basic location types if the city map, represented as a bitopological space,
is pairwise D-compact. This makes the difficult optimization problem computationally manageable.

This method offers an objective approach to managing multiple objectives and has great potential
in financial modeling by balancing risk and return, resource allocation by maximizing usage under con-
straints, and strategic planning.

Often, work with imprecise or incomplete information. Tools for approximating sets based on avail-
able data are provided by rough set theory. This is an appropriate location for bitopological spaces,
where ϑ1 may be the topology produced by lower approximations and ϑ2 by the complement of upper
approximations.

Partially known concepts could then be represented by a pairwiseD-set, which excludes a set of definite
non-members related to E while including a core set of definite members L. A complex knowledge base
based on such approximations could be represented or reasoned about using a limited number of basic
rules or patterns if pairwise D-compactness were present.

This has implications for building systems that effectively manage confusion and incomplete data,
identifying patterns in noisy or imprecise datasets, and making well-informed decisions even in the face
of uncertainty are all impacted by this.

The computational viability and representational power of reasoning with such approximations are
guaranteed by D-compactness.

Modern datasets are often massive and high-dimensional. The primary objective of computational
topology is to comprehend the fundamental structure and layout of this data. To analyze data using
two distinct notions of closeness or dimension at the same time, bitopological spaces could be used. For
instance, ϑ1 based on a local distance metric and ϑ2 based on a global clustering structure.

Data points that relate to an a specific local cluster L but are different from a specific large-scale
feature E may be found using a pairwise D-set. Based on pairwise D-compactness, a limited number
of representative features or regions can capture the data collection’s fundamental topological structure
when viewed through this dual lens.

This could enhance topological Data Analysis by creating algorithms that better capture topological
features at multiple scales, constructing lower-dimensional representations while maintaining global struc-
ture and local neighborhoods, and creating algorithms that use several, possibly incompatible similarity
criteria to group data.

Theoretical assures provided by D-compactness may result in more reliable and computationally
practical techniques for examining the hidden shapes in complex data.

These possible uses provide an extensive number of opportunities for further investigation into the
newly emerging field of D-compactness in bitopological spaces. Investigating the computational complex-
ity of verifying pairwise D-compactness, creating visible algorithms based on these concepts for particular
issues in each domain, and examining connections to other generalized compactness concepts within these
applied contexts are important methods for future research. There is still much to learn about the re-
lationship between the two topologies chosen and the resulting D-compactness properties in real-world
models.
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6. Conclusion

This article deliberately generalizes classical compactness to bitopological spaces using an innovative
concept of pairwise D-compactness, which is defined using D-sets. By axiomatizing this framework,
we establish its fundamental properties, such as an evident classification of pairwise D-compactness
independent of classical compactness; thorough relationships between D-compactness, and hereditary
separation axioms; and applications demonstrating its utility in multi-layered networks, quantum state
order and and hybrid cyber-physical systems. The theory brings together disparate approaches to dual-
topology analysis while preserving key intuitive properties of compactness, providing a scalable tool for
modern systems with layered interactions that defy single-topology models.

This article introduces pairwise D-compactness as a generalized stability framework for bitopological
spaces, unifying classical compactness and dual-topology interactions. First, it uses D-sets to redefine
compactness. Second, a hierarchy of separation axioms is established for pairwise D0, D1, and D2-spaces.
This hierarchy is adapted for multi-layered separability and mirrors the classical Ti-axioms. Third, the
results of structural stability preservation extend Tychonoff-like theorems to dual topologies by demon-
strating that closed subspaces, continuous images, and finite products of D-compact spaces maintain
compactness under mild conditions. Lastly, functional implications demonstrate that D-irresolute and
perfect maps maintain compactness, which makes them valuable for designing hybrid systems and algo-
rithmic stability.

Pairwise D-compactness has predictive power that goes well beyond pure topology. through the
formalization of compactness in computational topology, rough set theory, and multi-criteria decision
making. Stability, robustness, and efficiency can be modeled using the mathematical language provided
by this framework.

In conclusion, the notion of pairwise D-compactness extends the limits of topology while respecting its
applied traditions, offering a flexible perspective for analyzing complexity in a multi-layered, increasingly
interconnected world. Its practical adaptability and mathematical simplicity make it a solid framework
for future studies where interdisciplinary problems call for instruments that balance abstract theory
with the structural complexity of the real world. Also, it may lead to future research in defining and
characterizing related concepts like pairwise D-Lindelöf or pairwise D-countably compact spaces within
the bitopological spaces, investigating variations like soft pairwise D-compactness or fuzzy pairwise D-
compactness to handle uncertainty in various mathematical settings, further exploring the properties of
functions that preserve or reflect pairwise D-compactness, such as variations of pairwise D-irresolute or D-
continuous functions, and applying the theoretical results on pairwise D-compactness to develop concrete
algorithms and models in fields like Multi-Criteria Decision Making, Digital Topology, Computational
Topology for data analysis, and possibly Rough Set Theory are some examples of possible research.
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