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A Novel Approach using Residual Power series Method for solving nonlinear fractional
partial differential equation

Saud Mohammed Hassan∗ , Duaa Mohammed Hamid, Methaq Hamza Geem

abstract: This paper aims to introduce a modified method for the residual power series method (RPSM)
by combining it with a novel transformation, namely the gmn transformation, which is generalized for many
integral transformations such as Laplace, Fourier, Elzaki and others. Moreover, a new approach is based on
the residual power series method and the proposed formula for residual power series. MRPSM stands for
a novel approach that reduces the steps of the RPSM method and improves the accuracy. Also by using
gmn transformation, MRPSM is considered to be generalized for many methods using various transformations
such as Laplace, Elzaki and other transformations. We deal with an important fractional pde equation, the
Newell-Whithead-Segel equation. In this paper, we provide a general solution of the general form for this
equation and also some theorems, example and theorem are given.

Key Words: integral transformation, transformation, residual, power series, nonlinear differential
equation.
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1. Introduction

Many researchers are working on the development of the residual power series method RPSM [11] . In
[13], M. I. Liaqat introduced a mixture of an integral transformation and the residual power series method
RPSM to develop this method, namely the Aboohd transformation. Also in [12], M. I. Liaqat introduces
a study with Laplace transform and RPSM. In [7], Geem introduced a novel integral transform, namely
thegmn transform, which is considered to be generalized for many integral transforms. In this paper, we
introduce a combination of gmn transform and RPSM. The combination of a general integral transform
and RPSM is introduced step by step, starting with some important theorems of fractional integration
and the effect of this transform on them, and then going into the method and finding the elements of
the residuals and finally arriving at the general solution. As an important application of this method,
we have discussed the nonlinear fractional partial differential equation and the Newell-Whithead-Segel
equation.

2. Fundamental Concepts

Definition 2.1 [2]: g-transformation gmn(f(X)) for a function f(x) where x ∈ [0,∞[ is defined by the
following integral:

gmn(f(X)) = Sm

∫ ∞

0

e−snxf(x)dx = Fmn(s)

Such that the integral is convergent, s is positive constant.
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Table 1: gmn-transformation for selected functions

NO Functions f(x) gmn(f(X)) = Sm
∫∞
0

e−snxf(x)dx = Fmn(s)
1 K k constant ksm−n

2 Sin(ax) asm

s2n+a2

3 cos(ax) sm+n

s2n+a2

4 Sinh(ax) asm

(sn−a)(sn+a)

5 cosh(ax) asn+m

(sn−a)(sn+a)

6 xk k!sm−(k+1)n

Proposition 2.1 [6]

1. gmn(f
′(x)) = sngmn(f(x))− smf(0)

2. gmn(f
′′(x)) = s2ngmn(f(x))− sm[snf(0) + f ′(0)]

3. gmn(f
k(x)) = skngmn(f(x))− sm

∑k−1
i=0 s(k−i−1)nf (i)(0)

Definition 2.2 [13]: Let n ∈ R+ , then the operator Jn
a defined on L1[a, b] as following that

Jn
a f(X) =

1

Γ(n)

∫ x

a

(x− t)n−1f(t)dt

for a ≤ x ≤ b is called the Riemann-Liouville fractional integral operator of order n.
For n=0 we set Jn

a = I , the identity operator.

Theorem 2.1 (13) : Let m,n ≥ 0 and ϕ ∈ L1[a, b] then:

Jm
a Jn

a ϕ(X) = Jn
a J

m
a ϕ = Jm+n

a ϕ

Definition 2.3 (Riemann-Liouville Derivatives)[14]: Let n ∈ R+ and m = [n] , then the Riemann-
Liouville fractional differential operator define as following

Dn
af(X) = DmJm−n

a f(X)

Proposition 2.2 :

gmn(J
αf(x)) = s−αngmn(f(x))

Proof:

By using definition (2.2)

gmn(J
αf(x)) = gmn

(
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt

)

=
1

Γ(α)
gmn(h ∗ f)(x) = s−m

Γ(α)
gmn(h(x))gmn(f(x))

where h(x) = xα−1. We note that gmn(x
α−1) = Γ(α)sm−αn

Thus

gmn(J
αf(x)) =

s−m

Γ(α)
gmn(h(x))gmn(f(x)) =

s−m

Γ(α)
Γ(α)sm−αngmn(f(x))

gmn(J
αf(x)) = s−αngmn(f(x))
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Proposition 2.3 : Let α ≥ 0, k − 1 < α < k, k ∈ N

gmn(D
αf(x)) = sαngmn(f(x))− sm

k−1∑
i=0

sn(α−1−i)(s)f (i)(0)

Proof:

gmn(D
αf(x)) = gmn(J

αf (k)(x)) = sαn−kngmn(f
(k)(x))

since gmn(f
(k)(x)) = skngmn(f(x))− sm

∑k−1
i=0 sn(k−1−i)(s)f (i)(0) we have

gmn(D
αf(x)) = sαn−kn

[
skngmn(f(x))− sm

k−1∑
i=0

sn(k−1−i)(s)f (i)(0)

]

gmn(D
αf(x)) = sαngmn(f(x))− sm

k−1∑
i=0

sn(α−1−i)(s)f (i)(0)

Definition 2.4 [6]: From Definition(2.1) we can define:

gmn(u(x, t)) = sm
∫ ∞

0

e−snxu(x, t)dx = Umn(s)

such that u(x, t) is a function of x,t.

Proposition 2.4 [6]

1. gmn(ut(x, t)) = snUmn(x, s)− smu(x, 0)

2. gmn(u
k
t (x, t)) = sknUmn(x, s)− sm

∑k−1
i=0 s(k−i−1)nu

(i)
t (x, 0)

3. gmn(ux(x, t)) =
∂
∂xUmn(x, s)

4. gmn(u
k
x(x, t)) =

∂
∂xkUmn(x, s)

Definition 2.5 [11]: Let 0 < α ≤ 1 then the power series representation in the following form:

∞∑
k=0

ar(x)(t− t0)
kα = a0(t− t0)

0 + a1(t− t0)
α + a2(t− t0)

2α + ...

where x ∈ R , it is called a multiple fractional power series (MFPS) about t0

Proposition 2.5 : Let u(x, t) be a function and gmn(u(x, t)) = Umn(x, s) then

gmn(D
rαu(x, t)) = srαnUmn − sm

r−1∑
i=0

sn(α(r−1)−1−i)(s)Diαu(x, 0) (2.1)

Proof:
By using mathematical induction, we get:
i)if r=1 then by Proposition(2.3) we get the result.
ii)Suppose the result is true at r=k, i.e.

gmn(D
kαu(x, t)) = skαnUmn − sm

k−1∑
i=0

sn(α(k−1)−1−i)(s)Diαu(x, 0)
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iii) if r=k+1 then by taking gmn-transform for D(k+1)α we obtain

gmn

(
Dα

(
Dkαu(x, t)

))
Now suppose that Dkαu(x, t) = h(x, t) then we get

gmn

(
Dα

(
Dkαu(x, t)

))
= gmn (D

αh(x, t)) = sαngmn (h(x, t))− sm−(α−1)nh(x, 0)

= snαgmn

(
Dkαu(x, t)

)
− sm−(α−1)nDkαu(x, 0)

= snα

(
skαnUmn − sm

k−1∑
i=0

sn(α(k−i)−1)(s)Diαu(x, 0)

)
− sm−(α−1)nDkαu(x, 0)

= s(k+1)αnUmn − sm
k−1∑
i=0

sn(α((k+1)−i)−1)(s)Diαu(x, 0))− sm−(α−1)nDkαu(x, 0)

= s(k+1)αnUmn − sm
k+1−1∑
i=0

sn(α((k+1)−i)−1)(s)Diαu(x, 0))

Therefore the result is hold for all k ∈ Z+

Lemma 2.1 Let u(x, t) has multiple fractional Taylor’s series (MFTS) representation as follows:

u(x, t) = a0(x) + a1(x)
tα

Γ(α+ 1)
+ a2(x)

t2α

Γ(2α+ 1)
+ ... (2.2)

then

gmn(u(x, t)) = a0(x) + a1(x)s
m−(α+1)n + ... =

∞∑
k=0

ak(x)s
m−(kα+1)n (2.3)

Proof: since u(x, t) = a0(x) + a1(x)
tα

Γ(α+1) + a2(x)
t2α

Γ(2α+1) + ...

then by taking gmn-transform for Eq.(2.2) we obtain:

gmn(u(x, t)) = a0(x) + a1(x)
Γ(α+ 1)

Γ(α+ 1)
sm−(α+1)n + ... =

∞∑
k=0

ak(x)s
m−(kα+1)n

Proposition 2.6 : Let u(x, t) be a function and gmn(u(x, t)) = Umn(x, s) has (MFTS) then

a0(x) = lim
s→∞

sn−mgmn(u(x, t)) = u(x, 0)

a1(x) = lim
s→∞

s(α+1)n−mgmn(u(x, t))− sαna0(x) = Dαu(x, 0)

a2(x) = lim
s→∞

s(2α+1)n−mgmn(u(x, t))− s2αna0(x) = D2αu(x, 0)

...

ak(x) = Dkαu(x, 0)

Proof:

From Eq.(2.3) we have gmn(u(x, t)) = a0(x) + a1(x)s
m−(α+1)n + ... =

∑∞
k=0 ak(x)s

m−(kα+1)n
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Thus
a0(x) = sn−mgmn(u(x, t))− sαna1(x)− ...

Hence
a0(x) = lim

s→∞
sn−mgmn(u(x, t)) = u(x, 0)

Similarly we can prove that

a1(x) = lim
s→∞

s(α+1)n−mgmn(u(x, t))− sαna0(x)

= lim
s→∞

s(α+1)n−mgmn(u(x, t))− sαnu(x, 0)

= lim
s→∞

s(n−m)
(
sαgmn(u(x, t))− sm+(α−1)nu(x, 0)

)
a1(x) = lim

s→∞
s(α+1)n−mgmn(u(x, t))− sαna0(x) = Dαu(x, 0)

Also we can prove that ak(x) = Dkαu(x, 0) by the same process

3. Outline method of MSuad Residual Power Series

In this section we take the form of fractional partial differential equation:

Drα
t u(t, x) + L(u(t, x)) +N(u) = f(t, x);Ddαu(x, 0) = wd(x), d = 0, 1, . . . , r − 1, 0 < α < 1 (3.1)

Where L is linear partial operator with respect to t of with order q, N is a nonlinear operator , f(t, x)
is a function. If we take gmn-transformation of both sides for Eq.(3.1) we get:

gmn(D
rα
t (u(t, x))) + gmn(L(u(t, x))) + gmn(N(u)) = gmn(f(t, x))

Srαngmn(u(t, x))− Sm
r−1∑
i=0

S(α(r−i)−1)nDiαu(x, 0) + gmn(L(u(t, x)) +N(u)− f(x, t)) = 0

gmn(u(t, x)) = Sm−rαn
r−1∑
i=0

S(α(r−i)−1)nDiαuj(x, 0)− S−rαngmn(L(u(t, x)) +N(u)− f(x, t)) (3.2)

By Eq.(2.3) we have

U(x, s) = gmn(u(x, t)) =

∞∑
k=0

ak(x)S
(m−(kα+1)n), akj(x) = Dkαuj(x, 0) (3.3)

Obtain the pth-truncated series of

Up = ap(x)S
(m−(pα+1)n) + a(p+1)(x)S

(m−((p+1)α+1)n), p = 0, 1, 2, . . . (3.4)

Now , from Eq.(3.2) we construct residual, namely multistep MSuaad residual function (MMSRF) as:

MSResp+1(x, s) = Up − S(m−rαn)
r−1∑
i=0

S(α(r−i)−1)nDiαu(x, 0) + S−rαngmn(L(u(t, x)) +N(u)− f(x, t))
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=

p∑
i=0

ai(x)S
m−(iα+1)n − S(m−rαn)

r−1∑
i=0

S(α(r−i)−1)nDiαu(x, 0) + S−rαngmn(L(u(t, x)) +N(u)− f(x, t))

By multiply both sides by S(((p+1)α+1)n−m) we get

s((p+1)α+1)n−mMSResp+1(x, s) = s((p+1)α+1)n−m

(
Up − Sm−rαn

r−1∑
i=0

s(α(r−i)−1)nDiαu(x, 0)

)

+s−rαngmn(L(u(t, x)) +N(u)− f(x, t)) (3.5)

Finally, we solve the equation for ap+1(x):

lim
s→∞

S((p+1)α+1)n−mMSResp+1(x, s) = 0, (3.6)

And then we can find U(x, s) and by using inverse of gmn-transform we get the solution u(x, t).

4. Solving the fractional Newell-Whithead-Segel equation

Dα
t u−kuxx+cu+euc = 0, u(x, 0) = ϕ(x), c > 2, c, e, k > 0

(4.1)
By taking gmn-transform for both sides we get:

SαnU − Sm+(α−1)nu(x, 0)− k
∂2U

∂x2
+ cU + egmn

(
g−1
mn(U)c

)
= 0

Thus

U = sm−nϕ(x) + s−αk
∂2U

∂x2
− cs−αU − es−αgmn(

[
g−1
mn(U)

]c
) = 0

Now by using Eq.(3.4) we get:

Up = ap(x)s
m−(pα+1)n + ap+1(x)s

m−((p+1)α+1)n, a0(x) = u(x, 0)

Hence

MSResp+1(x, s) = Up − sm−nϕ(x) + s−αgmn

(
−k

∂2

∂x2
g−1
mn(Up) + cg−1

mn(Up) + e(g−1
mn(Up))

c

)
By multiply both sides by S((p+1)α+1)n−m and using the relation :

lim
s→∞

s((p+1)α+1)n−mMSRes(p+1)(x, s) = 0

We get ap+1(x). If we continue with this process we get another elements of ai(x). that means we
can find U(x, s) in Eq.(3.3) and by using inverse of gmn-transform we have u(x, t).

Example 4.1
Dα

t u− uxx − 2u+ 3u2 = 0, u(x, 0) = λ, 0 < α ≤ 1

We know that
Up = ap(x)s

m−(pα+1)n + ap+1(x)s
m−((p+1)α+1)n

Since

MSRes(p+1)(x, s) = Up − sm−nϕ(x) + s−αgmn

(
∂2

∂x2
g−1
mn(Up)− 2g−1

mn(Up) + 3(g−1
mn(Up))

2

)
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Thus we have :

MSRes(p+1)(x, s) = ap(x)s
m−(pα+1)n + ap+1(x)s

m−((p+1)α+1)n − sm−nϕ(x)

+s−αgmn(
∂2

∂x2
g−1
mn(ap(x)s

m−(pα+1)n + ap+1(x)s
m−((p+1)α+1)n)

−2g−1
mn(ap(x)s

m−(pα+1)n + ap+1(x)s
m−((p+1)α+1)n))

+3((g−1
mn(ap(x)s

m−(pα+1)n + ap+1(x)s
m−((p+1)α+1)n))2)

= ap(x)s
m−(pα+1)n + a(p+1)(x)s

m−((p+1)α+1)n

−sm−nϕ(x) + (a
′′

p (x)s
m−((p+1)α+1)n + a

′′

(p+1)(x)s
m−((p+2)α+1)n)

−2(ap(x)s
m−((p+1)α+1)n + a(p+1)(x)s

m−((p+2)α+1)n) + 3a2p
Γ(2pα+ 1)

Γ2(pα+ 1)
sm−(2pα+1)n

+6
Γ((2p+ 1)α+ 1)

Γ((p+ 1)α+ 1)
sm−(2(p+1)α+1)n + 3a2p+1

Γ(2(p+ 1)α+ 1)

Γ2((p+ 1)α+ 1)
sm−((2p+3)α+1)n

By multiply both sides by s(p+1)α−m and using the relation lims→∞ s((p+1)α+1)n−mMSRes(p+1)(x, s) =
0 We get

ap+1(x) + a
′′

p (x)− 2ap(x) = 0

Therefore
a(p+1)(x) = −a

′′

p (x) + 2ap(x)

By above relation we obtain

a0(x) = λ, a1(x) = 2λ, a2(x) = 22λ, . . . , an(x) = 2nλ

Hence

U(x, s) = gmn(u(x, t)) =

∞∑
k=0

ak(x)s
m−(kα+1)n =

∞∑
k=0

2kλsm−(kα+1)n

By using inverse of gmn-transform we have u(x, t)

u(x, t) = λ

∞∑
k=0

2k
tkα

Γ(kα+ 1)
= λ

∞∑
k=0

2tkα

Γ(kα+ 1)
= λEα(2t

kα)

To show the rapid of convergence of the MRPSM , we compute the error between the exact solution and
a new approach . We make a Table-2 when α = 1 and λ = 0.001 and then we compute the consecutive
absolute errors. Fig-1 Show the difference between the surface of exact solution and our approach.
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Table 2: The difference between exact solution and Approach solution where α = 1, λ = 0.001

t u(x,t)-Exact u(x,t)-Approach Absolute Error
0.1 0.001220997 0.001221403 4.05498E-07
0.2 0.001490725 0.001491825 1.09976E-06
0.3 0.001819875 0.001822119 2.24423E-06
0.4 0.002221457 0.002225541 4.08373E-06
0.5 0.002711294 0.002718282 6.98815E-06
0.6 0.003308602 0.003320117 1.15145E-05
0.7 0.004036701 0.0040552 1.84994E-05
0.8 0.004923836 0.004953032 2.91961E-05
0.9 0.006004169 0.006049647 4.54784E-05

Figure 1: This cat is a eps file

Conclusion:
This work has saved the effort of many researchers such that the application of this gmn-transformation
is a general representation of many integral transformations, and the analytical results confirm this, as
the results of integrating a transformation such as Laplace can be derived by taking values m=0 , n=1.
This paper introduces a novel approach developed through a new transformation, gmn-transform and the
residual power series are introduced to provide a solution. The value of A novel method aims to minimize
the amount of computational effort required.
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