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Homogenization of a Stokes flow in porous media under a non-homogeneous slip boundary
condition ∗

Taha Khalil Abassi, Chafia Karek, Amar Ould-Hammouda and Fares Yazid†

abstract: We deal with the Stokes problem in a domain of RN, N > 2, that is ε-periodically perforated
by holes of sizes r1(εδ1) = o(ε) and r2(εδ2) = o(ε). A Robin-type condition depending on a parameter γ
is prescribed on the boundary of some holes while a Dirichlet condition is imposed on the boundary of the
remainding holes as well as on the external boundary of the domain. Our aim is to describe the asymptotic
behavior of the fluid’s velocity and pressure as ε tends to zero and derive the limit problem. To achieve this,
we use the unfolding method introduced by Cioranescu et al. (C. R. Acad. Sci. Paris, Ser. I 335 (2002)
99-104.
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1. Introduction

In this work, we investigate the asymptotic behavior of the Stokes problem with a Robin type condi-
tion in a perforated domain Ωεδ1δ2 with holes of size εδ, ε−periodically distributed. Our primary tool is
the unfolding method.

We consider here the case where δ = δ(ε) is such that δ → 0 as ε → 0. These types of holes are
referred to in literature as ”small holes”(see e.g. [11]), or ”tiny holes” (see e.g. ( [1], [2], [3], [15]).
Let Ω be a bounded domain in RN , N ≥ 3 and |∂Ω| = 0. The reference (periodicity) cell Y is given by

Y =

]
−1

2
,
1

2

[N
.

We introduce two compact subsets T and B of Y such that T ∩B = ∅. We assume B and T have Lipschitz
boundaries. There exists δ̄ > 0 such that δ̄

(
T ∪B

)
⊂ Y .

We denote by ε, δ1(ε) and δ2(ε) three small parameters satisfying
(
δ1(ε), δ2(ε)

)
∈ (0, δ̄]2.

The perforated domain Ωεδ1δ2 is given by removing the following sets of holes:

Bεδ1 = interior
( ⋃

ξ∈Ξε

(εδ1B + εξ)
)
, Tεδ2 = interior

( ⋃
ξ∈Ξε

(εδ2T + εξ)
)
, (1.1)

Thus, the perforated domain Ωεδ1δ2 is defined as Ωεδ1δ2 = Ω \ (Bεδ1 ∪ T εδ2),
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where Ξε = {ξ ∈ ZN | ε(ξ + Y ) ⊂ Ω}.
Let us consider the following problem:

(Pεδ1δ2)



−ν∆uεδ1δ2 +∇pεδ1δ2 = f in Ωεδ1δ2 ,

div uεδ1δ2 = 0 in Ωεδ1δ2 ,

−pεδ1δ2 n+ ν
∂uεδ1δ2
∂n

+ αεγuεδ1δ2 = Gεδ1 on ∂Bεδ1 ,

uεδ1δ2 = 0 on ∂Ω ∪ ∂Tεδ2 .

(1.2)

We denote f as the field of exterior body forces and Gεδ1 is the field of exterior surface forces. The
constants α ≥ 0 and γ are given, as well as ν > 0 the viscosity of the fluid. The outward normal
to Bεδ1 is denoted by η. The Boundary condition on ∂S means that the stress vector gives rise to a
breaking phenomenon due to the term αεγu along with a proportionality effect with respect to the
exterior surface forces due to the field G [7]. Our problem (1.2) modelizes the flow of an incompressible
viscous fluid through a porous medium under the influence of an external electric field.For more details,
see for instance [7,5].
There is an extensive body of literature on the homogenization of perforated domains in RN . For ”small”
holes of size εα, α > 0, Cioranescu and Murat [11] studied the homogeneous Dirichlet problem for the
Poisson equation. They established that the size εN/N−2 (N > 2) is ”critical” in the sense that the
limit problem not only involves the laplacian but also an additional zero- order term, referred by the
authors as a ”strange term”, which depends on the capacity of the set of holes at the limit. The non
homogeneous Neumann problem for the laplacian in the same geometrical framework, was analyzed by
Conca and Donato [13] who identified a critical hole size of order εN/N−1. In this case, the contribution
of the holes at the limit problem manifests as an additional right-hand side integral term.

Regarding the Stokes problem, a pioneering study by Ene and Sanchez Palencia [14] examined a flow
in a periodic porous medium with ε-size holes under a Dirichlet boundary condition. They derived the
Darcy law in the limite, by employing the multiple scale method (introduced in [4]), along with sharp
error estimates. This provided the first mathematical justification of the experimental Darcy’s law.
The Stokes problem with a non-homogeneous slip boundary condition, depending on a parameter γ ∈ RN

(with still ε-size holes), was studied by Cioranescu, Donato, and Ene [7] using energy methods. They
derived, in the limit, for different values of γ, either a Darcy-type law, a Brinkman equation, or a Stokes-
type system. However, in the context of small holes, it is the order of the hole size with respect to γ
that determines the type of the homogenized problem. When working with perforated domains, the main
difficulties arise from the fact that the equations and their solutions are defined on domains that strongly
depend on γ. To study convergence as ε → 0 (i.e., to ”homogenize”), extension operators to a fixed
domain must be introduced, and test functions specific to each situation must be constructed. Strong
regularity of the geometry of the holes and the domain is required to tackle these challenges. These
difficulties are addressed by the periodic unfolding method [8], [9], which avoids the need for extension
operators and is particularly useful for complex geometries (see Cioranescu et al. [10]). The advantage of
the unfolding method is that it separates the scales, allowing holes at different scales to be treated within
the same period. Such problems, due to their complexity, cannot be solved using classical homogenization
methods. For the Stokes problem, this method was applied by Capatina and Ene [6] and by Zaki [19]
for ε-sized holes. This approach was later extended to domains with small holes in Cioranescu et al. [9]
and applied by Ould-Hammouda [18,17,12] for the Poisson equation. It was also combined with energy
methods for the Stokes problem in collaboration with Karek [16]. In this work, we extend this approach
to investigate the asymptotic behavior of the Stokes problem in a perforated domain Ωεδ1δ2 with two
kind of holes, Bεδ1on which a Robin-type condition depending on a parameter γ is prescribed and the
others Tεδ2 on which is imposed a Dirichlet conditions, both are being distributed ε−periodically which
is a more general framework.

Let us now turn back to problem (Pεδ1δ2). We assume that ε, δ1(ε) and δ2(ε) are such that there
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exist two constants k1 and k2

k1 = lim
ε→0

δN−1
1

ε
∈ [0,+∞[ and k2 = lim

ε→0

δ
N
2 −1
2

ε
∈ [0,+∞[. (1.3)

Under this assumption, and following the values of γ we show that the solution of (1.2) converges in an
appropriate space to u which is characterized as the solution of a limit problem (see Theorems 4.2, 4.3
and 4.4). These new theorems show the presence of four types of contributions in the limit systems.
The term k22Θ from equations (4.32) and (4.33) represents the contribution of the Dirichlet holes Tεδ2 .
It corresponds to the ”strange term” introduced in Cioranescu and Murat [11] which depends on the
capacity of the holes at the limit.

The paper is organized as follows. In Section 2, we list some notations and give the variational
formulation of problem (Pεδ1δ2). Section 3, for the reader convenience, is devoted to some recalls of the
unfolding method for ”small holes”. Finally, the homogenization results are proved in Section 4, we show
that the solution of (Pεδ1δ2) converges in an appropriate space to the solution of a homogenized limit
problem.

2. Setting of the problem and variational formulation

As in [8], for a.e. z ∈ RN , we denote by [z] ∈ ZN the integer part of z and by {z} the fractional part
of z

{z} = z − [z] ∈ Y, for a.e. z ∈ RN .

Hence
x = ε

([x
ε

]
+

{x
ε

})
for a.e. x ∈ RN .

Introduce now the following sets:

Ω̂ε = interior
{ ⋃

ξ∈Ξε

ε(ξ + Y )
}
, Λε = Ω \ Ω̂ε. (2.1)

By definition, the set Ω̂ε is the largest finite union of ε(ξ + Y ) cells, ξ ∈ ZN , contained in Ω while Λε is
the subset of Ω containing parts of ε(ξ + Y ) cells intersecting the boundary ∂Ω.

Figure 1: The domain Ωεδ1δ2

Figure 2: The cell εYδ
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For every bounded domain K included in RN with Lipschitz boundary and for every φ ∈ L1(∂K), we
denote

M∂K(φ) =
1

|∂K|

∫
∂K

φ(z) dσ(z),

the average of φ over ∂K.
Consider the system (1.2), where, uεδ1δ2 is the velocity field, pεδ1δ2 is the pressure, f is the field of

exterior body forces, Gεδ1 is the field of exterior surface forces. Recall that α ≥ 0 and γ are constant,
and assume that the data f and Gεδ1 satisfy

(i) f ∈ L2(Ω)N .

(ii) Gεδ1 = g0 + gεδ1 , where g0 ∈ L2(Ω)N and gεδ1 = g
( 1

δ1

{ ·
ε

})
, g ∈ L2(∂B)N satisfying M∂B(g) = 0.

Let us introduce the following Hilbert spaces:

Hεδ1δ2 =
{
v | v ∈ H1(Ωεδ1δ2)

N , v = 0 on ∂Ω ∪ ∂Tεδ2
}
,

Vεδ1δ2 = {v | v ∈ Hεδ1δ2 , div v = 0 in Ωεδ1δ2},

endowed with the scalar product

⟨φ,ψ⟩ =
∫
Ωεδ1δ2

∇φ : ∇ψ dx=
N∑

i,j=1

∫
Ωεδ1δ2

∂φi

∂xj

∂ψi

∂xj
dx.

The variational formulation of system (1.2) is

Find uεδ1δ2 ∈ Vεδ1δ2 , pεδ1δ2 ∈ L2(Ωεδ1δ2) satisfying∫
Ωεδ1δ2

∇uεδ1δ2 : ∇φdx+ αεγ
∫
∂Bεδ1

uεδ1δ2 · φdσεδ1(x)−
∫
Ωεδ1δ2

pεδ1δ2divφdx

=

∫
Ωεδ1δ2

f · φdx+

∫
∂Bεδ1

Gεδ1 · φdσεδ1(x),

∀φ ∈ Hεδ1δ2 .

(2.2)

Classical results (see for details [?]) give the existence of a unique solution to problem (2.2). Our aim is
to give the asymptotic behavior of (uεδ1δ2 , pεδ1δ2) as ε→ 0. To do so, we apply the tools of the periodic
unfolding method.

For simplicity, from now on we denote (uε, pε) the solution of the problem (2.2).

3. The unfolding operators Tεδ and T b
εδ

In this section, we recall the definitions and the main properties of the periodic unfolding operators
with two small parameters introduced in [9].
Let C be a bounded domain with Lipschitz boundary, for δ small enough δC ⊂ Y . Denote

Ωεδ = Ω \Cεδ, Cεδ = interior
( ⋃

ξ∈Ξε

(εδC+ εξ)
)
.

3.1. The unfolding operator Tεδ
According to [9], the geometry of the domains with small holes requires a specific unfolding operator

depending on both parameters ε and δ. Below, we will consider functions in W 1,p(Ωεδ), p ∈ [1,+∞],
which vanish on the boundary of the open set Cεδ. These functions are naturally extended by zero to the
whole domain Ω. Consequently, from now on, we will not distinguish these functions and their extension.

Definition 3.1 For ϕ ∈ Lp(Ω), p ∈ [1,+∞], the linear and continuous unfolding operator Tεδ : Lp(Ω) →
Lp(Ω× RN ) is defined by

Tεδ(ϕ)(x, z) =

ϕ
(
ε
[x
ε

]
+ εδz

)
for a.e. (x, z) ∈ Ω̂ε ×

1

δ
Y,

0 otherwise.
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Observe that for any ϕ in Lp(Ω), p ∈ [1,+∞], we define the local average operator Mε
Y : Lp(Ω) → Lp(Ω)

by:

Mε
Y (ϕ) = δN

∫
1
δY

Tεδ(ϕ)(·, z)dz,

and if (vε) is a sequence such that vε → v strongly in Lp(Ω), then, Mε
Y (vε) → v strongly in Lp(Ω).

Also, we recal the following propositions are proved in [9]:

Proposition 3.1 For every u in L2(Ω) one has

∥Tεδ(u)∥2L2(Ω×RN ) ≤
1

δN
∥u∥2L2(Ω). (3.1)

If {wε}ε is a sequence in L1(Ω) satisfying

∫
Λε

|wε| dx→ 0, then

∫
Ω

wε dx− δN
∫
Ω×RN

Tεδ(wε) dxdz → 0.

Proposition 3.2 Suppose N ≥ 3 and denote by 2∗ the Sobolev exponent
2N

N − 2
associated to 2. For

every u ∈ H1(Ω) the following estimates hold:

∥∇z

(
Tεδ(u)

)
∥2L2(Ω× 1

δY ) ≤
ε2

δN−2
∥∇u∥2L2(Ω),

∥Tεδ
(
u−Mε

Y (u)
)
∥2L2(Ω;L2∗ (RN )) ≤

Cε2

δN−2
∥∇u∥2L2(Ω),

∥Tεδ
(
u)∥2L2(Ω×C) ≤

Cε2

δN−2
∥∇u∥2L2(Ω) + C∥u∥2L2(Ω),

(3.2)

where C does not depend on ε and δ.

As a consequence of the above proposition, one obtains

Lemma 3.1 For every u ∈ H1(Ω) one has

∥Tεδ
(
u−Mε

Y (u)
)
∥2L2(Ω×∂C) ≤

Cε2

δN−2
∥∇u∥2L2(Ω). (3.3)

The constant does not depend on ε and δ.

Proof: Estimates (3.2)1,2 lead to

∥Tεδ
(
u−Mε

Y (u)
)
∥2L2(Ω;H1(C)) ≤

Cε2

δN−2
∥∇u∥2L2(Ω).

Then (3.3) follows using the trace theorem for the functions in H1(C). 2

When δ = 1 we have the following proposition and definition.

Proposition 3.3 Suppose that p ∈]1, inf[. Let (wε) be a sequence converging to some w in W 1,p(Ω). Up
to a subsequence, there exists some ŵ in Lp(Ω;W 1,p

per(Y )) such that:{
Tε1(wε)⇀ w weakly in Lp(Ω;W 1,p(Y )),

Tε1(∇wε)⇀ ∇w +∇ŵ weakly in Lp(Ω× Y ).
(3.4)
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3.2. The boundary unfolding operator T b
εδ

Definition 3.2 For ϕ in Lp(∂Cεδ), p ∈ [1,+∞], the boundary unfolding operator T b
εδ : Lp(∂Cεδ) 7→

Lp(Ω× ∂C) is defined by

T b
εδ(ϕ)(x, z) =

ϕ
(
ε
[x
ε

]
+ εδz

)
for a.e. (x, z) ∈ Ω̂ε × ∂C,

0 for a.e. (x, z) ∈ Λε × ∂C.
(3.5)

The boundary unfolding operator T b
εδ is linear and continuous, it satisfies∫

∂Cεδ

ϕ(x) dσεδ(x) =
δN−1

ε

∫
Ω×∂C

T b
εδ(ϕ)(x, z) dxdσ(z), ∀ϕ ∈ L1(∂Cεδ). (3.6)

Proposition 3.4 Let g be in L2(∂C). Set

gεδ(x) = g
(1
δ

{x
ε

})
for a.e. x ∈ ∂Cεδ. (3.7)

For every v in H1(Ω), one has

∣∣∣ ∫
∂Cεδ

gεδ(x)v(x)dσεδ(x)
∣∣∣ ≤ Cδ

N
2

(
∥g∥L2(∂C)∥∇v∥L2(Ω) +

δ
N
2 −1

ε
|M∂C(g)|∥v∥L2(Ω)

)
. (3.8)

The constant does not depend on ε and δ.

Proof: We transform the integral over ∂Cεδ by unfolding. That gives

∣∣∣ ∫
∂Cεδ

gε(x)v(x)dσεδ(x)
∣∣∣ = ∣∣∣δN−1

ε

∫
Ω×∂C

g(z)T b
εδ(v)(x, z)dxdσ(z)

∣∣∣
≤ δN−1

ε

∣∣∣ ∫
Ω×∂C

g(z)
(
T b
εδ(v)−Mε

Y (v)
)
(x, z)dxdσ(z)

∣∣∣+ δN−1

ε

∣∣∣ ∫
Ω×∂C

g(z)Mε
Y (v)(x)dxdσ(z)

∣∣∣.
Due to (3.3), the first integral in the right hand side is estimated by

δN−1

ε

∣∣∣ ∫
Ω×∂C

g(z)
(
T b
εδ(v)−Mε

Y (v)
)
(x, z)dxdσ(z)

∣∣∣ ≤ Cδ
N
2 |Ω|1/2∥g∥L2(∂C)∥∇v∥L2(Ω).

On the other hand one has∫
Ω×∂C

g(z)Mε
Y (v)(x)dxdσ(z) = M∂C(g)

∫
Ω

Mε
Y (v)(x)dx.

Besides ∫
Ω

Mε
Y (v)(x)dx =

∫
Ω̂ε

v(x)dx.

Hence, the Cauchy Schwartz inequality yields∣∣∣ ∫
Ω

Mε
Y (v)(x)dx

∣∣∣ ≤ |Ω|1/2∥v∥L2(Ω).

Finally, summarizing the above inequalities and equalities give (3.8). 2
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4. Main results

We denote KT the space

KT = {Φ ∈ L2∗(RN ) | ∇Φ ∈ L2(RN ), Φ constant on T}. (4.1)

Theorem 4.1 Let
(
uε, pε

)
be the solution of (2.2). For γ < −2 the sequence

{
ε−2ũε, p̃ε

}
ε
is uniformly

bounded in L2(Ω)N × L2(Ω).
So, up to a subsequence, there exist (u, p) ∈ L2(Ω)N × L2(Ω) such that:

ε−2ũε ⇀ u weakly in L2(Ω)N ,

p̃ε ⇀ p weakly in L2(Ω),

then
u = 0.

Theorem 4.2 (Darcy type law) Let
(
uε, pε

)
be the solution of (2.2). For −2 ≤ γ < 0 the sequence{

εγ ũε, ε
−γ p̃ε

}
ε
is uniformly bounded in L2(Ω)N × L2(Ω).

So, up to a subsequence, there exist (u, p) ∈ L2(Ω)N × L2(Ω) such that:

εγ ũε ⇀ u weakly in L2(Ω)N ,

ε−γ p̃ε ⇀ p weakly in L2(Ω).

Note U = M∂B(u) then

U =
−1

αk1|∂B|
∇p.

Theorem 4.3 (0 ≤ γ < 2) The sequence
{
ε1+γ ũε, εp̃ε

}
ε
is bounded in L2(Ω)N × L2(Ω). So, up to a

subsequence, there exist (u, p)∈ L2(Ω)N × L2(Ω), such that

ε1+γ ũε ⇀ u weakly in L2(Ω)N ,

εpε ⇀ p weakly in L2(Ω).

It satisfies the following equation:

u =
1

αk1|∂B|

(
−∇p+ |∂B|g0 + |∂B|M∂Bg

)
.

Theorem 4.4 (Brinkman type law) Assume (1.3). Let (uε, pε) be the solution of problem (2.2).
If γ = 2, the sequence

{(
ε2ũε, pε

)}
ε
is uniformly bounded in L2(Ω)N × L2(Ω). So, up to a subsequence,

there exists (u, p) ∈ L2(Ω)N × L2(Ω) such that

ε2ũε ⇀ u weakly in L2(Ω)N ,

p̃ε ⇀ p weakly in L2(Ω).

Moreover, there exist û ∈ L2(Ω;H1
per(Y ))N , U ∈ L2(Ω;L2

loc(RN )) with U − k2u ∈ L2(Ω;KT ), such that
(u, û, U, p) solves the equations:

ν

∫
Y

(∇u(x) +∇yû(x, y))∇yϕ(y)dy = 0 for a.e. x ∈ Ω, ∀ϕ ∈ H1
per(Y )N . (4.2)∫

R\T
∇zU(x, z)∇zv(z)dz = 0 for a.e. x ∈ Ω, ∀v ∈ KT , v(T ) = 0. (4.3)

ν

∫
Ω×Y

(∇u+∇yû)∇ψdxdy − νk2

∫
Ω×∂T

∇zUnTψdxdσ + αk1|∂B|
∫
Ω

uψdx+

∫
Ω

∇pψdx

=

∫
Ω

fψdx+ k1|∂B|
∫
Ω

g0ψdx+ k1|∂B| M∂B

∫
Ω

ψdx.

(4.4)
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If γ > 2, the sequence
{(
ũε, p̃ε

)}
ε
is uniformly bounded in L2(Ω)N × L2(Ω). Then, up to a subsequence,

there exist (u, p) ∈ H1
0 (Ω)

N × L2(Ω) such that

ũε ⇀ u weakly in L2(Ω)N ,

∥ũε − u∥L2(Ω) −→ 0,

p̃ε ⇀ p weakly in L2(Ω).

Moreover, there exist û ∈ L2(Ω;H1
per(Y ))N , U ∈ L2(Ω;L2

loc(RN ))N with U − k2u ∈ L2(Ω;KT ), such that
(u, û, U, p) solves the equations (4.2), (4.3) and

ν

∫
Ω×Y

(∇u+∇yû) : ∇ψdxdy − νk2

∫
Ω×∂T

∇zUnTψdxdσ +

∫
Ω

∇pψdx =∫
Ω

f · ψdx+ k1|∂B|
∫
Ω

g0 · ψ dx+ k1|∂B| M∂B

∫
Ω

ψdx ∀ψ ∈ H1
0 (Ω).

(4.5)

Lemma 4.1 There exists a positive constant c independent of ε and δ such that

∥v∥L2(Ωεδ) ≤ c
(
εδ∥∇v∥L2(Ωεδ) + (εδ)

1
2 ∥v∥L2(∂Bεδ)

)
∀v ∈ Hεδ1δ2 .

Proof: We use the following inequality (see [?, Lemma 6.1])

∥v∥2L2(Ωεδ)
≤ c

(
∥∇yv∥2L2(Ωεδ)

+ ∥v∥2L2(∂B)

)
, ∀v ∈ Hεδ1δ2 .

and by the change z =
y

δ
, we get the result. 2

Lemma 4.2 (see [?, Lemma 5.1]) For every ϕ ∈ L2(Ωεδ1δ2), there exists φ ∈ Vεδ1δ2 such that{
divφ = ϕ,

∥φ∥H1(Ωεδ1δ2
) ≤ C∥ϕ∥L2(Ωεδ1δ2

).

Apriori estimates for uε and pε

Proposition 4.1 Let (uε, pε) be the solution of problem (2.2). Then the following a priori estimates hold
true:
(i) For γ < −2

∥ε−2uε∥L2(Ωεδ1δ2
) ≤ C,

∥∇uε∥L2(Ωεδ1δ2
) ≤ C . (4.6)

(ii) For −2 ≤ γ < 0
∥εγuε∥L2(Ωεδ1δ2

) ≤ C,

∥∇uε∥L2(Ωεδ1δ2
) ≤ C (4.7)

∥ε−γpε∥L2(Ωεδ1δ2
) ≤ C.

(iii) For 0 ≤ γ < 2
∥ε1+γuε∥L2(Ωεδ1δ2

) ≤ C,

∥ε
γ
2 ∇uε∥L2(Ωεδ1δ2

) ≤ C, (4.8)

∥εpε∥L2(Ωεδ1δ2
) ≤ C.

(iv) For γ = 2
∥ε2uε∥L2(Ωεδ1δ2

) ≤ C,

∥∇uε∥L2(Ωεδ1δ2
) ≤ C, (4.9)
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∥pε∥L2(Ωεδ1δ2
) ≤ C.

(iiv) For γ > 2
∥uε∥L2(Ωεδ1δ2

) ≤ C,

∥∇uε∥L2(Ωεδ1δ2
) ≤ C, (4.10)

∥pε∥L2(Ωεδ1δ2
) ≤ C.

Proof: To prove this proposition, we combine the estimates given in Proposition 3.4.
Using uε as test fonction in (2.2) we get

ν

∫
Ωεδ1δ2

|∇uε|2dx+ αεγ
∫
∂Bεδ1

|uε|2dσ(x)

=

∫
Ωεδ1δ2

f · uεdx+

∫
∂Bεδ1

g0 · uεdσ(x) + ⟨gε, uε⟩(H−1/2(∂Bεδ1
))N ,(H1/2(∂Bεδ1

))N .

Then

ν∥∇uε∥2L2(Ωεδ1δ2
) + αεγ∥uε∥2L2(∂Bεδ1

) ≤
∣∣∣ ∫

Ωεδ1δ2

f · uεdx
∣∣∣+ ∣∣∣ ∫

∂Bεδ1

g0 · uεdσ(x)
∣∣∣

+
∣∣∣ ⟨gε, uε⟩H−1/2(∂Bεδ1

)N ,H1/2(∂Bεδ1
)N

∣∣∣.
By the Cauchy Schwartz and Poincaré inequalities, we have∣∣∣ ∫

Ωεδ1δ2

f · uεdx
∣∣∣ ≤ ∥f∥L2(Ωεδ1δ2

)∥∇uε∥L2(Ωεδ1δ2
), (4.11)

and we have successively, by using Proposition 3.4∣∣∣ ∫
∂Bεδ1

g0 · uεdσ(x)
∣∣∣ ≤ Cδ

N
2
1 ∥∇uε∥L2(Ωεδ1δ2

) + C
δN−1
1

ε
∥uε∥L2(Ωεδ1δ2

),

and finally∣∣∣ ⟨gε, uε⟩ ∣∣∣
H−1/2(∂Bεδ1

)N ,H1/2(∂Bεδ1
)N

≤ Cδ
N
2
1 ∥∇uε∥L2(Ωεδ1δ2

) + C
δN−1
1

ε
∥uε∥L2(Ωεδ1δ2

).

Hence

ν∥∇uε∥2L2(Ωεδ1δ2
) + αεγ∥uε∥2L2(∂Bεδ1

) ≤ C(1 + δ
N
2
1 )∥∇uε∥L2(Ωεδ1δ2

) + C
δN−1
1

ε
∥uε∥L2(Ωεδ1δ2

).

From which, using the Poincaré inequality and due to assumption on k1 in (1.3)1, that gives

∥∇uε∥2L2(Ωεδ1δ2
) ≤ C

(
1 +

δN−1
1

ε

)
∥∇uε∥L2(Ωεδ1δ2

).

Thus
∥uε∥H1(Ωεδ1δ2

) ≤ C. (4.12)

This estimate can be refined following the different values of γ. To do so, observe that according to
Lemma 4.1

∥uε∥L2(Ωεδ1δ2
) ≤ C

(
εδ1∥∇uε∥L2(Ωεδ1δ2

) + (εδ1)
1
2 ∥uε∥L2(∂Bεδ1

)

)
,

then
δN−1
1

ε
∥uε∥L2(Ωεδ1δ2

) ≤ c
(
δN1 ∥∇uε∥L2(Ωεδ1δ2

) +
(δN−1

1

ε

) 1
2

δ
N
2
1 ∥uε∥L2(∂Bεδ1

)

)
.
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Using Young’s inequality, we get

δN−1
1

ε
∥uε∥L2(Ωεδ1δ2

) ≤ C
(
δN1 ∥∇uε∥L2(Ωεδ1δ2

) +
1

η

δN−1
1

ε
ε−γ + ηεγδN1 ∥uε∥2L2(∂B1)

)
.

Consequently

ν∥∇uε∥2L2(Ωεδ1δ2
) + (α− CηδN1 )εγ∥uε∥2L2(∂Bεδ1

) ≤ C(1 + δN1 )∥∇uε∥L2(Ωεδ1δ2
) +

C

η

δN−1
1

ε
ε−γ .

Then for suitable η we finally obtain the following a priori estimate:

ν∥∇uε∥2L2(Ωεδ1δ2
) + αεγ∥uε∥2L2(∂Bεδ1

) ≤ C∥∇uε∥L2(Ωεδ1δ2
) + C

δN−1
1

ε
ε−γ . (4.13)

(i) Case γ < −2. From (4.13), one has

∥∇uε∥L2(Ωεδ1δ2
) ≤ C.

Now, by using estimate (4.12) and the fact that for H1(Ωε) (see for example, [13]),

∥v∥(L2(Ωε))N ≤ Cε∥∇v∥(L2(Ωε))N×N ,

and by the Young inequality we get the estimate (4.6).
(ii) Case −2 ≤ γ < 0. From (4.13), one has

∥∇uε∥L2(Ωεδ1δ2
) ≤ C,

and then
∥uε∥L2(∂Bεδ1

) ≤ Cε−
γ
2 .

By lemma 4.1 and using the Young inequality, we get

∥uε∥L2(Ωεδ1δ2
) ≤ C(εδ1 +

εδ1
η

+ ηε−γ).

Hence
∥εγuε∥L2(Ωεδ1δ2

) ≤ C,

which is the first estimate in (4.7)
(ii) Case 0 ≤ γ < 2. On one hand by (4.13), one has

∥ε
γ
2 ∇uε∥L2(Ωεδ1δ2

) ≤ C.

On the other hand we have

∥∇uε∥L2(Ωεδ1δ2
) ≤ C

(δN−1
1

ε

) 1
2

ε−
γ
2 =⇒ ∥∇uε∥L2(Ωεδ1δ2

) ≤ Cδ
N−1

2
1 ε

−1−γ
2 .

Then by the Poincaré inequality and again using the Young inequality, we get

∥uε∥L2(Ωεδ1δ2
) ≤

C

η
δN−1
1 + ηε−1−γ .

Consequently,
∥ε1+γuε∥L2(Ωεδ1δ2

) ≤ C.

(iii) Case γ = 2. From (4.13), one has

ν∥∇uε∥2L2(Ωεδ1δ2
) ≤ C

δN−1
1

ε
ε−2,
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then, again successively by Poincaré and Young inequalities, we get

∥ε2uε∥L2(Ωεδ1δ2
) ≤ C.

The estimate of ∇uε follows easily from (4.12).
(iv) Case γ > 2. The estimate of ∇uε and uε in (4.10) follow easily from (4.12).

Now, we prove the upper estimates of the pressure.
In the end, we shall establish the a priori estimates of the pressure pε. Indeed, we choose ϕ ∈ L2(Ωεδ1δ2)
as a test function in the variational formulation (2.2) and by Proposition 3.4 and Lemma 4.2, we get∣∣∣ ∫

Ωεδ1δ2

pε ϕdx
∣∣∣ ≤ C

[
(1 + εγδ

N
2
1 )∥∇uε∥L2(Ωεδ1δ2

)

+ εγ
δN−1
1

ε
∥uε∥L2(Ωεδ1δ2

) +
δN−1
1

ε

]
∥ϕ∥L2(Ωεδ1δ2

).

(4.14)

The a priori estimates for the pressure follow now from (4.14) and estimates the uε and ∇uε for the
different values of γ obtained above. 2

Proof of theorem 4.1

Proof: Case γ < −2. The corresponding estimates (4.6) from proposition 4.1 as wel as the following
ones:

ε−2ũε ⇀ u weakly in L2(Ω)N .

Let φ ∈ D(Ω)N be a test fonction in (2.2). Multiplying (2.2) by ε−γ−2, then unfolding. That gives

νε−γ−2

∫
Ω×Y

Tε(∇uε) : Tε(∇φ)dxdy + α
δN−1
1

ε

∫
Ω×∂B

T b
εδ1(ε

−2uε) · T b
εδ1(φ)dxdσ(z)

−
∫
Ωεδ1δ2

ε−γ−2pε divφdx = ε−γ−2

∫
Ωεδ1δ2

f · φdx+ ε−γ−2

∫
∂Bεδ1

g0 · φdσεδ1(x)

+ ε−γ

∫
∂Bεδ1

gε · φdσεδ1(x).

Passing to the limit we observe that all the integrals vanish, except for the second integral we get

αk1

∫
Ω×∂B

uφdxdσ(z) = 0, (4.15)

this imply
u = 0.

2

Proof of theorem 4.2

Proof: Case −2 ≤ γ < 0. The corresponding estimates (4.7) from proposition 4.1 as wel as the following
ones:

εγ ũε ⇀ u weakly in L2(Ω)N , ε−γ p̃ε ⇀ p weakly in L2(Ω).

Let φ ∈ D(Ω)N be a test fonction in (2.2). Multiplying (2.2) by ε−γ , then unfolding. That gives

νε−γ

∫
Ω×Y

Tε(∇uε) : Tε(∇φ)dxdy + α
δN−1
1

ε

∫
Ω×∂B

T b
εδ1(uε) · T

b
εδ1(φ)dxdσ(z)

−
∫
Ωεδ1δ2

ε−γpε divφdx = ε−γ

∫
Ωεδ1δ2

f · φdx+ ε−γ

∫
∂Bεδ1

g0 · φdσεδ1(x)

+ ε−γ

∫
∂Bεδ1

gε · φdσεδ1(x).
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Now, we can pass to limit in all terms. Using again the fact that ∇uε is uniformly bounded in
L2(Ωεδ1δ2)

N×N and as −γ > 0, we get at the limit the following identity:

αk1

∫
Ω×∂B

uφdxdσ(z)−
∫
Ω

pdivφdx = 0, (4.16)

one has Darcy law

u =
−1

αk1|∂B|
∇p.

2

Proof of theorem 4.3

Proof: 0 ≤ γ < 2. From corresponding estimates (4.8) in Proposition 4.1,it follow that

ε1+γ ũε ⇀ u weakly in L2(Ω), εpε ⇀ p weakly in L2(Ω).

Let φ ∈ (D(Ω))N be a test function in (2.2). Multiply equation (2.2) by ε and we use the unfolding
operator Tε we get

νε1−
γ
2

∫
Ω×Y ∗

T ∗
ε (ε

γ
2 ∇uε) : T ∗

ε (∇φ)dxdy + α
δN−1
1

ε

∫
Ω×∂B

T b
εδ1(ε

1+γuε) · T b
εδ1(φ)dxdσ(z)

−
∫
Ωεδ1δ2

εpεdivφdx =

∫
Ωεδ1δ2

εf · φdx+

∫
Ω×∂B

T b
ε (g0) · φdxdσ(z) +

∫
Ω×∂B

T b
ε (gε)φdxdσ(z).

We can now pass to limit in all the expression. By using the estimate (4.8) and the assumption for
f , we get

αk1

∫
Ω×∂B

uφdxdσ(z)−
∫
Ω

pdivφdx =

∫
Ω×∂B

g0 · φdxdσ(y) +
∫
Ω×∂B

gφdxdσ(y).

Then ∫
Ω

(
αk1|∂B|u+∇p− |∂B|g0 − |∂B|M∂B(g)

)
φdx = 0.

So that

u =
1

αk1|∂B|

(
−∇p+ |∂B|g0 + |∂B|M∂B(g)

)
. 2

Proof of theorem 4.4 The proof of theorem 4.4, makes use the next two elementary results.

Lemma 4.3 (see [9]) Suppose N ≥ 3. Then, there exists δ0 > 0 such that⋃
0<δ<δ0

{ϕ ∈ H1
per(Y ) | ϕ = 0 on δT},

is dense in H1
per(Y ).

Lemma 4.4 (see [9, Lemma 3.3]) Let v be in D(RN ) ∩KT (i.e v = v(T ) on T ). Set

wεδ2(x) = v(T )− v
( 1

δ2

{x
ε

})
for a.e. x ∈ RN .

Then

wεδ2 ⇀ v(T ) weakly in H1(Ω). (4.17)
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Proof: [Proof of Theorem 4.4] Due to the estimates (4.9) in Proposition 4.1, the case γ = 2 is the easiest.
From (4.12) we have ∥uε∥(H1(Ωεδ1δ2

))N ≤ C, and by (3.4) one has the following convergences

Tε(∇uε)⇀ ∇u+∇yû weakly in L2(Ω× Y )N×N ,

Tε(uε)⇀ u weakly in L2(Ω;H1(Y ))N ,

where u ∈ H1
0 (Ω)

N and û ∈ L2(Ω;H1
per(Y ))N .

By Proposition 3.2, there exists U in L2(Ω;L2
loc(RN )) such that, up to a subsequence,

δ
N
2 −1
2

ε
Tεδ2(uε)⇀ U weakly in L2(Ω;L2

loc(RN )). (4.18)

On one hand, by definition 3.1, one has

δ
N
2 −1
2

ε
Mε

Y (uε) −→ k2u in L2(Ω;L2
loc(RN )). (4.19)

On the other hand, by Proposition 3.2 there exists a W in L2(Ω;L2∗(RN )) with ∇zW in L2(Ω × RN )
such that

δ
N
2 −1
2

ε

(
Tεδ2(uε)−Mε

Y (uε)
)
⇀W weakly in L2(Ω;L2∗(RN )). (4.20)

From (4.18),(4.19) and (4.20), it yields

U =W + k2u and ∇zU = ∇zW,

and again by Proposition 3.2

δ
N
2 −1
2

ε
∇zTεδ2(uε) = δ

N
2
2 Tεδ2(∇uε)⇀ ∇zU weakly in L2(Ω× RN ). (4.21)

Now, in (2.2) choose the test function vε = εΦψ
( ·
ε

)
with Φ ∈ D(Ω)N and ψ in H1

per(Y )N . Since

∇vε = εψ
(x
ε

)
∇Φ+ Φ∇yψ

(x
ε

)
we get

ν

∫
Ωεδ1δ2

∇uε
(
εψ

(x
ε

)
∇Φ+ Φ∇yψ

(x
ε

))
dx+ αε2

∫
∂Bεδ1

uεεΦψ
(x
ε

)
dσ(x)

−ε
∫
Ωεδ1δ2

pεdivΦψ
(x
ε

)
dx = ε

∫
Ωεδ1δ2

f · Φψ
(x
ε

)
dx+ ε

∫
∂Bεδ1

g0 · Φψ
(x
ε

)
dσ(x)

+ε

∫
∂Bεδ1

gεΦψ
(x
ε

)
dσ(x).

When ε goes to 0 we obtain

ν

∫
Ωεδ1δ2

∇uεΦ(x)∇ψ
(x
ε

)
dxdy = 0.

By unfolding with Tε one has

ν

∫
Ω×Y

Tε
(
∇uε

)
Tε(Φ(x))Tε

(
∇ψ

(x
ε

))
dxdy = 0.

By passing to limit we obtain (4.2)

ν

∫
Ω×Y

(
∇u(x) +∇yû(x, y)

)
∇yΨ(x, y)dxdy = 0.
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In order to describe the contribution of the perforations, we use the function wεδ2 introduced in lemma
4.4. For ψ in D(Ω), choose wεδ2ψ as a test function in (2.2). We get

ν

∫
Ωεδ1δ2

∇uε∇wεδ2ψdx+ ν

∫
Ωεδ1δ2

∇uεwεδ2∇ψdx+ αε2
∫
∂Bεδ1

uεwεδ2dσ(x)−∫
Ωεδ1δ2

pεdiv (wεδ2ψ)dx =

∫
Ωεδ1δ2

fwεδ2ψdx+

∫
∂Bεδ1

g0wεδ2ψdσεδ1(x) +

∫
∂Bεδ1

gεwεδ2dσεδ1(x).

(4.22)

By unfolding the first term in (4.22) with Tεδ2 , we get∫
Ωεδ1δ2

∇uε∇wεδ2ψdx
Tεδ2≃ δN2

∫
Ω×RN

Tεδ2(∇uε)Tεδ2(∇wεδ2)Tεδ2(ψ), (4.23)

since by lemma 4.4, one has:

Tεδ2(∇wεδ2) = − 1

εδ2
∇zv ,

then ∫
Ωεδ1δ2

∇uε∇wεδ2ψdx
Tεδ2≃ δ

N
2 −1
2

ε

∫
Ω×RN

δ
N
2
2 Tεδ2(∇uε)(−∇zv)Tεδ2(ψ).

Convergence (4.21) as well as hypothesis (1.3), allows us to pass to the limit in (4.23) to obtain:

lim
ε−→0

∫
Ωεδ1δ2

∇uε∇wεδ2ψdx = −k2
∫
Ω×(RN\B)

∇zU(x, z)∇zv(z)ψ(x)dxdz. (4.24)

The second term in (4.22) is unfolded with Tε and we have,∫
Ωεδ1δ2

∇uεwεδ2∇ψdx
Tε≃

∫
Ω×Y

Tε(∇uε)Tε(wεδ2)Tε(∇ψ)dxdy.

Using proposition 3.3 and convergence (4.17), we can pass to the limit with respect to ε in tne above
equality to get :

lim
ε−→0

∫
Ωεδ1δ2

∇uεwεδ2∇ψdx = v(T )

∫
Ω×Y

(∇u+∇yû)∇xψ(x)dxdy. (4.25)

For the third term in (4.22) by using (3.6) we get

lim
ε−→0

α

∫
∂Bεδ1

ε2uεwεδ2ψdσ(x) = lim
ε−→0

δN−1
1

ε
α

∫
RN×∂B

T b
εδ1δ2(ε

2uε)T b
εδ1δ2(wεδ2)T b

εδ1δ2(ψ)dxdσ(z).

Passing to the limit yields

lim
ε−→0

α

∫
∂Bεδ1

ε2uεwεδ2ψdσ(x) = αk1v(T )

∫
RN×∂B

uψdxdσ(z). (4.26)

For the fourth term in (4.22) we have∫
Ωεδ1δ2

pεdiv (wεδ2ψ)dx =

∫
Ωεδ1δ2

pεwεδ2div (ψ)dx+

∫
Ωεδ1δ2

pε∇wεδ2ψdx. (4.27)

For the second term of right-hand sid of this equation we apply the operator Tεδ2 and we use the lemma
4.4 we get ∫

Ωεδ1δ2

pε∇wεδ2ψdx = δN2

∫
Ω×R

Tεδ2(pε)Tεδ2(∇wεδ2)Tεδ2(ψ)dxdz

=
δ

N
2 −1
2

ε
δ

N
2
2

∫
Ω×R

Tεδ2(pε)(−∇zvz)Tεδ2(ψ)dxdz.
.
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For ε→ 0 this integral go to zero Passing to the limit in (4.27) we get

lim
ε−→0

∫
Ωεδ1δ2

pεdiv (wεδ2ψ)dx = v(T )

∫
Ω

p div (ψ)dx. (4.28)

Similarly, for the fifth, sixth and seventh terms, in view again (3.6), we get

lim
ε−→0

∫
Ωεδ1δ2

fεwεδ2ψdx = v(T )

∫
Ω

fψdx, (4.29)

lim
ε−→0

∫
∂Bεδ1

g0wεδ2ψdσ(x) = k1v(T )

∫
RN×∂B

g0(z)ψdxdσ(z), (4.30)

lim
ε−→0

∫
∂Bεδ1

gεwεδ2ψdσ(x) = k1v(T )

∫
RN×∂B

g(z)ψdxdσ(z). (4.31)

Passing to limit in (4.22) and using (4.23), (4.25), (4.26), (4.28), (4.29), (4.30), and (4.31) we obtain

v(T )

∫
Ω×Y

(∇u+∇yû)∇xψ(x)dxdy − k2

∫
Ω×(RN\B)

∇zU(x, z)∇zv(z)ψ(x)dxdz

+αk1v(T )

∫
RN×∂B

uψdxdσ(z) + v(T )

∫
Ω

∇pψdx = v(T )

∫
Ω

fψdx

+k1v(T )

∫
RN×∂B

g0(z)ψdxdσ(z) + k1v(T )

∫
RN×∂B

g(z)ψdxdσ(z).

Which by density, holds true for all ψ ∈ H1
0 (Ω) and v ∈ KT . With v(T ) = 0 above we obtain the limit

equation (4.3). Equations (4.4) follow simply by integrating by parting the above equation.
If γ > 2 by similar argument as those used in all termes of exeprition (4.22) except the third term the
bihaviour at the limit for γ > 2, this term goes to zero, in view of (4.23), (4.25), (4.28), (4.29), (4.30),
and (4.31) we obtain

v(T )

∫
Ω×Y

(∇u+∇yû)∇xψ(x)dxdy − k2

∫
Ω×(RN\B)

∇zU(x, z)∇zv(z)ψ(x)dxdz

+ v(T )

∫
Ω

∇pψdx = v(T )

∫
Ω

fψdx+ k1v(T )

∫
RN×∂B

g0(z)ψdxdσ(z)

+ k1v(T )

∫
RN×∂B

g(z)ψdxdσ(z).

Equation (4.5) follow simply by integrating by parting the above equation. 2

To finish let us give the classical ”strong” formulation of the homogenized problem obtained in theorem
(4.4). We skip the proof since the strong formulation from the unfolded problem is standard, we refer
the reader for instance to [12] or [17].

Remark 4.1 For the case γ ⩾ 2, a tensor B = bijkh is introduced. Its form is found following standard
argument, as shown in [7].

The next theorem gives the classical (standard) from of homogenized system (4.2)-(4.5). To state it, we
follow the procedure from [9] , where more details can be found.

Theorem 4.5 If γ = 2, (u, p) is the unique solution of the homogenized problem{
− bijkh

∂2uk

∂xj∂xh
+ αk1|∂B|ui +∇p+ k22Θu = k1|∂B|g0i + k1|∂B|Mgi + fi in Ω, 1 ≤ i ≤ N,

u = 0 on ∂Ω,
(4.32)
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if γ > 2{
− bijkh

∂2uk

∂xj∂xh
+∇p+ k22Θu = k1|∂B|g0i + k1|∂B|Mgi + fi in Ω, 1 ≤ i ≤ N,

u = 0 on ∂Ω.
(4.33)

In both systems the function Θ giving rise to a ”strange term” in the second sustem, is given by

Θ(x) =

∫
RN\B

∇zχ(x, z)dz. (4.34)

Introduce first the classical correctors χ̂j , j = 1, ..., n, for the homogenization in fixed domains (see for
instance [4]). They are defined by the cell problems

χ̂j ∈ L∞(Ω;H1
per(Y )),∫

Y
∇(χ̂j − yj)∇ϕ = 0 a.e.x ∈ Ω,
∀ϕ ∈ H1

per(Y ).
(4.35)

Here χ is the solution of the cell problem corresponding{
χ ∈ L∞(Ω;KT ) (χ, T ) ≡ 1,∫

R\T ∇zχ(x, z)∇zΨ(z)dz = 0 a.e.x ∈ Ω, ∀Ψ ∈ KT ,Ψ(T ) = 0.
(4.36)

To do so, observe that (4.2) gives û in terms of ∇u and a tensor B = (bijkh) expressed as integrals of
function defined on cell problems. The procedure is standard, for the Stokes problem. The details can
be found in [7]. We will just recall here the definition of B.
For k, h = 1, ..., N let Πkh = (Πkh

i )i with Πkh
i = δkiyh (δki being the Kronecker symbols) and introduce

the solution (χkh, qkh) of the Stokes cell system
−∆χkh +∇qkh = 0 in Y ∗,
div (χkh −Πkh) = 0 in Y ∗,

−∂(χkh−Π)
∂n + qkh.n = 0 on ∂B,

MY ∗(χKH) = 0 χkh Y-periodic,

the tensor B = (bijkh) is defined as follows:

bijkh =

∫
Y ∗

∂(χkh −Πkh)l
∂ym

∂(χij −Πij)l
∂ym

dy. (4.37)

Proof: The proof follows the reasoning from [9], we just emphasize the main points. The correctors
defined by (4.35) enable us to express û(x, y) in equation (4.2) in terms of u as

û =
∑
ijkh

bijkh
∂uk
∂xl

χ̂hl
j (x, y).

replacing this expression (4.4) it is easily seen that the limit function u is solution of

∫
Ω

bijkh∇u∇ψdxdy − νk2

∫
Ω×∂T

∇zUnTψdxdσ + αk1|∂B|
∫
Ω

uψdx+

∫
Ω

∇pψdx =∫
Ω

fψdx+ k1|∂B|
∫
Ω

g0ψdx+ k1|∂B| M∂B

∫
Ω

ψdx,

(4.38)

with bijkh given by (4.37). Now, by integrating by parts in (4.3), one easily gets∫
∂T

∇zUvT dσ =

∫
∂T

∇z(U − k2u)vT dσ = −k2u
(∫

∂T

∇zχvT dσ
)
.

Wich, replaced into (4.38) gives (4.32) with Θ defined by (4.34)
By similar method we get the equation (4.33) 2
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Remark 4.2 For k1 = 0 and γ ≥ 2, arises the following equation{
− bijkh

∂2uk

∂xj∂xh
+∇p+ k22Θu = fi in Ω, 1 ≤ i ≤ N,

u = 0 on ∂Ω.

Remark 4.3 For k2 = 0, two following cases arise:
If γ = 2 we get{

− bijkh
∂2uk

∂xj∂xh
+ αk1|∂B|ui +∇p = k1|∂B|g0i + k1|∂B|Mgi + fi in Ω, 1 ≤ i ≤ N,

u = 0 on ∂Ω.

If γ > 0 we get{
− bijkh

∂2uk

∂xj∂xh
+∇p = k1|∂B|g0i + k1|∂B|Mgi + fi in Ω, 1 ≤ i ≤ N,

u = 0 on ∂Ω.

Remark 4.4 If k1 = 1 and k2 = 0 we become in the case of classical homogenization and we find all
the results established in [7,19].
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