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Quantified energy decay of Euler–Bernoulli beams on an unbounded star-shaped network ∗

Amina Boukhatem

abstract: This work discusses the energy decay rates of an infinite star-shaped network of beams with a
localized structural damping. Using frequency domain method we prove that the whole system is polynomially
stable under some condition on the lengths of the rods.
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1. Introduction

In recent years, many researchers have paid attention to the study of the stability of PDEs defined on
star-shaped networks, including both finite or semi-infinite branches, such as wave or beam equations.

Stability results for wave equations have been established in [3,5,7], involving various forms of damp-
ing such as Kelvin–Voigt or structural damping applied at different locations on the unbounded network.
In [1], the author investigated the asymptotic dynamics of two-dimensional elastic networks composed
of Euler-Bernoulli beams with localized damping. These networks, generally consisting of finite edges,
exhibit complex dynamic behavior due to the interplay between boundary conditions and internal trans-
mission laws.

Furthermore, in the recent work of A. Boukhatem and A. Bchatnia [6], the authors derive the peri-
odicity and asymptotic properties of damped Euler–Bernoulli beam networks, and they give the strong
stability and almost periodicity of solutions to the network, which is subjected to structural damping
under appropriate assumptions on the damping and network structure. Indeed, one finds singularities of
the resolvent operator along the imaginary axis, both at zero and at infinity. This gives rise to a highly
important case regarding the rate of energy decay, which is the main focus of this work.

Physically, the problem in question can be conceived as defining vibrations in coupled elastic struc-
tures, such as mechanical frames, suspension bridges, or transmission networks. The star-like config-
uration is that of joints where several beams or strings meet and the introduced damping is that of
mechanisms that absorb vibrational energy, material properties or localized control units. Understanding
stability and energy degradation in these systems is thus important to structural integrity and resonant
phenomenon avoidance.

In this paper, we deal with Euler Bernoulli beam equation on a semi finite network Γ, composed of a
finite set of edges {Ij}NF

j=1 with NF ∈ N∗, and an infinite set of edges {Ij}NF+NI

j=NF+1 with NI ∈ N∗. All these
edges are connected at a unique common vertex. Each finite edge Ij for 1 ≤ j ≤ NF is identified with
the interval (0, ℓj), where ℓj > 0 denotes its length, and each infinite edge Ij for NF + 1 ≤ j ≤ NF +NI
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is identified with the semi-infinite interval (0,+∞). The common vertex corresponds to the point 0 in all
these intervals.

More precisely the boundary and transmission conditions can be described as follows,



∂2
t uj + ∂x

(
∂3
xuj − αj(x)∂

2
xtuj

)
= 0, (x, t) ∈ Ij × R+, j = 1, · · · , NF +NI ,

uj(ℓj , t) = ∂xuj(ℓj , t) = 0, t > 0, j = 1, ..., NF ,

uj(0, t) = uk(0, t), t > 0, j, k = 1, ..., NF +NI ,

∂xuj(0, t) = ∂xuk(0, t), t > 0, j, k = 1, ..., NF +NI ,

NF+NI∑
j=1

∂2
xuj(0, t) =

NF+NI∑
j=1

∂3
xuj(0, t) = 0, t > 0,

uj(x, 0) = u0
j (x), ∂tuj(x, 0) = u1

j (x), x ∈ (Ij), j = 1, .., NF ,

uj(x, 0) = u0
j (x), ∂tuj(x, 0) = u1

j (x), x ∈ R+, j = NF + 1, .., NF +NI .

(1.1)

The damping coefficient function α(.), satisfy{
α(x) = (αj(x))1≤j≤NF+NI

∈ L∞(Γ),

αj(x) ≥ 0, αj(0) = 0, ∀j = 1, ..., NF +NI .

We define

E(t) =
1

2

NF+NI∑
j=1

∫
Ij

(
|∂tuj(x, t)|2 + |∂2

xuj(x, t)|2
)
dx.

and

dE(t)

dt
= −

NF+NI∑
j=1

∫
Ij

αj(x)|∂2
xtuj(x, t)|2dx, ∀t > 0.

The dissipation law satisfies
dE(t)

dt
≤ 0, ∀t > 0, from which we deduce that the energy is non increasing

function of the time variable t.
We organize this work as follows: In Section 2, we will give well-posedness and strong stability results.

Then, in Section 3, we discuss two cases of the resolvent singularities, and finally, we present the energy
decay rate.

2. Well-posedness and strong stability

In this section, we establish the well-posedness and strong stability of system (1.1) using semigroup
theory.

We start by formulating the problem as an abstract linear evolution equation on an appropriate
Hilbert space H. The following notation and functional framework will be used throughout this analysis.

Let Hk(Ij) (resp. L
k(Ij)) be the Sobolev space (resp. the Lebesgue space) on Ij , j = 1, .., NF +NI ,

k = 1, 2, in what follows we will write Hk(Γ) = ΠNF+NI
j=1 Hk(Ij) (resp. L

k(Γ) = ΠNF+NI
j=1 Lk(Ij).

We consider the complex Hilbert space

X = H× L2 (Γ) ,
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endowed with the inner product,

⟨Y1, Y2⟩X :=

NF+NI∑
j=1

∫
Ij

∂2
xf

1
j ∂2

xf
2
j dx+

NF+NI∑
j=1

∫
Ij

g1j g2jdx,

in which Yk =
(
fk, gk

)
, k = 1, 2 and

H =


f ∈ H2(Γ),

fj (ℓj) = ∂xfj (ℓj) = 0,∀j = 1, .., NF ,

fj (0) = fk (0) ,∀ j, k = 1, .., NF +NI ,

∂xfj (0) = ∂xfk (0) ,∀j, k = 1, .., NF +NI .


We also define

A
(
u
v

)
=

(
v(

−∂3
xu+ α∂xv

)
x

)
, ∀ (u, v) ∈ D(A),

where αv := (αjvj)j=1,..,NF+NI
and

D (A) = {Y = (u, v) ∈ H ×H,
(
−∂3

xuj + αj∂xvj
)
∈ H1(Γ),

NF+NI∑
j=1

∂2
xuj(0) =

NF+NI∑
j=1

∂3
xuj(0) = 0},

Now we can give a reformulation of the system (1.1) in the energy space X,
dU

dt
= AU,

U(0) = U0,
(2.1)

such that

U =



u1

u2

...
uNF+NI

∂tu1

∂tu2

...
∂tuNF+NI


, U0 =



u0
1

u0
2
...

u0
NF+NI

u1
1

u1
2
...

u1
NF+NI


.

The operator A generates a C0 − semigroup of contractions (T (t))t≥0 .

2.1. Well-posedness

In view of [6], system (1.1) is well-posed. More specifically, we have the following proved result:

Corollary 2.1 For an initial datum y0 ∈ X, there exists a unique weak solution y ∈ C(R+, X) of system
(2.1). Moreover, if y0 ∈ D(A), then there exists a unique strong solution y ∈ C(R+, D(A)) ∩ C1(R+, X),
of system (2.1).

Proof: In [6], authors use the Lumer–Phillips theorem and show that the operator A generates a C0-
semigroup of contractions. Therefore, the above corollary holds. 2
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2.2. Strong stability

We put the following condition on the damping coefficient αj(x),

(P1) : α1(x) ≥ K > 0, αj(x) = 0, ∀j = 2, ..., NF +NI .

Under condition (P1), the spectrum approaches the imaginary axis. In fact, we have:

Proposition 2.1 Suppose that the function α(x) satisfies the condition (P1) then the intersection between
the imaginary axis and the isolated eigenvalues spectrum of A1 is an empty set if and only if

(H1) :
li
lj

̸= z1
z2

, ∀i, j = 2, ..., NF and z1, z2 ∈ S,

where S = {z ∈ R, such that cosh(z) cos(z) = 1}.

Consequently

Theorem 2.1 Under condition (P1) and the hypothesis (H1), the C0-semigroup (T (t))t≥0 generated by
the operator A, is strongly stable on the energy space.

For more details and the proof, we invite the reader to consult [6].

3. Energy decay rate

In this section, we will look at how the resolvent operator behaves as |β| → ∞ and |β| → 0 which
give us the rate of the energy decay.

3.1. Singularity at infinity

In this subsection we will describe an upper bound of the resolvent operator norm.

Proposition 3.1 We have
∥ (iβI −A)

−1 ∥ = O(|β|) as |β| → ∞. (3.1)

Proof: We assume by contradiction that, we assume that (3.1) fails. Then there exists a sequence (βn)
of real numbers, βn → ∞, (without loss of generality, we suppose that βn > 0), and a sequence of vectors
(yn) = (un, vn) in D (A) with ∥yn∥X = 1, such that

βn (iβnI −A) (un, vn) =: (fn, gn) = o(1) in X. (3.2)

Writing (3.2) in terms of its components, then we multiply the result by β−1
n , we get

iβnu
n
j − vnj = β−1

n fn
j → 0, in H2(Ij), j = 1, .., NF +NI ,

iβnv
n
1 + ∂4

xu
n
1 − (α1∂xv

n
1 )x = β−1

n gn1 → 0, in L2(I1),

iβnv
n
j + ∂4

xu
n
j = β−1

n gnj → 0, in L2(Ij), j = 2, .., NF +Nj .

(3.3)

Taking the imaginairy part of the inner product of the equation (3.3)2,3, with vnj taking into considiration

(3.3)1 in L2(Ij), j = 1, ..., NF +NI , after summing the result over j = 1, .., NF +NI , we get

∥vn∥2L2(Γ) − ∥∂2
xu

n∥2L2(Γ) = o(1). (3.4)

Here and now, we will divide the rest of the proof into several steps:

First step. This step is devoted to show:
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∥vn1 ∥L2(I1), ∥∂
2
xu

n
1∥L2(I1) = o(1).

By (3.2), it is clear that

∥βn (iβnI −A) (un, vn)∥X ≥ |ℜ ⟨βn (iβnI −A) (un, vn), (un, vn)⟩X |

From where we deduce,
∥∂xvn1 ∥L2(I1) = o(β−1

n ). (3.5)

Thus, by the fact that vn1 (ℓ1) = 0, it follows that

∥vn1 ∥L2(I1) ≤ C∥∂xvn1 ∥L2(I1), ∀C ≥ 0.

using (3.5), we get

∥vn1 ∥L2(I1) = o(1). (3.6)

Otherwise, substituting (3.5), (3.6), in (3.3)1, it followsβn∥∂xun
1∥L2(I1) = o(1)

βn∥un
1∥L2(I1) = o(1).

(3.7)

Consequently, un
1 , v

n
1 −→

n→∞
0 in H1(I1) ↪→ C([I1]), then |un

1 (0)|, |vn1 (0)|, βn|un
1 (0)| = o(1), wich further by

the continuity condition leads to,

βn|un
j (0)|, |vnj (0)|, |un

j (0)| = o(1), ∀j = 1, ..., NF +NI . (3.8)

Moreover, using the Gagliardo-Nirenberg inequality and (3.7)1, we get

∥∂xun
j ∥L∞(Ij) ≤ ∥∂2

xu
n
j ∥

1
2

L2(Ij)
∥∂xun

j ∥
1
2

L2(Ij)
+ ∥∂xun

j ∥L2(Ij), (3.9)

The continuity condition one more time and (3.9), give us

|∂xun
1 (ℓ1)| = |∂xun

j (0)| = o(1), ∀j = 2, ..., NF +NI . (3.10)

Next, we will need to calculate the real part of the inner product of (3.3)2, in L2(I1) by q∂xu
n
1 , after a

various integration by parts we find

− 1

2

[
|vn1 |2q

]ℓ1
0
− 1

2

[
|∂2

xu
n
1 |2q

]ℓ1
0
+ ℜ

([
∂3
xu

n
1∂xu

n
1 q
]ℓ1
0

)
−ℜ

([
∂2
xu

n
1∂xu

n
1∂xq

]ℓ1
0

)
+ ℜ

(∫
I1

∂2
xu

n
1∂xu

n
1∂

2
xqdx

)
+

1

2

∫
I1

(
3|∂2

xu
n
1 + |vn1 |2

)
∂xq dx = o(1).

(3.11)

where we have used the fact that gn1 , f
n
1 converge to zero in L2(I1), H

1(I1), respectively, and the bound-
edness of ∥∂xun

1∥L2(I1), and iβn∂xun
1 = −∂xvn1 − β−1

n ∂xfn
1 . also we deduce∣∣∣∣ℜ(∫

I1

∂2
xu

n
1∂xu

n
1∂

2
xqdx

)∣∣∣∣ ≤ ∥∂2
xu

n
1∥L2(I1)∥∂xu

n
1∥L2(I1)∥∂

2
xq∥L∞(I1) = o(1). (3.12)

Make use of tha boundary condition and (3.8),(3.12), in (3.11)

− 1

2

[
|∂2

xu
n
1 |2q

]ℓ1
0
−ℜ

(
∂3
xu

n
1 (0)∂xu

n
1 (0)q(0)

)
+ ℜ

(
∂2
xu

n
1 (0)∂xu

n
1 (0)∂xq(0)

)
+

3

2

∫
I1

|∂2
xu

n
1 |2∂xq dx = o(1).

(3.13)
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In all what follows we will give the function q the explicit form then we replace it in the equation
(3.13), we start by taking q(x) = x2eβn(x−ℓ1)

− ℓ21
2
|∂2

xu
n
1 (ℓ1)|2 +

3

2

∫
I1

|∂2
xu

n
1 |2
(
2x+ βnx

2
)
eβn(x−ℓ1) dx = o(1). (3.14)

In fact, by the boundedness of ∥∂2
xu

n
1∥L2(I1), we deduce∣∣∣∣∫

I1

|∂2
xu

n
1 |2
(
2x+ βnx

2
)
eβn(x−ℓ1) dx

∣∣∣∣ ≤ C∥∂2
xu

n
1∥L2(I1)

∫
I1

βne
βn(x−ℓ1) dx = o(1), C > 0. (3.15)

Inserting (3.15) in (3.14), we obtain
|∂2

xu
n
1 (ℓ1)|2 = o(1) (3.16)

Now, we take q(x) = x, and using (3.16) in (3.13), we obtain

ℜ
(
∂2
xu

n
1 (0)∂xu

n
1 (0)

)
+

3

2
∥∂2

xu
n
1∥2L2(I1)

= o(1). (3.17)

In other hand, from (3.7) we have

|ℜ
(
∂2
xu

n
1 (0)∂xu

n
1 (0)

)
| ≤

∥∂2
xu

n
1∥L2(I1)

βn
βn∥∂xun

1∥L2(I1) = o(1). (3.18)

using (3.18) in (3.17), we obtain

∥∂2
xu

n
1∥L2(I1) = o(1). (3.19)

Second step. This step is devoted to show:

∥vni ∥L2(R+), ∥∂2
xu

n
i ∥L2(R+) = o(1).

As in the previous step, we will need to compute the real part of the inner product of (3.3)3, in L2(Ij),
more then one time.

So Let we start by thier inner products by ∂xu
n
j , without forget to use as usuel the convergence to

zero of fn
j , g

n
j in L2(Ij) and ∥vnj ∥L2(Ij), ∥∂2

xu
n
j ∥L2(Ij) ≤ 1. Let q ∈ C2([0, βn]), that we will choose later.

We calculate the real part of the inner product of (3.3)3, in L2(Ij) by qX[0,βn]∂xu
n
j ,

− 1

2

[
|vnj |2q

]βn

0
− 1

2

[
|∂2

xu
n
j |2q

]βn

0
+ ℜ

([
∂3
xu

n
j ∂xu

n
j q
]βn

0

)
−ℜ

([
∂2
xu

n
j ∂xu

n
j ∂xq

]βn

0

)

+ ℜ

(∫ βn

0

∂2
xu

n
j ∂xu

n
j ∂

2
xqdx

)
+

1

2

∫ βn

0

(
3|∂2

xu
n
j |2 + |vnj |2

)
∂xq dx = o(1).

Using (3.8), (3.10)

− 1

2
|vnj (βn)|2q(βn)−

1

2

[
|∂2

xu
n
j |2q

]βn

0
+ ℜ

(
∂3
xu

n
j (βn)∂xun

j (βn)q(βn)
)
+ ℜ

(∫ βn

0

∂2
xu

n
j ∂xu

n
j ∂

2
xqdx

)

−ℜ
(
∂2
xu

n
j (βn)∂xun

j (βn)∂xq(βn)
)
+

1

2

∫ βn

0

(
3|∂2

xu
n
j |2 + |vnj |2

)
∂xq dx = o(1).

(3.20)
Choose q(x) = β−1

n x− 1, in (3.20), we get

|∂2
xu

n
j (0)| = o(1) (3.21)
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By replacing (3.3)1 in (3.3)3, it follows

−β2
nu

n
j + ∂4

xu
n
j = iβ1−γ

n fn
j + β−γ

n gnj , ∀γ ≥ 1 (3.22)

Let now calculate the inner product of (3.22) with β
− 1

2
n e−β

1
2
n (βn−x), we obtain∫ βn

0

−β2
nβ

− 1
2

n e−β
1
2
n (βn−x)un

j dx+

∫ βn

0

β
− 1

2
n e−β

1
2
n (βn−x)∂4

xu
n
j dx = o(1) (3.23)

Integrating by part the second integral we obtain[
β
− 1

2
n ∂3

xu
n
j e

−β
1
2
n (βn−x)

]βn

0

−
[
∂2
xu

n
j e

−β
1
2
n (βn−x)

]βn

0

+

∫ βn

0

−β2
nβ

− 1
2

n e−β
1
2
n (βn−x)un

j dx

+

∫ βn

0

β
1
2
n e

−β
1
2
n (βn−x)∂2

xu
n
j dx = o(1)

(3.24)

By Holder inequality we have∣∣∣∣∣
∫ βn

0

β
1
2
n e

−β
1
2
n (βn−x)∂2

xu
n
j dx

∣∣∣∣∣ ≤ β
1
2
n ∥∂2

xu
n
j ∥L2(0,βn)∥e

−β
1
2
n (βn−x)∥L2(0,βn) = o(1) (3.25)

by the same argument also we have∣∣∣∣∣
∫ βn

0

−β2
nβ

− 1
2

n e−β
1
2
n (βn−x)un

j dx

∣∣∣∣∣ = o(1) (3.26)

using (3.25) and (3.26) in (3.24)
∂2
xu

n
i (βn) = o(1). (3.27)

Finaly we put q(x) = x− βn in (3.20) taking into acount (3.21) and (3.27), we deduce

1

2

∫ βn

0

(
3|∂2

xu
n
j |2 + |vnj |2

)
dx = o(1). (3.28)

Hence ∀ε > 0, ∃N0 ∈ N,∀n ≥ N0 such that∫ βn

0

(
3|∂2

xu
n
j |2 + |vnj |2

)
dx <

ε

2

Not that ∂2
xu

n
j , v

n
j ∈ L2(0,∞), which implies

∀ε > 0,∃N1 ∈ N,∀n ≥ N1,

∫ ∞

βn

(
3|∂2

xu
n
j |2 + |vnj |2

)
dx <

ε

2

So, for n ≥ max(N1, N0)we have ∫ ∞

0

(
3|∂2

xu
n
j |2 + |vnj |2

)
dx < ε

From where we deduce that
∥vni ∥L2(R+), ∥∂2

xu
n
i ∥L2(R+) = o(1).

Third step. Here and now we will prove that

∥vnj ∥L2(Ij), ∥∂
2
xu

n
j ∥L2(Ij) = o(1), ∀j = 2, ..., NF .
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We suppose that
(
1− cosh(

√
|βn|ℓj) cos(

√
|βn|ℓj)

)
̸= 0, ∀j = 2, ..., NF , then we plug (3.3)1 in (3.3)3,

in order to get

−β2
nu

n
j + ∂4

xu
n
j = ifn

j + β−1
n gnj . (3.29)

Let us now, solve (3.29), where we put Fn
j (x) =: ifn

j + β−1
n gnj . Straight-forward calculation yields

un
j (x) = a

(
cos(

√
|βn|x)− cosh(

√
|βn|x)

)
+ b

(
sin(

√
|βn|x)− sinh(

√
|βn|x)

)
+ un

j (0) cosh(
√

|βn|x) + β
− 1

2
n ∂xu

n
j (0) sinh(

√
|βn|x)

+
β
− 1

2
n

2

∫ x

0

(
sin(

√
|βn|(x− s))− sinh(

√
|βn|(x− s))

)
Fn
j (s) ds, a, b ∈ R.

(3.30)

The second derivative of the solution (3.30) is given by,

∂2
xu

n
j (x) = −βna

(
cos(

√
|βn|x) + cosh(

√
|βn|x)

)
− βnb

(
sin(

√
|βn|x) + sinh(

√
|βn|x)

)
+ βnu

n
j (0) cosh(

√
|βn|x) + β

1
2
n β

− 1
2

n ∂xu
n
j (0) sinh(

√
|βn|x) + Fn

j (x)

− β
1
2
n

2

∫ x

0

(
sin(

√
|βn|(x− s))− sinh(

√
|βn|(x− s))

)
Fn
j (s) ds,

(3.31)

Let x = ℓj in (3.31), we observe that

∂2
xu

n
j (ℓj) = o(1). (3.32)

Where we have use the fact that fn
j , g

n
j converge to zero in L2(Ij), and the boundedness of the functions

cos(x), sin(x), cosh(x), sinh(x) in Ij , and (3.8). Next, we take the real part of the inner product of (3.3)3
with q∂xu

n
j , in L2(Ij), where q ∈ C2(Ij), that we will chose later.

ℜ

(∫
Ij

iβnv
n
j q ∂xu

n
j dx+

∫
Ij

∂4
xu

n
j q∂xu

n
j dx

)
= ℜ

(∫
Ij

β−γ
n gnj q ∂xu

n
j dx

)
,

Indeed from (3.3)1, we have that iβn∂xun
j = −∂xvnj − β−1

n ∂xfn
j , then

ℜ

(∫
Ij

vnj q
(
−∂xvnj − β−1

n ∂xfn
j

)
dx+

∫
Ij

∂4
xu

n
j q∂xu

n
j dx

)
= ℜ

(∫
Ij

β−1
n gnj q ∂xu

n
j dx

)
,

since gnj , f
n
j converge to zero in L2(Ij) and H2(Ij), respectively, and that ∥(un, vn)∥X = 1, we deduce

ℜ

(
−
∫
Ij

vnj q ∂xv
n
j dx+

∫
Ij

∂4
xu

n
j q∂xu

n
j dx

)
= o(1). (3.33)

Then From (3.33), it follows

− 1

2

[
|vnj |2q

]ℓj
0
− 1

2

[
|∂2

xu
n
j |2q

]ℓj
0
+ ℜ

([
∂3
xu

n
j ∂xu

n
j q
]ℓj
0

)
−ℜ

([
∂2
xu

n
j ∂xu

n
j ∂xq

]ℓj
0

)

+ ℜ

(∫
Ij

∂2
xu

n
j ∂xu

n
j ∂

2
xqdx

)
+

1

2

∫
Ij

(
3|∂2

xu
n
j |2 + |vnj |2

)
∂xq dx = o(1).

(3.34)
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Let we now use the boundary condition on the point ℓj , and (3.8), (3.32), in the equation (3.34), we get

1

2
|∂2

xu
n
j (0)|2q(0)−ℜ

(
∂3
xu

n
j (0)∂xu

n
j (0)q(0)

)
+ ℜ

(
∂2
xu

n
j (0)∂xu

n
j (0)∂xq(0)

)

+ ℜ

(∫
Ij

∂2
xu

n
j ∂xu

n
j ∂

2
xqdx

)
+

1

2

∫
Ij

(
3|∂2

xu
n
j |2 + |vnj |2

)
∂xq dx = o(1).

(3.35)

Putting q(x) = x, we obtain

ℜ
(
∂2
xu

n
j (0)∂xu

n
j (0)

)
+

1

2

∫
Ij

(
3|∂2

xu
n
j |2 + |vnj |2

)
dx = o(1). (3.36)

Also by (3.8), we can immediatly deduce

ℜ
(
∂2
xu

n
j (0)∂xu

n
j (0)

)
= o(1), ∀j = 2, ..., NF +NI . (3.37)

Using (3.37) in (3.36), we observe ∫
Ij

(
3|∂2

xu
n
j |2 + |vnj |2

)
dx = o(1), (3.38)

which is the claim of this step.

At the end, we have that ∥yn∥X → 0. This result contradicts the hypothesis ∥yn∥X = 1. 2

3.2. Singularity at zero

In this subsection, we estimate sharp upper bounds on the growth of the resolvent as β tends to zero.

Proposition 3.2 Under the hypothesis (P2). We have

∥ (iβI −A)
−1 ∥ = O

(
|β|−1

)
as |β| → 0. (3.39)

Proof: Suppose that (3.39) is false. By the Banach-Steinhaus theorem, there exists a sequence of real
number βn with βn → 0, (without loss of generality, we suppose that βn > 0), and a sequence of vectors
yn = (un, vn) ∈ D(A) with

∥(un, vn)∥X = 1,

such that
β−1
n (iβnI −A)(un, vn) =: (fn, gn) = o(1) in X. (3.40)

We shall prove that ∥(un, vn)∥X = o(1), which contradicts the hypothesis on (un, vn).
The equation (3.40), gives

β−1
n

(
iβnu

n
j − vnj

)
= fn

j → 0, in H2(Ij), j = 1, .., NF +NI ,

β−1
n

(
iβnv

n
1 + ∂4

xu
n
1 − (α1∂xv

n
1 )x
)
= gn1 → 0, in L2(I1),

β−1
n

(
iβnv

n
j + ∂4

xu
n
j

)
= gnj → 0, in L2(Ij), j = 2, ..., NF +NI .

(3.41)

Multiplying (3.41) by βn, we obtain the next equations
vnj = βn

(
iun

j − fn
j

)
,

iβnv
n
1 + ∂4

xu
n
1 − (α1∂xv

n
1 )x = βng

n
1 ,

iβnv
n
j + ∂4

xu
n
j = βng

n
j .

(3.42)
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First, one multiplies (3.42)1, by vnj , than we integrate over Ij , we pay attention that

∥vnj ∥2L2(Ij)
− β2

n∥un
j ∥2L2(Ij)

= o(1), ∀j ∈ J. (3.43)

Similarly, one multiplies (3.42)2,3, by vnj , than integrating and summing up over J , then by Kirchoff
condition, we infer

∥vn∥2L2(Γ) − ∥∂2
xu

n∥2L2(Γ) + ∥α
1
2
1 ∂xv

n
1 ∥2L2(I1)

= o(1). (3.44)

By the dissipation property of the semigroup of the operator A, we deduce

∥α
1
2
1 ∂xv

n
1 ∥L2(I1) −→

n→∞
0. (3.45)

Make use (3.45) in (3.44), one gets

∥vn∥2L2(Γ) − ∥∂2
xu

n∥2L2(Γ) = o(1). (3.46)

Second, for all , ∀j ∈ JF , we know that ∂xu
n
j (ℓj) = un

j (ℓj) = 0, and ∥∂2
xu

n
j ∥L2(Ij) ≤ 1, so

∥∂xun
j ∥L2(Ij) ≤ C∥∂xun

j ∥L∞(Ij) ≤ Cmax
x∈Ij

∥∂2
xu

n
j ∥L1(x,ℓj)

≤ C1 max
x∈Ij

∥∂2
xu

n
j ∥L2(x,ℓj) ≤ C2 ∥∂2

xu
n
j ∥L2(Ij), C, C1, C2 > 0.

and
∥un

j ∥L2(Ij) ≤ C ′∥un
j ∥L∞(Ij) ≤ C ′ max

x∈Ij
∥∂xun

j ∥L1(x,ℓj)

≤ C ′
1 max
x∈Ij

∥∂xun
j ∥L2(x,ℓj) ≤ C ′

2 ∥∂xun
j ∥L2(Ij), C

′, C ′
1, C

′
2 > 0.

Thus, ∥un
j ∥L2(Ij), ∥∂xun

j ∥L2(Ij) are bounded for all j ∈ JF .
Therefore, by (3.43), it follows

∥vnj ∥L2(Ij) = o(1), ∀j ∈ JF . (3.47)

Let us now divide the rest of the proof into several steps:

Step 1 : The aim of this step is to show

∥∂2
xu

n
i ∥L2(0,ℓj) = o(1).

In view of equation (3.42)3 and (3.47), we easily derive

∥∂4
xu

n
j ∥L2(0,ℓj) = o(1). (3.48)

The inner products of the equation (3.42)3 by e−β−1
n x, yields∫ ℓj

0

∂4
xu

n
j (x)e

−β−1
n x dx = −

∫ ℓj

0

iβnv
n
j e

−β−1
n x dx+

∫ ℓj

0

βng
n
j e

−β−1
n x dx

The right-hand side of the above equation converges to zero since gnj , v
n
j converges to zero in L2(0, ℓj)

and βne
−β−1

n xis bounded. Performing integration by parts to theleft-hand side,we get

∂3
xu

n
j (ℓj)e

−β−1
n ℓj − ∂3

xu
n
j (0) +

∫ ℓj

0

∂3
xu

n
j β

−1
n e−β−1

n x dx = o(1). (3.49)

and one more time

∂3
xu

n
j (ℓj)e

−β−1
n ℓj −∂3

xu
n
j (0)+∂2

xu
n
j (ℓj)β

−1
n e−β−1

n ℓj −β−1
n ∂2

xu
n
j (0)+

∫ ℓj

0

∂2
xu

n
j β

−2
n e−β−1

n x dx = o(1). (3.50)
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Make use of Gagliardo inequality more then one time, we obtain

∥∂3
xu

n
i ∥L∞(0,ℓj) ≤ c1∥∂4

xu
n
i ∥

1
2

L2(0,ℓj)
∥∂3

xu
n
i ∥

1
2

L2(0,ℓj)
+ c2∥∂3

xu
n
i ∥L2(0,ℓj), ∀c1, c2 > 0,

∥∂3
xu

n
i ∥L2(0,ℓj) ≤ k1∥∂4

xu
n
i ∥

1
2

L2(0,ℓj)
∥∂2

xu
n
i ∥

1
2

L2(0,ℓj)
+ k2∥∂2

xu
n
i ∥L2(0,ℓj), ∀k1, k2 > 0,

Frome where we deduce the boundedness of ∂3
xu

n
j (ℓj), ∂

3
xu

n
j (0) and ∥∂3

xu
n
i ∥L2(0,ℓj), taking into acount

equation (3.48) and boundedness of ∥∂2
xu

n
i ∥L2(0,ℓj) .

Therefore, equation (3.49), gives
∂3
xu

n
j (0) = o(1), (3.51)

and use (3.51) in (3.50), it follows
β−1
n ∂2

xu
n
j (0) = o(1). (3.52)

Next, we evaluate the real part of the inner product of (3.42)3 by x∂xu
n
j in L2(0, ℓj)

Re
(
∂2
xu

n
j (0)∂xu

n
j (0)

)
+

3

2
∥∂2

xu
n
j ∥2L2(0,ℓj)

= o(1). (3.53)

where we have used the boundery condition and (3.47) and the convergence to zero of βn, ∥gnj ∥L2(0,ℓj).
Observing (3.52) and (3.53) having in mind the boundedness of ∥∂xuj∥L∞(0,ℓj) and convergence to

zero of βn, we get

Re
(
β−1
n ∂2

xu
n
j (0)βn∂xun

j (0)
)
= o(1). (3.54)

Make use of (3.54) in (3.53), we get the aim of this step

∥∂2
xu

n
j ∥2L2(0,ℓj)

= o(1). (3.55)

Step 2 : this step is devoted to proof

∥vni ∥L2(R+), ∥∂2
xu

n
i ∥L2(R+) = o(1), ∀j|inJI .

It is easy to see from the equation (3.42)1 that

∥vni ∥L2(0,β−1
n ) = o(1).

onehand we have ∀ε > 0, ∃N1 ∈ N,∀n ≥ N1∫ β−1
n

0

|vnj |2 dx <
ε

2

on the other hand ∀ε > 0,∃N2 ∈ N,∀n ≥ N2∫ ∞

β−1
n

|vnj |2 dx <
ε

2

Consequently, for n ≥ max(N1, N2) we obtain∫ ∞

0

|vnj |2 dx <
ε

2

So,
∥vnj ∥L2(R+) = o(1). (3.56)

Finaly, using (3.47),(3.55) and (3.56) in (3.46), we deduce

∥∂2
xu

n
j ∥L2(R+) = o(1).

To sum up, we have shown that | yn∥X = o(1) which contradict the hypothesis. 2

We present the main results of this paper in the next theorem
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Theorem 3.1 Let (T (t))t≥0 be the bounded C0 − semigroup on the Hilbert space X, with generator A.
Under condition (P1) and hypothesis (H1), we have

∥T (t)A (I −A)
−2 ∥ = O(t−1), t → ∞.

Proof: An immediate consequence of Proposition 3.1, 3.2 and Theorem 8.4 in [4] one has

∥T (t)A (I −A)
−2 ∥ = O(t−1), t → ∞.

2

As a consequence of Theorem 3.1 and Remark 8.5 in [4] we have the following Corollary.

Corollary 3.1 Assume (P1), (H1) holds. Then for given U0 ∈ D (A) ∩R (A) , where R(A) := A(D(A))
there exist constants C, t0 > 0 such that for all t ≥ t0,

∥T (t)U0∥X ≤ C

t
∥U0∥X .

Remark 3.1 All previously obtained results valid only under condition (P1). Then it is natural to
ask whether such cases exist where this results still holds in the absence of this condition? The
answer of this question is only when NF ≤ 2.
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