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A Computational Investigation of a Non-Singular Fractional Operator for an Unsteady
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abstract: This paper analyzes the impacts of thermal conductivity and variable viscosity on unsteady
magnetohydrodynamic (MHD) fluid flow over an infinite vertical plate embedded in a porous medium, in-
cluding thermal diffusion effects. Atangana–Baleanu (AB) and Caputo–Fabrizio (CF) fractional derivatives
are applied in this work to model the system, including the effects of nonlocal and nonsingular kernels. A
dimensionless formulation of the governing partial differential equations (PDEs) has been established. The
equations are then discretized by using the ordinary finite difference approach and then numerically solved
by adopting the Gauss-Seidel iteration process. The influences of different parameters involved in the prob-
lems have been illustrated graphically and numerically. The variation of AB and CF fractional derivatives is
obtained through a MATLAB-based computational approach for the different values of velocity, temperature,
and concentration distributions with respect to time under various parameters. A tabular comparison between
AB and CF methods have been shown. It has been found that both approaches exhibit a significant level of
consistency.

Key Words:Variable viscosity, thermal Conductivity, sorret effect, porous media, AB and CF frac-
tional derivatives.
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1. Introduction

Applications of the MHD principle can be found across several domains, such as plasma physics,
astrophysics, missile technology, cosmology, and space technology. Recently, numerous researchers have
concentrated on investigating the application of MHD flow fluid in porous media. The new trends
in modern science and technology related to MHD have been profoundly shaped by the contributions
of the great researchers cited in [1,2,3]. Nield and Bejan [4] thoroughly described the application of
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fluid mechanics and heat transfer, including recent advancements in various fields of modern science
and technology and also provided a detailed analysis of convective thermal energy transfer. The study
mentioned in [5] examines how free convection currents influence the oscillatory flow of a polar fluid with
a vertical plane boundary at constant temperature and focuses on the influence of various parameters on
both velocity and angular velocity. The investigation explained in [6,7,8,9] focuses on the unsteady MHD
flow of a Casson fluid flow past with different plates through a porous medium in presence of thermal
radiation, chemical reaction effects, and heat source/sink. The research presented in [10,11,12,13,14]
examined the impacts of thermal radiation, chemical reactions, and magnetic fields on the heat and mass
transfer behavior of both unsteady and steady MHD flows in various fluid patterns, such as blood flow in
porous vessels and hybrid nanofluids over permeable surfaces. O. Aydın and A. Kaya [15] conducted a
study on mixed convection heat transfer around a permeable vertical plate. They focused on how magnetic
fields and thermal radiation influence the process. In the studies cited in [16,17], the authors explored
the combined impacts of radiation and rotation on the unsteady hydromagnetic free convection flow of
a viscous incompressible and electrically conducting fluid. A. Kumar [18] studied MHD free convective
fluctuating flow via porous media with variable permeability. The researchers in [19,20,21] performed a
comprehensive examination of the effects of heat and mass transfer on the free convective rotational flow
of a viscoelastic, incompressible and electrically conducting fluid. In [22,23,24,25], researchers examined
how thermal radiation and mass transfer affects the MHD free convection flow. Their investigation
evaluated flow via an exponentially accelerated vertical plate in a porous medium with the effects of
variable temperature and concentration. The research conducted by [26,27] focused on the influences
of magnetic hydrodynamics and scattering on fluid flow past an accelerated vertical plate in a porous
medium with variable thermal diffusion. It also examines the impact of heat sources and radiation
absorption on MHD fluid flow over an infinite vertical plate in the presence of the Soret effect. A detailed
study on the effects of thermal diffusion on MHD flow past a semi-infinite exponentially accelerated
vertical plate across porous medium can be seen in [28]. A comprehensive study on the unsteady MHD
flow fluids over an inclined plate that is exponentially accelerated and embedded in a porous medium
with variable thermal conductivity and the presence of radiation was investigated by S.F. Ahmmed et
al. [29]. A thorough investigation on the MHD natural convection flow with radioactive heat transfer
past an impulsively moving plate with ramped wall temperature can be seen in [30,31]. The work
on the impacts of thermal radiation and heat source on an unsteady MHD free convection flow past
an infinite vertical plate including thermal diffusion has been discussed in [32,33]. The effect of Soret
and radiation on transient MHD free convection from an impulsively started infinite vertical plate was
explained by N Ahmed [34]. An analytical study reported in [35] investigates how Soret and Dufour
effects influence mixed convective mass transfer flow past an infinite vertical porous plate. N. Ahmed
et al. [36] explored the unsteady MHD free convective flow over a vertical plate in a porous medium.
Their study focused on how Hall currents, thermal diffusion, and the presence of a heat source affect
the flow dynamics. A comparative analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional
derivatives illustrated by N. A. Sheikh et al. [37]. Their study was carried out within the framework
of a generalized Casson fluid model including the effects of heat generation and chemical reactions on
the system. Comprehensive numerical investigations on nonsingular fractional operators for MHD flow
problems with variable viscosity and thermal conductivity can be found in [38]. The concept of fractional
derivatives without a singular kernel, introduced by Michele Caputo and Mauro Fabrizio [39], indicates
a significant trend in fractional calculus. Traditional fractional derivatives usually consist of singular
kernels, making their application difficult in science and technology. By introducing a non-singular
kernel, CF approach allows a more accessible interpretation and application of fractional derivatives.
F.C. Lai and F.A. Kulacki [40] examined the impacts of variable viscosity on convective heat transfer.
The study focused on a vertical surface in a saturated porous medium. The impacts of variable viscosity
on the heat transfer process were analyzed in their work.

Motivated by these recent advancements, we aim to investigate the effects of variable viscosity and
thermal conductivity on unsteady MHD flow using non-singular fractional operator.
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2. Mathematical Formulation

An unsteady MHD fluid flow over an infinite vertical surface within a porous medium that exhibits
varying temperatures has been investigated. This analysis focuses on how the flow dynamics are affected
by the presence of both the magnetic field and the temperature gradient in the medium. A magnetic
field with uniform strength Bo is applied at a right angle to the flow direction. As shown in the figure 1,
the X-axis is oriented vertically upward along the plate, while the Y-axis is positioned perpendicular to
the applied magnetic field. Initially, both the liquid and the plate are at a uniform temperature T̃∞ and
concentration level C̃∞. The plate accelerates exponentially with a velocity defined as Ũ = v0 exp(ãt′),
when t′ > 0.

Figure 1: Fluid flow diagram

This flow configuration adheres to the condition of incompressibility. Based on the Boussinesq ap-
proximation, the governing equations and boundary conditions are as bellow:

∂Ũ

∂t′
= −σβ0Ũ

ρ
+ gβ(T − T̃∞) + gβc′(C − C̃∞) + ν

∂2Ũ

∂ỹ2
+

∂ν

∂ỹ

∂Ũ

∂ỹ
− νŨ

K∗ , (2.1)

ρCp
∂T

∂t′
= λ

∂2T

∂ỹ2
+

∂λ

∂ỹ

∂T

∂ỹ
, (2.2)

∂C

∂t′
= DM

∂2C

∂ỹ2
+DT

∂2T

∂ỹ2
(2.3)

Boundary conditions:

For t′ ≤ 0 : Ũ = 0, T = T̃∞, C = C̃∞, for all ỹ < 0, (2.4)

For t′ > 0 at ỹ = 0 :

Ũ = v0e
a′t′ , T = T̃∞ + (T̃w − T̃∞)ea

′t′ , C = C̃∞ + (C̃w − C̃∞)ea
′t′ , (2.5)

As ỹ → ∞ : Ũ → 0, T → T̃∞, C → C̃∞ (2.6)

where Ũ is the fluid velocities in the X direction.
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Following are the non dimensional parameters:

Sc =
ν∞
DM

, u =
Ũ

v0
, t =

t′v20
ν∞

, y =
ỹv0
ν∞

, Gr =
gβ(T̃w − T̃∞)ν2∞

v30
, Gc =

gβc(C̃w − C̃∞)ν2∞
v30

,

θ =
T − T̃∞

T̃w − T̃∞
, Pr =

ν∞Cp

λ∞
, M =

σB2
0ν∞

ρv20
, ϕ =

C − C̃∞

C̃w − C̃∞
,

a =
a′ν∞
v20

, K =
v20K

∗

ν2∞
, Sr =

DT (T̃w − T̃∞)

ν∞(C̃w − C̃∞)
(2.7)

Thermal conductivity and viscosity of the fluid flow decrease as its temperature increases and this
relationship is inversely proportional, i.e

1

µ
=

1

µ∞
(1 + γ(T − T̃∞)), (2.8)

and
1

λ
=

1

λ∞
(1 + δ(T − T̃∞)). (2.9)

where the constants γ and δ are related to the thermal properties of the fluid. We introduce two parame-

ters, one is viscosity parameter θr = T̃r−T̃∞
T̃w−T̃∞

and another is thermal conductivity parameter θc =
T̃c−T∞
T̃w−T̃∞

.

By applying these two parameters to equations (2.8) and (2.9), we obtain expressions for viscosity and
thermal conductivity, respectively as

µ = − µ∞θr
θ − θr

and λ = − λ∞θc
θ − θc

(2.10)

Using the transformation (2.7) and (2.10), the non-dimensional forms of (2.1), (2.2), and (2.3) are

∂u

∂t
= −M2 +Gr +Gcϕ+

θr
(θ − θr)2

.
∂θ

∂y

∂u

∂y
−

(
θr

θ − θr

)
∂2u

∂y2
+

(
θr

θ − θr

)
u

K
, (2.11)

∂θ

∂t
=

1

Pr

(
θc

θ − θc

)[(
1

θ − θc

)(
∂θ

∂y

)2

− ∂2θ

∂y2

]
, (2.12)

∂ϕ

∂t
=

1

Sc

(
θr

θ − θr

)[(
1

θ − θr

)
∂ϕ

∂y

∂θ

∂y
− ∂2 ϕ

∂2y

]
(2.13)

With boundary conditions,

When t ≤ 0 : u = 0, θ = 0, ϕ = 0 for all y < 0, (2.14)

When t > 0 : u = eat, θ = ex, ϕ = eat at y = 0, (2.15)

As y → ∞ : u, θ, ϕ → 0 (2.16)

Here, M =
σB2

0ν

ρv2
0

is the magnetic field parameter, Sc is the Schmidt number of the fluid, Gr is the Grashof

number, Gc is the concentration buoyancy parameter and the Prandtl number is given by Pr.

3. Atangana-Baleanu Fractional Derivatives Model

The AB fractional model is generated by replacing the governing time-based partial differential equa-
tions with the AB fractional operator of order α, where α is strictly lies in between 0 and 1. Equations
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(2.11),(2.12), and (2.13) become,

AB

(
∂αu(y, t)

∂tα

)
= −M +Grθ +Gcθ −

(
θr

θ − θr

)
∂2u

∂y2
+

θr
(θ − θr)2

∂u

∂y

∂θ

∂y
+

(
θ

θ − θr

)
u

K
, (3.1)

AB

(
∂αθ(y, t)

∂tα

)
=

θc
Pr(θ − θc)

[
1

(θ − θc)

(
∂θ

∂y

)2

− ∂2θ

∂y2

]
, (3.2)

AB

(
∂αϕ(y, t)

∂tα

)
=

1

Sc

[
θr

(θ − θr)2
∂ϕ

∂y

∂θ

∂y
− θ

(θ − θr)

∂2ϕ

∂y2

]
+ Sr

[
θr

(θ − θr)2

(
∂θ

∂y

)2

− θr
(θ − θr)

∂2θ

∂y2

]
.

(3.3)

Where, ∂αu(y,t)
∂tα is the AB fractional operator of order α defined by

AB

(
∂α(y, t)

∂tα

)
=

1

1− α

∫ t

0

u′(y, t)Eα

(
−α(z − t)

1− α

)
dt. (3.4)

Where, Eα(−tα) =
∑∞

m=0
(−1)αm
Γ(1+αm) is the Mittag-Leffler function.

4. Caputo-Fabrizio fractional derivatives Model

The CF fractional model is generated by replacing the governing time-based partial differential equa-
tions involving the CF fractional operator of order β, where β is strictly lies in between 0 and 1.
(2.11),(2.12), and (2.13) become,

CF

(
∂βu(y, t)

∂tβ

)
= −M +Grθ +Gcθ −

(
θr

θ − θr
)

)
∂2u

∂y2
+

θr
(θ − θr)2

∂u

∂y

∂θ

∂y
+

(
θ

θ − θr

)
u

K
, (4.1)

CF

(
∂βθ(y, t)

∂tβ

)
=

θc
Pr(θ − θc)

[
1

(θ − θc)

(
∂θ

∂y

)2

− ∂2θ

∂y2

]
, (4.2)

CF

(
∂βϕ(y, t)

∂tβ

)
=

1

Sc

[
θr

(θ − θr)2
∂ϕ

∂y

∂θ

∂y
− θ

(θ − θr)

∂2ϕ

∂y2

]
+ Sr

[
θr

(θ − θr)2

(
∂θ

∂y

)2

− θr
(θ − θr)

∂2θ

∂y2

]
.

(4.3)

Where,
∂βu(y, t)

∂tβ
represents the Caputo-Fabrizio fractional derivative of order β, as defined by

CF

(
∂βu(y, t)

∂tβ

)
=

1

1− β

∫ t

0

u′(y, t)Exp

(
−β(z − t)

1− β

)
dt. (4.4)

5. Numerical solution

To solve equations (3.1)-(3.4) or (4.1)-(4.4), the ordinary finite difference method is applied, with
discretization through the following formulae (5.1):

∂u

∂t
=

ui+1,j − ui,j

dt
,

∂θ

∂t
=

θi+1,j − θi,j
dt

,
∂ϕ

∂t
=

ϕi+1,j − ϕi,j

dt
,

∂u

∂y
=

ui,i+1 − ui,j

dy
,
∂θ

∂y
=

θi,j+1 − θi,j
dy

,

∂ϕ

∂y
=

ϕi,j+1 − ϕi,j

dy
,

∂2u

∂y2
=

ui,j+1 − 2ui,j + ui,j−1

dy2
,
∂2θ

∂y2
=

θi,j+1 − 2θi,j + θi,j−1

dy2
,

∂2ϕ

∂y2
=

ϕi,j+1 − 2ϕi,j + ϕi,j−1

dy2
... etc. (5.1)

Equations (3.4) or (4.4) is computed using numerical integration. Subsequently, equations (3.1)-(3.3) or
(4.1)-(4.3), along with boundary conditions (2.14), (2.15), and (2.16) are discretized and solved using an
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iterative Gauss-Seidel scheme. So, this boundary conditions are expressed as follows :

t ≤ 0 : ui,j = 0, θi,j = 0, ϕi,j = 0 for all yi,j < 0, (5.2)

t > 0 : ui,j = eat, θi,j = ex, ϕi,j = eat at yi,j = 0, (5.4)

u → 0, θi,j → 0, ϕi,j → 0 as yi,j → ∞ (5.5)

6. Some Useful Physical Parameters

(i) Coefficient of skin friction: Cf = τ
ρv2

0
= − θr

θ−θr
∂u
∂y

)
y=0

= − θr
eat−θr

(
ui,j−eat

dy

)
, where Cf

is non-dimensional skin friction. The plate is being acted upon by Cf along the free stream and

τ(viscous drag) = µ∂Ũ
∂ỹ

)
ỹ=0

= µ
v2
0

ν
∂u
∂y

)
y=0

.

(ii) Nusselt number: Nu = q

ρv0Cp(T̃w−T̃∞)
= 1

Pr

θc
(θ−θc)

∂θ
∂y

)
y=0

= 1
Pr

θc
(θ−θc)

(
θi,2−eat

dy

)
, where Nu is

Nusselt Number and q = −λ
∂T

∂ỹ
is the heat transfer rate from the plate to the fluid.

(iii) Sherwood Number:

The mass flux qm is in the form qm = −DM
∂C
∂ỹ

)
ỹ=0

= v0(C̃w−C̃∞)
Sc

θr
(θ−θr)

∂ϕ
∂y

)
y=0

.

The Sherwood number is Sh = 1
Sc

θr
(eat−θr)

(
ϕi,2−eat

dy

)
.

7. The Outcomes and the Discussion

Both the AB and CF fractional derivative methods have been used in order to solve the non-
dimensional discretized governing equations as well as the non-dimensional boundary conditions(5.2)-
(5.5). Through the development of an appropriate MATLAB code, the necessary calculations have been
carried out thoroughly and successfully. This study investigates how parameters like α, β, θr, θc, M , Pr,
Sr,Gc,Gr Sc, K etc influence on velocity(u), temperature(θ), and concentration(ϕ) profiles.
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Figure 2: Impact of α & β on velocity Figure 3: Impact of α & β on temperature

Figure 4: Impact of α & β on concentration Figure 5: θc’s impact on velocity
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Figure 6: θc’s impact on temperature Figure 7: θc’s impact on concentration

Figure 8: θr’s impact on velocity Figure 9: θr’s impact on temperature

Figure 10: θr’s impact on concentration Figure 11: Pr’s impact on velocity
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Figure 12: Pr’s impact on temperature Figure 13: Pr’s impact on concentration

Figure 14: M’s impact on velocity Figure 15: Sc’s impact on velocity

Figure 16: Sc’s impact on concentration Figure 17: Gc’s impact on velocity
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Figure 18: Gr’s impact on velocity Figure 19: Sr’s impact on velocity

Figure 20: Sr’s impact on concentration Figure 21: K’s impact on velocity

For different values of α & β, the velocity, temperature, and concentration profile are illustrated in
figures 2, 3, and 4 receptively. Here the figures indicating that the profiles of velocity(u), temperature(θ),
and concentration (ϕ) decrease while the value of α & β rise. The θc’s effects on velocity, temperature,
and concentration are demonstrated in figures 5, 6, and 7 respectively, indicating that both velocity and
concentration increase as θc increases, while temperature shows an downward trend with rising values
of θc. As illustrated in figures 8, 9, and 10 respectively, the θr’s impacts on velocity, temperature, and
concentration reveal a decline in both velocity and concentration profile with higher θr’s values, whereas
temperature increases as θr rises. In figure 11, 12, and 13 respectively, the Pr’s impacts on velocity(u),
temperature(θ), and concentration (ϕ) profiles are evident, with velocity and concentration increasing in
response to increasing Pr, while temperature shows a negative correlation with Pr. Figure 14 illustrated
the influence of M on velocity(u) profiles, indicating that the velocity profile exhibits an increasing trend
with higher values of M . The variations of velocity and concentration profiles with respect to different
Sc values are illustrated in figures 15, and 16 respectively, indicating that both profiles decline as Sc
increases. Based on figure 17, it is seen that the rise in Gc is associated with increases in velocity profiles.
Figure 18 displays the variation of velocity profile for various values of Gr. Here the velocity profile
increases with increasing value of Gr. In Figures 19, and 20 respectively, it is observed that an increase
in Sr leads to decreases in Velocity and concentration profile. The impacts of increasingK on the Velocity
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profile are displayed in 21, showing an upward trend in the velocity profile.

8. A comparative analysis of the AB and CF fractional derivatives

Under different parameters the AB and CF fractional derivative methods are evaluated and compared
which are elaborately demonstrated in the tables 1-7 . The velocity, temperature and concentration
profiles for different values of parameter are nearly identical when comparing the AB and CF fractional
derivatives. However, the values for the CF method are slightly lower than those of the AB method for
u, θ and ϕ.

Table 1: α/β’s impact on u, θ and ϕ

α/β → 0.2 0.4 0.6

t → 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2

u
AB 0.234373 0.311907 0.41337 0.234335 0.311798 0.413135 0.234301 0.311694 0.412907
CF 0.234999 0.313586 0.416715 0.235054 0.313753 0.417069 0.235123 0.31397 0.417555

θ
AB 0.238704 0.320565 0.429848 0.238676 0.320484 0.429669 0.238651 0.320406 0.429494
CF 0.238777 0.320767 0.430262 0.238762 0.320725 0.430174 0.23875 0.320695 0.430114

ϕ
AB 0.236986 0.317551 0.424583 0.236979 0.317529 0.424536 0.236972 0.317508 0.42449
CF 0.237118 0.317911 0.425319 0.23713 0.317948 0.425399 0.237145 0.317996 0.425507

Table 2: θc’s impact on u,θ and ϕ

θc → -10 -8 -6

t → 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2

u
AB 0.175656 0.233159 0.307955 0.175676 0.233205 0.308058 0.175708 0.233278 0.308217
CF 0.176218 0.234704 0.31109 0.176238 0.234749 0.31119 0.17627 0.23482 0.311344

θ
AB 0.237979 0.319246 0.427505 0.236979 0.317507 0.424522 0.235377 0.314755 0.419866
CF 0.238071 0.31951 0.428064 0.237071 0.317771 0.425082 0.23547 0.315019 0.420427

ϕ
AB 0.236987 0.317545 0.424572 0.237005 0.317584 0.424655 0.237033 0.317645 0.424784
CF 0.237149 0.317997 0.425507 0.237167 0.318036 0.42559 0.237195 0.318096 0.425718

Table 3: θr’s on u,θ and ϕ

θr → -10 -8 -6

t → 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2

u
AB 0.173976 0.230237 0.302944 0.171551 0.22607 0.295901 0.167695 0.219535 0.285045
CF 0.174532 0.231762 0.306029 0.172098 0.227565 0.298915 0.168229 0.220986 0.287954

θ
AB 0.238663 0.320445 0.429582 0.238674 0.320455 0.429596 0.238683 0.320465 0.429623
CF 0.238756 0.320708 0.430141 0.238766 0.320718 0.430152 0.238776 0.320735 0.430165

ϕ
AB 0.235964 0.315753 0.421472 0.234485 0.313194 0.417105 0.23212 0.309146 0.410302
CF 0.236126 0.316206 0.422411 0.234648 0.313648 0.41805 0.232283 0.309604 0.411258
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Table 4: Pr’s impact on u,θ and ϕ

Pr → 2 4 6

t → 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2

u
AB 0.175673 0.233247 0.308222 0.175706 0.233363 0.308543 0.175736 0.233479 0.308876
CF 0.175655 0.232683 0.305753 0.175083 0.230606 0.300259 0.174508 0.228512 0.294726

θ
AB 0.236657 0.31463 0.417053 0.234593 0.308704 0.404414 0.232546 0.302878 0.392129
CF 0.239301 0.322188 0.433113 0.239893 0.323879 0.436758 0.240511 0.325736 0.441015

ϕ
AB 0.237003 0.31762 0.424789 0.237032 0.317725 0.425076 0.237061 0.317829 0.425356
CF 0.237093 0.317817 0.425063 0.237047 0.317653 0.424637 0.237 0.317481 0.424185

Table 5: M ’s impact on u & Sc’s impact on u and ϕ

M t
u

Sc t
u ϕ

AB CF AB CF AB CF

1.1
0.4 0.238872 0.239649

0.1
0.4 0.17564 0.176212 0.236838 0.237658

0.8 0.317886 0.320019 0.8 0.233121 0.234695 0.31718 0.319478
1.2 0.4213 0.425621 1.2 0.307871 0.311067 0.423819 0.428601

1.6
0.4 0.237328 0.238101

0.2
0.4 0.175636 0.176221 0.236666 0.23831

0.8 0.315814 0.317933 0.8 0.233113 0.234722 0.316758 0.321371
1.2 0.418523 0.422815 1.2 0.307855 0.311126 0.422953 0.43257

2.1
0.4 0.235797 0.236564

0.3
0.4 0.175633 0.17623 0.236495 0.238964

0.8 0.313759 0.315864 0.8 0.233105 0.23475 0.316336 0.323274
1.2 0.415768 0.420032 1.2 0.307839 0.311185 0.422089 0.436573

Table 6: K’s impact on u & Sr’s impact on u and ϕ

K t
u

Sr t
u ϕ

AB CF AB CF AB CF

2.1
0.4 0.175437 0.175998

1
0.4 0.23431 0.235078 0.235646 0.235787

0.8 0.232856 0.234399 0.8 0.311732 0.313839 0.315174 0.315566
1.2 0.307526 0.310659 1.2 0.412996 0.417265 0.420396 0.421202

2.6
0.4 0.175488 0.17605

1.5
0.4 0.234306 0.235074 0.234974 0.235106

0.8 0.232923 0.234467 0.8 0.311725 0.313832 0.313988 0.314351
1.2 0.307615 0.310749 1.2 0.412983 0.417252 0.418315 0.419057

3.1
0.4 0.175522 0.176084

2
0.4 0.234302 0.23507 0.234302 0.234424

0.8 0.232969 0.234513 0.8 0.311717 0.313825 0.312803 0.313137
1.2 0.307675 0.310809 1.2 0.412971 0.417239 0.416233 0.416912

Table 7: Impression of Gr and Gc on u

Gr t
u

Gc
u

AB CF AB CF

3
0.4 0.175642 0.176204

2
0.16982 0.170374

0.8 0.233127 0.234673 0.22528 0.22679
1.2 0.307884 0.31102 0.29729 0.300362

5
0.4 0.176292 0.176855

2.5
0.17047 0.171022

0.8 0.234005 0.235554 0.22615 0.227666
1.2 0.309071 0.312214 0.29847 0.301546

7
0.4 0.176942 0.177506

3
0.17112 0.17167

0.8 0.234883 0.236435 0.22702 0.228542
1.2 0.310258 0.313408 0.29964 0.302731
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9. A comparison between AB and CF fractional derivative under different parameter i.e
Cf , Nu and Sh.

Considering the values of α = 0.25 and β = 0.5, the values for Cf , Nu and Sh are calculated using
both AB and CF method under different parameters. The variation of coefficient of skin friction, Nusselt
Number and Sherwood number against different parameters are demonstrated in the table 8 and table 9
respectively . It is observed that the Nu and Sh increase for the rising value of θc and Cf increases with
the increasing value of θr.

Table 8: Table for Nu and Sh

α / β θc

Nu Sh

AB CF AB CF

0.25

-12 0.000993 0.000992 5.479864 5.448328
-10 0.006138 0.006129 5.478339 5.446816
-8 0.036482 0.036432 5.476134 5.444631
-6 0.203948 0.203664 5.472664 5.441195

0.5

-12 0.000993 0.000992 5.48676 5.447348
-10 0.00614 0.00613 5.485231 5.445836
-8 0.036498 0.036437 5.48302 5.443651
-6 0.20404 0.203691 5.479542 5.440214

Table 9: Table for Cf and Sh

α/ β θr
Cf Sh

AB CF AB CF

0.25

-12 -0.000702 -0.0007 7.479864 7.448328
-10 -0.004353 -0.004342 6.609313 5.578135
-8 -0.025989 -0.025924 5.353712 5.323038
-6 -0.146278 -0.145918 5.384797 5.35488

0.5

-12 -0.000703 -0.0007 5.48676 5.447348
-10 -0.004356 -0.004342 5.616127 5.577136
-8 -0.026005 -0.025923 5.360413 5.322012
-6 -0.146365 -0.145916 5.391328 5.353815

10. Conclusion

Based on the above study, it can be concluded as follows: The study provides a numerical approach
to analyze the impact of different parameters on MHD flow past an inclined vertical plate using the AB
and CF fractional derivatives.
(i) Impact of fractional derivative parameters (α & β): As the parameters α and β increase, both
the velocity and temperature profiles decrease, as shown in table 1.
(ii) Magnetic field parameter (M): Increasing the value of M results in a decline in velocity profile,
as demonstrated in table 5.
(iii) Thermal Grashof Number (Gr) and Concentration Grashof Number (Gc): Table 7 indi-
cates that When both Gr and Gm increase, the velocity profile rises.
(iv) Variable viscosity (θr) and thermal conductivity (θc): An increase in θr enhances the tem-
perature profile, but decrease in velocity and concentration profiles. On the other hand, both velocity
and concentration increases but temperature decreases with the increasing value of θc, as illustrated in
table 1 and 2 respectively.
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(v) Schmidt Number (Sc) and Soret Number (Sr): As Sc and Sr increase, both velocity and
concentration diminish, but the temperature profile shows an upward trend, as shown in tables 5 and 6
respectively.
(vi) Prandtl Number (Pr): When Pr increases, both velocity and temperature increase, while con-
centration shows an downward trend, as seen in table 4.
(vii) Permeability Parameter (K): Table 6 illustrates that the velocity profile increases as K grows.
Finally, the velocity, temperature, and concentration profiles have been examined for different parame-
ters. The results show that the values obtained using both AB and CF fractional derivatives are nearly
identical.

11. Terminology

Table 10: Nomenclature
Symbol Description Symbol Description

q⃗ Fluid velocity T̃w Wall temperature

B⃗ Density of magnetic field T̃∞ Fluid temperature (distant from the plate)

J⃗ Current density vector(A/m2) KT Thermal diffusion ratio
λ Thermal conductivity DM Mass diffusivity

B0 Applied magnetic field (weber/m2) C Species concentration

t Time (s) C̃w Wall concentration

ã Accelerating parameter C̃∞ Concentration (distant from the plate)
ν0 Suction velocity U0 Velocity of the plate
Cp Specific heat(constant pressure) ρ Fluid density
M Magnetic parameter µ Coefficient of viscosity
Pr Prandtl number σ Electrical conductivity
Sc Schmidt number κ Thermal conductivity
DT Thermal diffusion coefficient ν Kinematic viscosity

Sr Soret number β Volumetric coefficient of thermal expansion
Gr Thermal Grashof number βc′ Volumetric coefficient (solutal expansion)
Gc Mass Grashof number θ Dimensionless temperature

T Fluid temperature ϕ Dimensionless concentration
K Non-dimensional Permeability K∗ Dimensional Permeability of the Porous Medium

Ũ dimensional velocity g acceleration due to gravity
u Fluid velocity
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