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Connection
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ABSTRACT: This research investigates Ricci Yamabe soliton on f~-Kenmotsu manifolds whose potential vector
field is torse-forming admits a generalized symmetric metric connection. Some results of such soliton on
CR-~submanifolds of f-Kenmotsu manifolds with generalized symmetric metric connection are obtained.
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1. Introduction

In 1988, Hamilton [14] introduced the notions of Ricci flow and Yamabe flow concurrently. The
solutions of these flows are known as Ricci solitons and Yamabe solitons, respectively [6,10]. The study
of a new geometric flow which is a scalar combination of Ricci and Yamabe flow under the name Ricci-
Yamabe map [15]. This is also known as Ricci Yamabe flow of the type («, 3). The Ricci Yamabe flow
is an evolution for the metrics on the Riemannian or semi-Riemannian manifolds defined by [11,13,15]

%g(t) = —2aRic(t) + BR(t)g(t), go = g(0). (1.1)

A soliton to the Ricci Yamabe flow is known as Ricci Yamabe soliton if it moves only by one parameter
group of diffeomorphism and scaling. A Ricci Yamabe soliton on a Riemannian manifold M?(g, V, A, a, 3)
satisfies

(Lkg)(U1,Uz) + 2aS(Uy, Uz) + (2A = pr)g(Uz, Us) = 0, (1.2)

where r, S and L, is the scalar curvature, the Ricci tensor and the Lie-derivative along the vector field
k on M respectively and A is a constant, is known as Ricci Yamabe soliton of («a, 8)-type, which is a
generalization of Ricci and Yamabe solitons. The Ricci Yamabe soliton is a-Ricci soliton if 8 = 0 and
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B-Yamabe soliton if &« = 0. The Ricci Yamabe soliton is said to be expanding if A is negative or shrinking
if A is positive or steady if A is zero.
A vector field k on a Riemannian manifold (M, g) is called a torse-forming vector field [5,9] if it satisfies

Vu,k =0U; +v(U)k YU, € TM, (1.3)

where © € C°°(M) and v is a linear form of M.

A torse-forming vector field & is called

i. recurrent , if © = 0,

ii. concircular, if the 1-form v vanishes identically,

iii. parallel, if © = 0,v =0,

iv. concurrent, if © =1,v = 0.

In 2017, Chen [1] introduced a new type of vector field called torqued vector field if the vector field &
satisfying (1.2) with v(x) = 0 where O is called the torqued function with the 1-form v, called the torqued
form of «.

This paper deals with n-Ricci Soliton on f-Kenmotsu manifold [f-KM].

2. Preliminaries

A smooth manifold M of odd dimension is an almost contact metric manifold, if there exist ¢ a vector
field, a (1, 1) tensor field ¢, n a 1-form and a Riemannian metric g on M so that

Ui = —Ur+nUh)g, n(Q) =1, nU1)=g(U1,0), (2.1)
o¢ = 0, nogp=0,
9(@U1,¢U2) = g(U1,Uz) = n(Ur)n(U2). (2:3)
A manifold of odd dimension is known as an [f-KM] [8] if the covariant differentiation of ¢ satisfies
(Vu,0)Usz = flg(¢U1, U2)¢ = n(U2) U], (2.4)

where f € C°(M) is such that dfAn = 0. If f = 8 # 0, then the manifold is a 8-Kenmotsu manifold.
The 1-Kenmotsu manifold is a Kenmotsu manifold. The manifold is cosymplectic if f =0 [2,3,8,17]. An
[f-KM] is regular if f2 + f’ # 0, where f' = (f.

For an [f-KM] from (2.1), we have

Vu, ¢ = flU1 —n(U1)(]. (2.5)
In a three-dimensional Riemannian manifold, we have
R(U.,U2)Us = [g(Uz2,U3)QU1 — g(U1, Us)QUz| + S(Uz, Us) Uy
~S(U,Us)Us = 5[9(Us, Us)Us = g(Uy, Us) U, (2.6)
In a three-dimensional [f-KM], we get
R(UL,Us)Us = (% L 2f2 1 2f ) (UL AUR)Us
—(5 + 317 + 3F )n(U1)(CAU2)Us + n(U2) (U1 AG)Us), (2.7)
S(UL,Uz2) = —(f+Ng(U1,U2) + (f — )n(U1)n(U2), (2.8)
SU,¢) = —(A+wn(lh), (2.9)
QUi = —(A+p). (2.10)

Let M be a submanifold of an [f-KM] M?3(¢,(,n,g). The Gauss and Weingarten formulae are given by

Vo, U = ﬁUle—Fh(Ul,UQ),fOT all Uy,Us € (TM), (2.11)
VN = —AnUi +V§ N, for all Uy, Us € (T+M), (2.12)

where Vi, Uz € (IT'M) and [h(Uy, Uz), V5, N] € (T+M).
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3. Generalized symmetric metric connection

In an [f-KM] M3(¢,¢,n,g), the generalized symmetric metric connection V is defined as [4,7,12]
Vu,Uz =V, Uz + plp(U2)Ur — g(Ut, U2)¢] = qn(U1)¢Us, (3.1)

for any U;,Us on M. The generalized symmetric metric connection reduces to a semi-symmetric metric
connection if (p,¢) = (1,0) and quarter-symmetric metric connection if (p, ¢) = (0, 1).

Let M3(¢,¢,n,g) be [ffKM] with a generalized symmetric metric connection V. Then we have the
following results [7]

(Vu,0)(U2) = (f +p)lg(¢Us,Ua)¢ — n(Ua) U], (3.2)
Vu, ¢ = (f+p)U1—n(Ur)], (3.3)

R(U,U)Us = R(U1,U2)Us + (f +p)(p[29(U1, Us)Uz — 2g(Us, Us)Us — 0(U)n(Us) U2

+ n(U2)n(Us)Ur = n(U2)g(Ur, Us)C + n(Ut1)g(Uz, Us)Q)]

= qlg(eUr, Us)n(U2)¢ — n(U2)n(Us)pUs — g(¢Uz, Us)n(U1)¢

+  n(U)n(Us)¢Us] + p*[g(Uz, Us)Uy — g(Uy, Us)Us], (3.4)

R(U,U2)¢ = [f(f+p)+ fln(U1) Uz = n(Uz)U1]
= (f+p)aln(Ur)pUz — n(Us2)pUi ], (3.5)
S(U,Us) = S(Uy,Uz) + (f +p)(pl(1 — 4n)g(Us, Uz) + (2n — 1)n(Ur)n(Us)]
+  qg(¢Us,Us)) + p*2ng(Uy, Us), (3.6)

for all Uy, Us in (TM).
4. CR-submanifolds of an [f-KM] with generalized symmetric metric connection

Definition 4.1 A three-dimensional Riemannian manifold (M,g) of an [f-KM] M?(¢,(,n, g) is known
as a CR-submanifold [16] if ¢ is tangent to M and there exists on M a differentiable distribution G :
r— Gy C T, M such that

i. G is invariant under ¢,

ii. The orthogonal complement distribution G+ : x — G- C T, M of the distribution G on M is totally
real.

Definition 4.2 If the distribution G (resp., G*) is horizontal (resp., vertical), then the pair (G,G* ) is
known as ( — horizontal (resp.,( — vertical) if ¢ € T'(G) (resp.,( € T(G1)) [16]. The CR-submanifold
is also known as ¢ — horizontal (resp.,( — vertical) if ¢ € T(G) (resp.,( € T'(G1)).

The orthogonal complement ¢G+ € T+M is defined by

TM =Go G, TPM = ¢G+ @ p, (4.1)

where ¢u = p. LeLM be a CR-submanifold of [f — KM] M3(g, ¢,(,n) with a generalized symmetric
metric connection V. For every U; € T'(TM) and N € I'(T+M), we can write as

U, = DU, +EU, DU, €eTG, EU, € TG*, (4.2)
#N = BN +CN, BN €I'G+,CN €Typ. (4.3)

The Gauss and Weingarten formulae with respect to V are given by

ﬁUlUQ = %UlUQ —|—E(U1,U2), (44)
leN = —AyU; + WélN (4.5)

respectively, where Vu,Usz, Vo, N € T(TM).
Here V is the induced connection on M, h is the second fundamental form and Ay is the Weingarten
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mapping with respect to V.
By virtue of (2.11), (3.1) and (4.4), we yield

YV, Us + h(U1,Us) = Vir, Us + h(Uy, Us) + pln(Us)Us — g(Us, Uz)¢] — qn(Us)dUs. (4.6)

In view of (4.2, 4.3, 4.6) and comparing the normal and the tangential components, we have

D€U1 Uy = DVy,Us+ p[n(Uz)DU;y — g(Uy,Us)DC] — Dan(Uy ) ¢Us, (4.7)
E(Uh Uy) = h(U,Uz) — qEn(Up)¢Us, (4.8)
EVy,Us = EVy,Us+pn(Us)EUy — g(Uy, Ux) EC] — qEn(Ur)¢Us, (4.9)

for any Uy, Us € (TM).

5. Ricci Yamabe soliton on Einstein-like [f-KM]
Definition 5.1 An [f-KM] is called an FEinstein-like if S Ricci tensor satisfies
S(U1,U2) = a19(Ut, U2) + a2g(¢Ux, Uz) + azn(Ur)n(Us), (5.1)
where a1, as and az are some real constants.
Taking V' = ¢ in (1.2) and then from (5.1), we obtain
9(Vu, ¢, U2) + 9(Vu,(, Ur) + 228Uy, Uz) + (2A — Br)g(Us, Uz) = 0. (5.2)
In view of (2.5) and (5.2), we have

[2f + 2aa; + 2\ — Br|g(Ur,Us) + [2aas — 2f|n(Ur)n(Us) + 2aazg(¢Uy, Us) = 0. (5.3)

From the above equation we yield
o =3F - (f+N), az=0 and a3 ={

o

Now
Vi€ =[5 (aay + N[0y ~ (03] (5.4
and
R f
S(U,Uz) = a[? = (f+N)]g(Ur,U2) + an(Ul)n(Uz), (5.5)
S0 = 1 A, (5.6
Qi = 1T e 5.7

Thus, we state the following:

Theorem 5.1 If a non-cosymplectic [f-KM] M3(g,¢,(,a,8) admits a Ricci Yamabe soliton with an
FEinstein-like Ricci tensor, then the Ricci Yamabe soliton will expand if pr < 2(aay + f) or shrink if
Br > 2(aay + f) or steady if f = % —aa.

If 8 =0, then we have
A=—(f+aa).

Corollary 5.1 If a non-cosymplectic [f-KM] M3(g, ¢,() admits a Ricci Yamabe soliton with an Einstein-
like Ricci tensor, then the a-Ricci soliton will expand if f + aa; < 0 or shrink if f + aar > 0 or steady

if f=—aay.
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6. Ricci Yamabe soliton whose potential vector field is torse-forming

Let (g, A\, ) be a Ricci Yamabe soliton M?3(g, ¢,n, () with respect to a generalized symmetric metric

connection. From (1.2), we yield
(Lxg) (U1, Uz) 4 2aS(Ur, Uz) + (2X = BF)g(U1,Uz) = 0
By Lie derivative’s definition,(1.3) and (3.1), we have

(Liwg)(U1,Usz) = 20g(Uy,Us) + v(Uy)g(k,Us) + v(Us)g(Un, k)
+pl2n(k)g(Ur, U2) — n(U2)g(Ut, k) — n(U1)g(Uz, k)]
—q[n(U2)g(Us, k) +n(U1)g(¢Us, K)].

In view of (6.1) and (6.2), we have

20 +2pn(k) + 2XM(1 — ) — BF — 22ap(f + p) — 2af + 6p2|g(Uy, Us)
= pn(U1)g(Uz, k) +n(U2)g(Us, k)]
—q[n(U1)g(8Uz, k) +n(Uz2)g(¢Un, k) + 2ag9(¢Us, Uz)]
~[v(U1)g(Uz, k) + v(Uz)g(U, K)]
—[10ap(f + p) + 2a(f — p)|n(Ur)n(Us).

Taking U; = U = e; in the above equation, we obtain

n(k )+%—af(1+llp)+p (3—11a)—%

1 2p
C)
a—1 +3

A=

Thus, we can state the following theorem:

(6.1)

Theorem 6.1 Let (g, A\, k) be a Ricci Yamabe soliton on 3-dimensional [f-KM] with respect to a general-
ized symmetric metric connection. If k is a torse-forming vector field, then (g, A, k) is shrinking or steady

or expanding accordingly as

L0+ Zy(k) + X — af(1 4 11p) + p*(3 — 11a) — 7} Z 0.

In this continuation, we state the following corollaries:

Corollary 6.1 Let (g, A, k) be a Ricci Yamabe soliton on 3-dimensional [f-KM] with respect to a gener-

alized symmetric metric connection. Then, the following relations hold:

K Ezxistence condition Nature of solitons
(expanding or steady
or shrinking)

torse-forming | L0 + Fn(x) + 75 — 7 (0 + (k) + 2 -
—af(1+11p) + p*(3 — 11a)] = constant | —af(1 +11p) +p*(3 — 11a)] =0

recurrent L [2n(k) + V(;) — % L [2n(k) + V(;) &
—af(1+ 11p) + p?(3 — 11a)] = constant —af( +11p)—|—p (3—110()} =0
concircular | 5[0 + (k) — % L0+ Zn(k) -
—af(1+11p) + p?(3 — 11a)] = constant | —af(1 + llp) —|—p (3— lloz)} =)
concurrent | 5[l 4+ Ln(k) — % L1+ 2n(k) - _
—af(1+ 11p) + p?(3 — 11a)] = constant | —af(1 + 11p) +p (3 — 11a)} =0
parallel —L[2n(k) — % —L[2p(k) — _
—af(1+4 11p) + p?(3 — 11a)] = constant | —af(1 + 11p) +p (3 — 11a)} =0
torqued 4O+ %n(lﬁ) - ? -0+ (k) — _
—af(1+11p) + p*(3 — 11a)] = constant | —af(1 + 11p) +p 2(3 — 11a)} =0
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If 8 =0, then we have A = —1- [@4— (k) + @ —af(l1+11p) +p*(3 — lla)]

a—1

Corollary 6.2 If an [f-KM] M3(g, ¢,n,¢) admits a Ricci Yamabe soliton with k as a torse-forming vector
field, then a-Ricci soliton is shrinking or steady or expanding accordingly as

5 [0+ Zn(n) + 42 — af(1+ 11p) + (3 - 11a)| 20,

unless — [@ + %n(ﬁ) + V;) —af(1+11p) + p?(3 — 1104)} = constant.

K Existence condition Nature of solitons
(expanding or steady
or shrinking)
torse-forming | 2516 + Zn(r) + 72 L0+ Foie) + T
—af(1+11p) + p*(3 — 11a)] = constant | —af(1+11p) +p*(3 - 11)] 20
recurrent ﬁ[%n(ﬁ) + @ ﬁ[%n(ﬁ) + @ )
—af(1+11p) +p*(3 — 11a)] = constant | —af(1+11p) +p*(3 — 11a)] = 0
concircular ﬁ[@ + %pn(/i) ﬁ[e + 2%77(’1) -
—af(1+ 11p) + p?(3 — 11a)] = constant | —af(1 + 11p) + p*(3 — 11a)] =0
concurrent ﬁ[l + %pn(m) ﬁ[l n %77(%)
—af(1+11p) + p*(3 — 11a)] = constant | —af(1 +11p) +p*(3 — 11a)] =0
parallel ﬁ[%n(ﬂ) ﬁ[%”n(n) -
—af(1+11p) + p?(3 — 11a)] = constant | —af(1 + 11p) + p*(3 — 11a)] =0
torqued L0+ Zy(x) 1[0+ Zy(x) _
—af(1+ 11p) +p*(3 — 11a)] = constant | —af(1+11p) + p*(3 — 11a)] = 0

If = 0, then we have A\ = &% — [© + (k) + V(;") + 3p?].

Corollary 6.3 If an [f-KM] M3(g, ¢,n,() admits a Ricci Yamabe soliton with k as a torse-forming vector

field, then - Yamabe soliton is shrinking or steady or expanding accordingly as

O+ %”77(&) + @ + 3p? § %, unless % -0+ %”n(m) + @ + 3p?] = constant.

K Existence condition Nature of solitons

(expanding or steady
or shrinking)

O+ Fn(k) + V(;) + 3p?] = constant | © + 2Ln(k) + @ +3p° = &

torse-forming

| :
recurrent % — [271)77(%) + u(;) + 3p2] — constant %pn(ﬁ) + @ 1 3p? % %r
concircular ’%i - e+ 2517(/1) + 3p?] = constant O+ %pn(n) + 3p? = %j
concurrent % — [1+ 22n(k) + 3p?] = constant 1+ 22n(k) + 3p? = %
parallel % - [%pn(l-ﬂ) + 3p?] = constant 2?1"77(,{) + 3p2 = %
torqued BL [0 + 2y(k) + 3p?] = constant O + (k) + 3p? = B

7. Ricci Yamabe soliton whose potential vector field is torse-forming on CR-submanifold
of [fFKM]

Let M is ¢ — horizontal for every Uy, Us € T'(G) and G is parallel with respect to %, then using (4.7),

we yield
Vu,Uz = Vu,Us + p[n(U2)Us — g(Ur, U2)¢] — qn(Ur)¢Us. (7.1)
In view of (4.1)and (1.2), we conclude that the induced connection V is a generalized symmetric metric

connection.
This leads to the following theorem:



Theorem 7.1 Let the CR-submanifold M of an [f-KM] M?(g, $,n,¢) admitting a generalized symmetric

metric connection V is C-horizontal (resp. (-horizontal) and G is parallel with respect to V. If (g, \ k)
is a Ricci Yamabe soliton on M and k is a torse-forming vector field, then (g, \, k) is shrinking or steady
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or expanding accordingly as
110+ 3pn(k) — af(1+ 11p) + p*(3 — 11a) + V(;) -

In this continuation, we state the following corollaries:

Corollary 7.1 Let the CR-submanifold M of an [f-KM] M?3(g, $,n,() admitting a generalized symmetric

metric connection V is C-horizontal (resp. (-horizontal) and G is parallel with respect to V. If (g, \, k)
is a Ricci Yamabe soliton on M and k is a torse-forming vector field, then the following relations hold:

+8(f-mw+2(f+p)| =0

AV

K Existence condition Nature of solitons
(expanding or steady
or shrinking)
torse-forming | —=[0 + 3pn(x) — af (1 + 11p) —=[0 + 3pn(k) — af (1 + 11p)
p*(3 — 1la) + X _ Ar p?(sfnozw@fj?F
+5(f — ) + g(f +p)] = constant | +5(f —p) + ¢(f+p)] =0
recurrent —L[3pn(k) —af(1+11p) —L[3pn(k) —af(1+11p)
p*(3 — 1la) + 48 _ 4r +p2(3—11a)+@—j§
+%(ffu)+%(f+p)]:consmnt +5(f - +E(f+p)] =0
concircular [G) + 3p77( ) - af(l + 11p) ﬁ[@ —1—2%]917(,%) — af(;:— 11p)
(3 - 110‘) 2 +p (3 — 1104) -5 _
§(f — )+ 3(f +p)]=constant | +5(f —p) +3(f+p)] S0
concurrent | — 1[1—|—3pn( )—af(1+11p) 1+ 3pn(s )—af(1+11p)
p?(3 — 1la) — +p%(3 — 11a) —
3u )+ (7 + ) = constant | +3(f — ) + 6q+m§o
parallel ﬁ[%pn(ﬁ) — ozf(} + 11p) ﬁ[%pn(ﬁ) —af(l +711p)
+p2(3 - 11a) — &F +p?(3 — lla) - &
+%Ufu%+%f+pﬂzam%mw +5(f - p) + g +p)] S0
torqued E@ + 3pn)( k) — af (14 11p) L0 —|—23(p17( K) —)af(l—i— 11p)
3—1la +p%(3 — 11a) —
3U p) 4 3(F +p)) = constant | +5(F— )+ 3/ +p) S0

If 3 =0, then we have

A= [@ + 2pn(k) — af (14 11p) + p*(3 — 11a) + V(;)

Corollary 7.2 Let the CR-submanifold M of an [f-KM] M?3(g, $,n,() admitting a generalized symmetric

metric connection YV is (-horizontal (resp. C-horizontal) and G is parallel with respect to V of type
(1,0). If (g, \, k) is a Ricci Yamabe soliton on M and k is a torse-forming vector field, then the

(p,q) =

following results hold:

5w+ 3 +p)].
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K Existence condition Nature of solitons
(expanding or steady
or shrinking)
torse-forming | —5[0 + 3pn(x) — af(1 + 11p) —=[0 + 3pn(k) — af (1 + 11p)
+p2(3 — 11a) + 4 +p2(3 - 11a) + 4
S0 ) £ 3 )] = constant | 45(7 ) + 3/ +9) S0
recurrent —[3pm(k) — af( + 11p) —[3pn(k) — af(1+11p)
+p2(3 — 11a) + 48 +p%(3 — 1) + 4
B ) £ 3 )] = constant | 457 ) + 3/ +9) 20
concircular | 1[0 + %pn(fi) —af(1+11p) —L-[0+ 2pn(k) — af(1+ 11p)
+p?(3 — 11a) +p2(3 — 11a)
+5(/ —w) + §(f +p)l = constant | +5(f —p) + 3/ +p)] S0
concurrent | —[1+ 3pn(k) — af(1 + 11p) L1+ 3pn( k) —af(l1+11p)
+p?(3 — 11a) +p?(3 — 11a)
+5(f =)+ 3 +p)] = constant | +5(f —p) +3(f +p)] S0
parallel L [Zpn(k) — af(1+ 11p) L Bpn(k) — af(1+ 11p)
+p?(3 — 11a) +p2(3 — 11a)
+&(f — ) + 2(f + p)] = constant +&(f =)+ 2(f +p)] §0
torqued L [0+ 3pn(k) —af(1+11p) [0+ 3pn(k) — af(1+11p)
+p?(3 — 11a) +p2(3 — 11a)
+8(f =) + 2(f +p)) = constant | +5(f—p)+2(f+p) S0

If o = 0 then we have A = 27 — [© + dpp(r) + L 4 3p% 4+ 5(f +p)].

Corollary 7.3 Let the CR-submanifold M of an [f-KM] M?3(g, $,n,¢) admitting a generalized symmetric

metric connection YV is (-horizontal (resp. C-horizontal) and G is parallel with respect to V of type
(p,q) = (0,1). If (g, \, k) is a Ricci Yamabe soliton on M and s is a torse-forming vector field, then the
following results hold:

K Existence condition Nature of solitons
(expanding or steady
or shrinking)
torse-forming -0+ 4p77( )+ ”(;) ©+ %1”7( )+ V(:)
—|—3p + 2(f + p)] = constant +3p* + 2(f +p)] = T
recurrent %7 - [3]977( K) + Vgﬁ) [%PU( )+ V(H)>
—|—3p + 3(f + p)] = constant +3p% + 2(f + p)] = %
concircular T [0+ 3on(K) [0 + $pn(k)
—|—3p +2 (f + p)] = constant +3p? + 2 (f +p)] % %
concurrent —[1+ 3pn(r) [1+ 3pn(x) 3
—|—3p + 2(f + p)] = constant +3p% + 2(f +p)] % %
parallel & - [3p77( k) + 3p? + 2 (f + p)] = constant [%pn(ﬂ) +3p* +2 (f +p)] = %
torqued -0+ 3p77( K) [© + %P’?( )
2 5 _ 2 5 = B
+3p° + ¢ (f + p)| = constant +3p* +5(f+p) =T

8. Conclusion

This study establishes that Ricci Yamabe solitons on 3-dimensional f-Kenmotsu manifolds admitting
a generalized symmetric metric connection, with particular focus on solitons whose potential vector fields
are torse-forming. We derived explicit conditions under which the solitons are expanding, steady, or
shrinking, considering various types of torse-forming vector fields. The study was further extended to CR-
submanifolds of such manifolds, leading to comprehensive scalar criteria that describe the nature of the
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solitons. Also provide a unified framework for studying Ricci Yamabe solitons in contact geometry. Future
research should explore higher-dimensional f-Kenmotsu manifolds, other types of geometric solitons, or
different ambient structures such as LP-Sasakian and trans-Sasakian manifolds.
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