Bol. Soc. Paran. Mat. (3s.) v. 2026 (44) : 1-13.
©SPM - E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.77351

Finite-Time Synchronization Control for Generalized Reaction—Diffusion Systems

Igbal H. Jebril

ABSTRACT: This paper establishes a framework for achieving finite-time synchronization (FTSY) in cou-
pled reaction-diffusion systems (RDs) configured in a master-slave arrangement. The systems are governed
by partial differential equations (PDEs) with nonlinear reaction terms and homogeneous Neumann boundary
conditions. Control laws are designed for the slave system to synchronize with the master system within a
predetermined finite time. Using Lyapunov stability (LS) theory, we prove finite-time stability (FTS) of the
synchronization error dynamics and derive an explicit settling time formula. Numerical simulations validate
the theoretical results using the Degen-Harrison and Lengyel-Epstein models, demonstrating synchroniza-
tion within approximately five seconds and three seconds, respectively. The approach accommodates spatial
coupling and boundary conditions, providing a foundation for applications requiring precise spatiotemporal
coordination in chemical, biological, and physical systems.

Key Words: Finite-time synchronization, reaction-diffusion systems, Lyapunov stability, control de-
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1. Introduction

Synchronization in RDs represents a widespread phenomenon observed across various physical, chem-
ical, and biological contexts [1]. Recent studies have investigated multiple aspects of this phenomenon,
including spiral synchronization via messenger waves in the Belousov-Zhabotinsky reaction [2] and the de-
velopment of phase-reduction theory for analyzing spatiotemporal rhythms in infinite-dimensional RDs
[3,4,5]. Researchers have also examined impulsive synchronization, establishing conditions for global
solution existence and equiattractivity in impulsive RDs [6]. Furthermore, both linear and nonlinear
control schemes have been proposed to achieve complete synchronization in coupled RDs, with applica-
tions demonstrated in the Lengyel-Epstein system [7]. These contributions enhance our understanding
of synchronization dynamics in complex spatiotemporal systems while providing analytical and control
tools. The study of synchronization in RDs has attracted considerable attention in recent years. Vari-
ous synchronization types have been investigated, including complete synchronization between coupled
systems [8] and phase synchronization of spatiotemporal rhythms [9]. Researchers have developed both
linear and nonlinear control schemes to achieve synchronization in different RDs models, such as the
Lengyel-Epstein and Degn-Harrison systems. A phase-reduction approach has been formulated to ana-
lyze synchronization properties of limit-cycle solutions in infinite-dimensional RDs. Additionally, studies
have explored spiral wave synchronization using circularly polarized electric fields, demonstrating that
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spirals in various regimes can be entrained to rotate rigidly with a 1:1 frequency ratio relative to the ap-
plied field [10]. These investigations offer valuable insights into controlling and analyzing spatiotemporal
patterns in RDs.

Research on asymptotic synchronization in RDs has encompassed various neural network models. [11]
examined synchronization in neural networks incorporating reaction-diffusion terms and time-varying de-
lays, deriving both control laws and sufficient conditions for asymptotic synchronization. [12] extended
this work to coupled RDs neural networks with mixed delays, employing Lyapunov-Krasovskii functionals
to establish sufficient conditions for asymptotic and robust synchronization. [13] investigated synchro-
nization in networks of generalized FitzHugh-Nagumo systems, building upon previous work with specific
FitzHugh-Nagumo models. [14] presented conditions for spatial uniformity in one-dimensional RD-PDEs
with Neumann boundary conditions, utilizing the Jacobian matrix of the reaction term and the first
Dirichlet eigenvalue of the Laplacian operator. They further derived analogous results for synchroniza-
tion in diffusion-coupled ordinary differential equation networks. Collectively, these studies advance our
understanding of synchronization dynamics in diverse RDs. Recent investigations have focused on FTSY
in coupled RDs, proposing various control strategies. These include pinning control with adaptive cou-
pling strength adjustment [15,16,17], intermittent control using weighted Lyapunov-Krasovskii functional
methods [18], and periodically intermittent control [19,20,21]. These studies address challenges such as
time-varying delays and spatial boundary coupling, establishing sufficient conditions for FTSY through
techniques including Poincaré inequality and graph theory. The proposed methods have been validated
via numerical examples and simulations. Furthermore, practical applications such as image encryption
algorithms have demonstrated the utility of these theoretical results.

The paper aims to establish a framework for achieving FTSY in master-slave (M-S) coupled RDs
with Neumann boundary conditions, designing control laws, proving stability via Lyapunov function
(LF) theory, deriving an explicit settling time, and validating the approach numerically. The paper
is organized as follows: Section 2 presents the model description and synchronization error dynamics.
Section 3 provides the theoretical framework for FTS and synchronization, including the control design
and convergence proof. Section 4 validates the theoretical results through numerical simulations of the
Degen-Harrison and Lengyel-Epstein models.

2. Model Description

Recent research has significantly advanced our understanding of generalized RDs. In particular, [22]
established the existence of global weak solutions for a broad class of RDs, extending previous theoretical
results and demonstrating applications to image restoration problems. Building on this foundation, [23]
developed a generalized master equation framework for non-extensive RDs under pressure effects, incor-
porating Tsallis statistics and introducing novel nonlinear terms. Further theoretical progress was made
by [24], who conducted a comprehensive analysis of a generalized Degn-Harrison system, proving not only
global existence and boundedness of solutions but also deriving conditions for asymptotic stability and
the non-existence of non-constant steady states. A particularly important theoretical advancement was
presented by [25], who introduced a gradient structure formulation for RDs with reversible mass-action
kinetics. This work extended the Wasserstein metric approach to diffusion equations and demonstrated its
applicability to systems involving complex interactions, including electrostatic effects and energy balance
considerations, as exemplified by semiconductor equations. These collective contributions have substan-
tially enhanced both the theoretical foundations and practical implementations of generalized RDs across
multiple scientific disciplines.

We consider the following RDs as the master system:

W:dlAU+aU+%1(U,W), reQ, v>0,

%W:dgAW—i-bW—i—%g(U,W), reQ, v>0, 2.1)
v .

ou oW

2z 77 oN 0

877 877 s re , v>0,

U(r,0)=Uy(r), W(r0)=Wy(r), rel.
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Here:

e dy,dy > 0 are the diffusion coefficients for U and W, respectively.

e a,b € R are constant linear reaction rates.

o 5;(U W) (j =1,2) are sufficiently smooth nonlinear interaction functions.

e The homogeneous Neumann boundary conditions dU/9n = OW/On = 0 ensure no-flux across 9S2.

e The initial data Uy, Wy € H'(Q2) are given and satisfy the compatibility conditions with the bound-
ary.

We impose the following Lipschitz continuity assumption on the nonlinearities:
|5¢; (U1, Wh) — 3¢ (Ua, Wa)| < 0 |Uy — Ua| + pj [Wh = Wa|,  j=1,2, (2.2)

for all (Uy, W1), (Uz, Ws) € R?, where o;, 1; > 0 are given constants.

The control system in the slave system is crucial for achieving synchronization with the master sys-
tem. It ensures that the slave system’s behavior aligns with the master system within a finite time, which
is essential for applications like secure communication, system coordination, and pattern formation. By
applying carefully designed control inputs, the system can mitigate deviations and drive the synchroniza-
tion error to zero, enabling precise and predictable dynamics. This capability is particularly valuable in
real-world scenarios where timely and accurate synchronization is required, such as in chemical reactions,
biological processes, and neural networks. The control system thus serves as a bridge to enforce desired
behaviors and maintain stability in complex spatiotemporal systems.

To achieve synchronization between systems, we introduce a control strategy applied to a slave system.
The control inputs (Cy, C2) are critical for driving the slave system to track the master system’s behavior,
which is essential for applications like secure communication and system coordination. The slave system
is defined as:

W:dlAP+aP+%1(P,Q)+Cl, reQ, v>0,
WZ(EAQ-F{)Q-F%Q(P,Q)—FCQ, reQ, v>0, (2.3)
oP ~ 0Q ’
(’97777877770’ r e, v>0,

P(r,0)=PFPy(r), Q(r,0)=0Qo(r), r e .

Define the synchronization error between the slave and master systems as:

e(r,v) = (2) = (5 _g/) . (2.4)

The error dynamics are derived by subtracting (2.1) from (2.3):

w:d1A€1+“61+%1(P7Q)—%1(U,W)+C1, reQ, v>0,
W:d2A62+b€2+%2(P,Q)—%2(U,W)+Oz, req, v>0, (2.5)
861 862 .
= an Y 00,0 >0

on on ’ red,v>0,
e1(r0) =Ry () =Uo(r), es(r.0)=Qo(r)=Wo(r), re.

3. Finite-Time Stability and Synchronization

FTS and FTSY are critical concepts in the study of RDs, particularly for ensuring that systems achieve
desired behaviors within a specified time frame. The following definitions and theoretical framework
provide the foundation for analyzing these properties in the context of the M-S systems described in
Section 2.
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Definition 3.1 The zero solution of (3.1) is said to be globally FTS if it is LS, and for any initial
condition eg, the solution e(r,v) of the system (3.1):

W:DA@%—?(T,U,@), reQ, v>0,
9e _y, € o, (3.1)
on

e(r,0) = eo(r),

becomes identically zero in finite time, i.e., there exists 0 < v* < 400 such that e(r,v) = 0. The function
v*(eg) = inf{v* : e(r,v) =0 for all r € Q and v > v*} is called the settling time function.

Definition 3.2 ([26]) e* is called the finite-time EP of the system (2.5) if there is a v* € R such that
e#e*, veERT, and e = e*, Vv € RT.

Definition 3.3 The system given by (2.5) is F'TS with respect to {0,e,J},0 < e, if |leo|| < § and Vv € J,
implies | L(v)|| < e,Yv € J.

Lemma 3.1 ([27]) Let e(r) € Hi(Q) be a function such that ag—(nr) = 0. Then,

o0

2 2
V/Q|e(r)| drS/Q\Ve(rﬂ dr, (3.2)

where v > 0 is an eigenvalue of the following problem:

ve(r) = —Ae(r), r€Q,

delr) _, r € 0Q.
n

(3.3)

Theorem 3.1 ([28]) e* = (0,0) is a FTS-EP of the nonlinear system (2.5) if there exists a positive
definite LF L : [0, +00) x Q — R, three class K functions n, 8, A, and a § > 0 such that

Lonlle@I < L(v,e(v)) < Blle @),

. OL (v,e (v))

& ov

€
0

Definition 3.4 ([28]) If there exists a setting time v* > 0 such that

< —AL(v,e(v)),

de
: < 9).
A(6)<+oo, (Ve:0<e<9)

m_[lex ()] + fle2 ()] =0, (3.4)
and
er (V)] + lle2 (v)[| =0, VYo >, (3.5)

then the M-S systems (2.1)-(2.3) are FTSY.

Theorem 3.2 The M-S systems (2.1)-(2.3) achieve synchronization within a finite time v* under the
control laws:

{Cl(nv) =—(2a+01)e1 — piea, (3.6)

Cy(r,v) = —o2e1 — (2b+ p2) ea.
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Specifically, for a fixed time horizon vyax > 0, the settling time v* satisfies:

L(0)

* = 3.7
2min{div1 + a, davg + b} Lo(Umax)’ (3.7)
where
I 1 2 2
2(tma) = 5 (lle2 (V) 5 + lles (o) ) - (38)
Proof: Substituting the control laws (3.6) into the error dynamics (2.5), we obtain the controlled error
system:
ey (ryv
%:dlAel7(&4’01)617#162+%1(P,Q)7%1 (U,W), (39)
des (ryv .
%) = dyAey — o261 — (b+ pi2) €2 + 202(P, Q) — 302 (U, W) .
To analyze the FTS of the error system, we define the LF:
1
Ly(v) = 5/ et + e2dr, (3.10)
Q

which corresponds to the squared £2-norm of the synchronization error. Thus, we obtain:

8L2 /aeld /862d
861 82

—d —d

/Q You T+/Q 2 v "

:/61 [dlAel7(0,4’0’1)617ﬂ1€2+%1(P,Q)7%1(U,W)] dr
Q

+ /Q e [daAes — o2e1 — (b+ pa)ea + s (P, Q) — (U, W) dr
< /Qel [d1Ae; — (a+ o1)er — prea + |50 (P, Q) — s (U, W)|] dr

+ /Q e [doAey — age; — (b+ po)es + |302(P, Q) — »0(U, W)|] dr
< /961 [diAe; — (a4 01)er — pieg + o1er + prez] dr

+ /Q ez [daAey — oze1 — (b + pa)ea + oze1 + paes] dr

§d1/61A61 dr—l—dg/egAegdr—a/efdr—b/e%dr. (3.11)
Q Q Q Q

Applying Green’s formula and Lemma 3.1, and using the Poincaré inequality (3.2), we derive:

L
OLs(v) S—dl/ |Ve1|2 dr—dg/ |V62|2 dr—a/e%dr—b/e%dr
ov Q Q Q Q

—(div1 + a) / e dr — (dyvo + b) / eadr
Q Q

—2min {div1 + a, davs + b} La(v). (3.12)

Setting A (e) = 2min {dyv1 + a, d2vs + b}, we observe that A(e) is a positive constant. The integral
condition in Theorem 3.1 is satisfied:

¢ de €
_ 3.13
/0 A(e) 2min{divs + a,dsvs + b} < +oo, (3:.13)
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for any € > 0. Therefore, by Theorem 3.1, the equilibrium point (e}, e3) = (0,0) is FTS. Since Ly (v) is
positive and strictly decreasing for 0 < v < v* < Vpax, we have La(s) > La(vmax) > 0 for all s € [0, Uax]-
Integrating the derivative inequality yields:

Lo (v) < Ly (0) — 2min{div1 + a,dava + b}/ Loy (s) ds
0

< Ly (0) — 2min{d1v1 + a, davs + b}/ L (Vmax) ds
0

=Ly (0) — 2min {d1V1 + a,dsvs + b} Lo (Umax) v. (314)

By Definition 3.1-3.4, the settling time v* is defined as the smallest time such that Ls(v) = 0. Setting
the right-hand side to zero and solving for v, we obtain:

lim L (v) < Ly (0) — 2min {dyv1 + a,davs + b} La (Vmax) v* = 0. (3.15)

v—v*
Consequently,

_ L (0)
2min {dyv1 + a, dsvs + b} Lo (Vimax)’

U*

is the finite settling time. Therefore, according to Definition 3.1-3.4, the M-S systems (2.1)-(2.3) achieve
FTSY. O

4. Numerical Applications

This section establishes the theoretical basis of our method and validates it through numerical simu-
lations in MATLAB. This dual approach ensures both theoretical soundness and practical reliability. We
employ two benchmark models—Degen-Harrison and Lengyel-Epstein—to demonstrate FTSY under the
proposed control framework.

4.1. Degen-Harrison Model

The Degen-Harrison model describes oxygen concentration effects in Klebsiella aerogenes bacterial
cultures. For detailed reaction schemes and biological significance, see [29,30,31]. The RDs is governed
by:

M:dlAU—&—a—U—Ui[, reQ,v>0,
W(r,v W

Y A AW - — Q )
% ds +0b T g2 reQ,v>0

Let the spatial domain be defined as 2 = [0, 5], and consider the temporal interval v € [0, 5], with the
following parameters:
The control inputs for synchronization are designed as:

Cy(r,v) = —16.5811e; — 1.5811e,,
CQ(T, U) = —1.831161 — 2081162

yielding the slave system:

oP P
OP) AP +a—P——L9 1658116, — 158116,
aQ?U ) Pé Har 3
r,v
ILY) o AQ +b— ——F —1.8311e; — 2.0811es.
Ov 28Q + 1+ qQ? “ 2
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Table 1: Model parameters used in simulations
Parameter H Value

dq 0.01
d 0.01

a )

b 0.25

q 0.1

o1 6.5811
o) 1.8311
H1,2 1.5811
1%} 1.5

170 1.5

N 50

Initial conditions are specified as:

Uo(r) =1 —0.1cos(3r),
Wo(r) =1 —0.2sin(4r),
Py(r) =1.5—0.225sin(3r),
Qo(r) = 1.5 —0.225 cos(4r).

The £2-norm values and synchronization parameters yield:

L2(0) =1.2984, Ly(5) = 0.0456,
min{d;v; + a,davs + b} = 2.8750
with settling time:

L
* 2(0) = 4.9519s.

v 2min{d1V1 +a, d21/2 + b}L2(5)

Figure 1: Master system spatiotemporal dynamics: U(r,v) and W (r,v)

Figure 2: Slave system dynamics under control: P(r,v) and Q(r,v)
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Figure 3: Synchronization error evolution: e (r,v) and ex(r,v)

0.6

P(v), Q(v),U(v)and W(v)
e,(v)and e,(v)

Figure 4: Spatiotemporal Dynamics in 2D

®
———————

Figure 5: £2-norm decay with settling time v* = 4.9519s

Figures 1-5 demonstrate progressive error reduction in both spatial and temporal domains. The

L2?-norm decays to zero at v* = 4.9519s (Fig. 5), confirming FTSY. Spatiotemporal solutions (Fig. 4)
validate convergence to identical states.
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4.2. Lengyel-Epstein Model

The Lengyel-Epstein system characterizes the chlorine dioxide-iodine-malonic acid (CIMA) reaction,
providing the first experimental evidence of Turing patterns. The governing equations are:

4
o) _ g Ay va—v - W r e v>0,
V) i (4.7)
r,v o o uw .
av_dzAWHn(U 1+W2), reQ v,

where U and W represent iodide and chlorite concentrations, respectively. Parameters a and b relate to
feed concentrations, d; o are diffusion coefficients, and v depends on starch concentration [32].
Consider Q2 = [0,8] and v € [0, 3] with parameters:

Table 2: Model parameters used in the second simulation
Parameter | Value

dq 0.05
da 0.05
a 5

b 1

ol 1
01,2 1

M1 4

H2 1

11 1

120} 1

N 50

Control laws are implemented as:

Cyi(r,v) = —1le; — deq, (4.8)
Ca(r,v) = —e; — 3eq, .
defining the slave system:
P 4P
M :dlAPJra—P—l 71161 7462,
0(r. ) Py (4.9)
T, :
——1 = =dsA by|P— ——= | —e1 — 3ea.
90 2AQ + ’Y( 1+Q2) e1 — 3ez
Initial conditions are:
Uo(r) =2 — 0.2 cos(5r),
Wo(r) = 1.5 — 0.375sin(5r), (4.10)
Py(r) = 1.5 — 0.375 sin(4r), ’
Qo(r) =2 — 1.5cos(4r).
Computations yield:
L2(0) = 1.4267, Ly(3) = 0.2287, (411)
min{d;v; + a,davo + b} = 1.0500 ’
with settling time:
L
v* 2(0) = 2.9706s. (4.12)

~ 32 min{divy + a,davs + b} La(3)
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Figure 6: Master system spatiotemporal dynamics: U(r,v) and W (r,v)

Figure 7: Slave system dynamics under control: P(r,v) and Q(r,v)
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time v

Figure 9: Spatiotemporal Dynamics in 2D
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45

40

35

30

time v

Figure 10: £?-norm decay with v* = 2.9706s

Figures 610 exhibit error convergence to zero at v* = 2.9706s. The L£2-norm decay (Fig. 10) and
spatiotemporal solutions (Fig. 9) confirm FTSY across the domain.

This study establishes a comprehensive framework for achieving FTSY in coupled RDs. The core
theoretical contribution involves the development of control laws guaranteeing synchronization between
M-S systems within a finite settling time. LS-based analysis rigorously proves that the synchronization
error converges to zero under the proposed control strategy, satisfying the conditions for FTS. Numerical
simulations conducted on both the Degen-Harrison and Lengyel-Epstein models confirmed these theo-
retical predictions. For the Degen-Harrison model, synchronization was achieved in approximately five
seconds, with the error norm decaying to zero as anticipated. The Lengyel-Epstein model exhibited even
faster convergence, synchronizing in under three seconds. Spatiotemporal dynamics and error evolution
plots demonstrated consistent convergence across the entire spatial domain, thereby validating the effi-
cacy of the controller. Beyond theoretical and numerical contributions, the results provide a foundation
for practical applications requiring precise temporal coordination of spatiotemporal patterns, including
chemical process control in RDs experiments, neural network synchronization in computational neuro-
science, and secure communication systems leveraging synchronized dynamics. Methodologically, the
study’s strengths lie in the model-agnostic nature of the control strategy, applicable to diverse RDs;

the provision of a settling time formula enabling predictable synchronization deadlines; and the explicit
accommodation of boundary conditions and spatial coupling.

5. Conclusion

This study established a rigorous framework for achieving FTSY in coupled RDs. Through LS-
based analysis, we proved that the proposed control laws (3.6) guarantee synchronization between M-S

systems (2.1)-(2.3) within a finite settling time v* given by (3.7). The theoretical findings were validated
numerically using two benchmark models:

e Degen-Harrison model achieved synchronization at v* = 4.9519s with £2-norm convergence
e Lengyel-Epstein model demonstrated faster convergence at v* = 2.9706s
Key advantages of our approach include:
1. Model-agnostic control design applicable to diverse RDs
2. Explicit settling time formula enabling predictable synchronization deadlines
3. Explicit accommodation of Neumann boundary conditions and spatial coupling

These results provide foundational tools for applications requiring precise spatiotemporal coordination,
including chemical process control, neural network synchronization, and secure communication systems.

Future work will investigate extensions to fractional-order systems and networks with heterogeneous
coupling topologies.
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