Main Results

(3s.) **v. 2025 (43)** : 1–4. ISSN-0037-8712 doi:10.5269/bspm.77310

A note on the energy of graphs with self-loops

B. R. Rakshith^a, K. Shobitha^a, B. J. Manjunatha^{b*}, K. N. Prakasha^c

ABSTRACT: In this paper, we compute the spectra of some extended (bipartite) double graphs with self-loops and compare their energies. We also give a method to construct cospectral graphs with self loops.

Key Words: Self-loops, adjacency matrix, energy of a self-loop graph.

Contents

1 Introduction 1

1. Introduction

Throughout the paper, G denotes a simple graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. Let S be a set consisting of σ number of vertices of G. The self-loop graph G_S is obtained from G by adding a self-loop at all those vertices which are in the set S. The adjacency matrix of G_S , denoted by $A(G_S)$, is a (0,1)-square matrix of order n and is defined as $A(G_S) = A(G) + D_S(G)$, where A(G) is the adjacency matrix of G and $D_S(G)$ is the diagonal matrix with its i-th diagonal entry equal to 1 if $v_i \in S$ or 0 otherwise. Let $\lambda_1(G) \geq \lambda_2(G) \geq \dots \geq \lambda_n(G)$ be the eigenvalues of A(G) and let the eigenvalues of $A(G_S)$ be $\lambda_1^S(G) \geq \lambda_2^S(G) \geq \dots \geq \lambda_n^S(G)$. Two non-isomorphic graphs G_S and G_S are co-spectral if the spectrum of G_S and G_S and G_S are same. The energy of G_S denoted by G_S is the sum of absolute values of G_S , where G_S are same. The concept of energy of a graph with self-loops was

introduced by Gutman et al. in [3]. It is denoted by $\mathcal{E}(G_S)$ and is defined as $\mathcal{E}(G_S) = \sum_{i=1}^n \left| \lambda_i^S(G) - \frac{\sigma}{n} \right|$.

The authors in [3] showed that the relation $\mathcal{E}(G_S) = \mathcal{E}(G_{V(G) \setminus S})$ holds if G is a bipartite graph. Also, in [3], a McClelland-type upper bound for the energy of graphs with self-loops is obtained and it was conjectured that $\mathcal{E}(G_S) > \mathcal{E}(G)$ for $1 < \sigma < n-1$. This conjecture was disproved in [5] by means of counterexamples. In [1], Akbari et al. showed that energy of a bipartite graph G_S is always greater than or equal to its ordinary energy. Later this result was improved for an unbalanced bipartite graph in [11] by Rakshith et al. Relations between energy of a graph and energy of a graph with self-loops were also obtained in [11]. In [8], Popat et al. obtained a family of graphs which satisfies the relation $\mathcal{E}(G_S) = \mathcal{E}(G)$ and $0 < \sigma < n$. Two non-isomorphic self-loop graphs are called equienergetic if their energies are same. In [9], pairs of equienergetic graphs with self loops are presented. Some bounds on energy of self-loop graph and spectral related properties of self-loop graphs are presented in [3,1,10]

Motivated by the concept of energy of graphs with self-loops, in this note, we compute the spectra of some extended (bipartite) double graphs with self-loops and compare their energies. We also give a method to construct cospectral graphs with self loops.

2. Main Results

The extended double graph and extended bipartite double graph of G are defined as follows.

Definition 2.1 The extended double graph of G is obtained by taking two copies of G, and then adding an edge from a vertex v_i of a copy of G to a vertex v_j of another copy of G if and only if i = j or $v_j v_j$ is an edge in G. It is denoted by ED(G).

1

^{*} Corresponding author Submitted June 13, 2025. Published August 24, 2025 2010 Mathematics Subject Classification: 05C50.

Definition 2.2 The extended bipartite double graph of G is a bipartite graph with vertex partition sets $\{v_{11}, v_{12}, \ldots, v_{1n}\} \cup \{v_{21}, v_{22}, \ldots, v_{2n}\}$ and two vertices v_{1i} and v_{2j} are adjacent if and only if i = j or $v_i v_j$ is an edge in G. It is denoted by EBD(G).

Let $ED(G)_{\sigma}$ be the graph obtained from ED(G) by attaching self-loops at each of the vertices belonging to one of the copies of G in ED(G). In the following theorem, we give the adjacency spectrum of $ED(G)_{\sigma}$.

Theorem 2.1 Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of A(G). Then the spectrum of $A(ED(G)_{\sigma})$ consists of $\lambda_i + \frac{1}{2} \pm \frac{1}{2} \sqrt{4 \lambda_i^2 + 8 \lambda_i + 5}$ for $i = 1, 2, \ldots, n$.

Proof: Let $\Gamma_{\sigma} \cong ED(G)_{\sigma}$. By proper labeling of the vertices of Γ_{σ} , we get the adjacency matrix $A(\Gamma_{\sigma})$ of Γ_{σ} as follows:

$$\begin{pmatrix} A(G) + I_n & A(G) + I_n \\ A(G) + I_n & A(G) \end{pmatrix}.$$

Since A(G) is real symmetric, it has n orthogonal eigenvectors. Let X_1, X_2, \ldots, X_n be a set of n orthogonal eigenvectors of A(G) corresponding to the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively. Let $Z_i = \begin{bmatrix} X_i \\ \delta_i X_i \end{bmatrix}$ for $i = 1, 2, \ldots, n$. Then Z_i 's are orthogonal and

$$A(\Gamma_{\sigma})Z_{i} = \left[\begin{array}{c} (\lambda_{i}+1)(\delta_{i}+1)X_{i} \\ (\lambda_{i}(\delta_{i}+1)+1)X_{i} \end{array} \right].$$

Thus, Z_i is an eigenvector of $A(\Gamma_{\sigma})$ if and only if $\frac{(\lambda_i(\delta_i+1)+1)}{(\lambda_i+1)(\delta_i+1)}=\delta_i$ and the corresponding eigenvalue is $(\lambda_i+1)(\delta_i+1)$. Hence for $\lambda_i\neq -1$ and $\delta_i=\frac{-1\pm\sqrt{4\lambda_i^2+8\lambda_i+5}}{2(\lambda_i+1)}$, $\lambda_i+\frac{1}{2}\pm\frac{1}{2}\sqrt{4\lambda_i^2+8\lambda_i+5}$ is an eigenvalue of $A(\Gamma_{\sigma})$ corresponding to the eigenvector Z_i .

an eigenvalue of $A(\Gamma_{\sigma})$ corresponding to the eigenvector Z_i . Now, if $\lambda_i = -1$, then it is easy to see that $\begin{bmatrix} \mathbf{0} \\ X_i \end{bmatrix}$ and $\begin{bmatrix} X_i \\ \mathbf{0} \end{bmatrix}$ are orthogonal eigenvectors of $A(\Gamma_{\sigma})$ associated with the eigenvalues -1 and 0, respectively. Thus we have listed 2n orthogonal eigenvectors of $A(\Gamma_{\sigma})$ along with their corresponding eigenvalues.

The following corollary is immediate from the above theorem.

Corollary 2.1 Let G_1 and G_2 be two non-isomorphic cospectral graphs on n vertices. Then $ED(G_1)_{\sigma}$ and $ED(G_2)_{\sigma}$ are cospectral graphs with self-loops.

Let $EBD(G)_{\sigma}$ be the graph obtained from EBD(G) by attaching self-loops at each of the vertices belonging to one of the partition sets of EBD(G). In the following theorem, we give the adjacency spectrum of $EBD(G)_{\sigma}$.

Theorem 2.2 Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of A(G). Then the spectrum of $A(EBD(G)_{\sigma})$ consists of $\frac{1}{2} \pm \frac{1}{2} \sqrt{4 \lambda_i^2 + 8 \lambda_i + 5}$ for $i = 1, 2, \ldots, n$.

Proof: Let $\Gamma'_{\sigma} \cong EBD(G)_{\sigma}$. By proper labeling of the vertices of Γ'_{σ} , we get the adjacency matrix $A(\Gamma'_{\sigma})$ of Γ'_{σ} as follows:

$$\left(\begin{array}{cc} I_n & A(G) + I_n \\ A(G) + I_n & \mathbf{0} \end{array}\right).$$

Since A(G) is real symmetric, it has n orthogonal eigenvectors. Let X_1, X_2, \ldots, X_n be a set of n orthogonal eigenvectors of A(G) corresponding to the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively. Let $Z_i = \begin{bmatrix} X_i \\ \delta_i X_i \end{bmatrix}$ for

 $i = 1, 2, \ldots, n$. Then Z_i 's are orthogonal and

$$A(\Gamma'_{\sigma})Z_{i} = \left[\begin{array}{c} (\delta_{i}(\lambda_{i}+1)+1)X_{i} \\ (\lambda_{i}+1)X_{i} \end{array} \right].$$

Thus, Z_i is an eigenvector of $A(\Gamma'_{\sigma})$ if and only if $\frac{\lambda_i+1}{\delta_i(\lambda_i+1)+1}=\delta_i$ and the corresponding eigenvalue is $\delta_i(\lambda_i+1)+1$. Hence for $\lambda_i\neq -1$ and $\delta_i=\frac{-1\pm\sqrt{4\lambda_i^2+8\lambda_i+5}}{2(\lambda_i+1)}, \ \frac{1}{2}\pm\frac{1}{2}\sqrt{4\lambda_i^2+8\lambda_i+5}$ is an eigenvalue of $A(\Gamma'_{\sigma})$ corresponding to the eigenvector Z_i .

Now, if $\lambda_i = -1$, then it is easy to see that $\begin{bmatrix} \mathbf{0} \\ X_i \end{bmatrix}$ and $\begin{bmatrix} X_i \\ \mathbf{0} \end{bmatrix}$ are orthogonal eigenvectors of $A(\Gamma'_{\sigma})$ associated with the eigenvalues 0 and 1, respectively. Thus we have listed 2n orthogonal eigenvectors of $A(\Gamma'_{\sigma})$ along with their corresponding eigenvalues.

Corollary 2.2 Let G_1 and G_2 be two non-isomorphic cospectral graphs on n vertices. Then $EBD(G_1)_{\sigma}$ and $EBD(G_2)_{\sigma}$ are cospectral graphs with self-loops.

At this stage, it is natural to ask "Whether $\mathcal{E}(ED(G)_{\sigma}) = \mathcal{E}(EBD(G)_{\sigma})$ for some graph G?". In the following theorem we answer this question.

Theorem 2.3 There exists no non-empty graph G satisfying the relation $\mathcal{E}(ED(G)_{\sigma}) = \mathcal{E}(EBD(G)_{\sigma})$.

Proof: From Theorems 2.1 and 2.2, we get

$$\mathcal{E}(ED(G)_{\sigma}) = \sum_{i=1}^{n} |\lambda_{i} + \frac{1}{2}\sqrt{4(\lambda_{i} + 1)^{2} + 1}| + \sum_{i=1}^{n} |\lambda_{i} - \frac{1}{2}\sqrt{4(\lambda_{i} + 1)^{2} + 1}|$$

$$= \sum_{\lambda_{i < -0.625}} |\lambda_{i} + \frac{1}{2}\sqrt{4(\lambda_{i} + 1)^{2} + 1}| + \sum_{\lambda_{i < -0.625}} |\lambda_{i} - \frac{1}{2}\sqrt{4(\lambda_{i} + 1)^{2} + 1}|$$

$$+ \sum_{\lambda_{i \geq -0.625}} |\lambda_{i} + \frac{1}{2}\sqrt{4(\lambda_{i} + 1)^{2} + 1}| + \sum_{\lambda_{i \geq -0.625}} |\lambda_{i} - \frac{1}{2}\sqrt{4(\lambda_{i} + 1)^{2} + 1}|$$

$$= 2\sum_{\lambda_{i < -0.625}} |\lambda_{i}| + \sum_{\lambda_{i \geq -0.625}} \sqrt{4(\lambda_{i} + 1)^{2} + 1}.$$

and

$$\mathcal{E}(EBD(G)_{\sigma}) = \sum_{i=1}^{n} \sqrt{4(\lambda_i + 1)^2 + 1}.$$

Thus,
$$\mathcal{E}(ED(G)_{\sigma}) - \mathcal{E}(EBD(G)_{\sigma}) = 2\sum_{\lambda_{i<-0.625}} |\lambda_i| - \sum_{\lambda_{i<-0.625}} \sqrt{4(\lambda_i+1)^2+1}$$
. Since $2|\lambda_i| > 2$

 $\sqrt{4(\lambda_i+1)^2+1}$ for $\lambda_i<-0.625$ and one of the eigenvalue of G is less than or equal to -1, we get $\mathcal{E}(ED(G)_{\sigma})>\mathcal{E}(EBD(G)_{\sigma})$. This completes the proof.

References

- 1. S. Akbari, H. A. Menderj, M. H. Ang, J. Lim, Z. C. Ng, Some Results on Spectrum and Energy of Graphs with Loops, Bull. Malays. Math. Sci. Soc. 46 (2023), Art. No. 94.
- 2. J. Day, W. So, Singular value inequality and graph energy change, Electron. J. Linear Algebra, 16 (2007) 291–299.
- 3. I. Gutman, I. Redžepović, B. Furtula, A. M. Sahal, Energy of graphs with self-loops, MATCH Commun. Math. Comput. Chem. 87 (2021) 645–652.

- 4. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1989.
- 5. I. Jovanović, E. Zogić, E. Glogić, On the conjecture related to the energy of graphs with self-loops, MATCH Commun. Math. Comput. Chem. 89 (2023), 479–488.
- 6. J. Liu, Y. Chen, D. Dimitrov, J. Chen, New Bounds on the Energy of Graphs with Self-Loops, MATCH Commun. Math. Comput. Chem, 91 (2024), 779-796.
- 7. A. Mandal, S. M. A. Nayeem, On Bounds of Energy of a Graph with Self-Loops. MATCH Commun. Math. Comput. Chem, 92 (2024), 703–727.
- 8. K. M. Popat, K. R. Shingal, Some new results on energy of graphs with self loops, Journal Math. Chem. 61 (2023), 1462–1469
- 9. K. M. Popat, K. R. Shingala, On Equienergetic Graphs and Graph Energy of Some Standard Graphs with Self loops, preprint, doi.org/10.21203/rs.3.rs-2831568/v1.
- 10. U. Preetha P., M. Suresh, E. Bonyah, On the spectrum, energy and Laplacian energy of graphs with self-loops, Heliyon 9 (2023), e17001.
- 11. B. R. Rakshith, K. C. Das, B. J. Manjunatha, Y. Shang, Relations between ordinary energy and energy of a self-loop graph, Heliyon 10 (2024), e27756.
- ^a Department of Mathematics
 Manipal Institute of Technology
 Manipal Academy of Higher Education
 Manipal 576 104, India.
 E-mail address: ranmsc08@yahoo.co.in; shobithakoriyar15@gmail.com

and

Department of Mathematics
 Sri Jayachamarajendra College of Engineering
 JSS Science and Technology University
 Mysuru-570 006, India.
 E-mail address: manjubj@sjce.ac.in

and

^c Department of Mathematics Vidyavardhaka College of Engineering Mysuru-570 002, India. E-mail address: prakashamaths@gmail.com