(3s.) **v. 2025 (43)** : 1–10. ISSN-0037-8712 doi:10.5269/bspm.77379

Ricci Yamabe Soliton on f-Kenmotsu Manifolds with Generalized Symmetric Metric Connection

Md. Samiul Haque*, Shivaprasanna G S, Deepasree S Kumar, Somashekhara G, and Prabhavati Angadi

ABSTRACT: This research investigates Ricci Yamabe soliton on f-Kenmotsu manifolds whose potential vector field is torse-forming admits a generalized symmetric metric connection. Some results of such soliton on CR-submanifolds of f-Kenmotsu manifolds with generalized symmetric metric connection are obtained.

Key Words: Ricci Yamabe soliton, Torse-forming vector field, f-Kenmotsu manifold, CR-submanifold, generalized symmetric metric connections.

Contents

Introduction 1 **Preliminaries** 2 Generalized symmetric metric connection 3 4 CR-submanifolds of an [f-KM] with generalized symmetric metric connection 3 Ricci Yamabe soliton on Einstein-like [f-KM] 4 Ricci Yamabe soliton whose potential vector field is torse-forming 5 Ricci Yamabe soliton whose potential vector field is torse-forming on CR-submanifold of [f-KM] 6 Conclusion 8 Acknowledgments 9

1. Introduction

In 1988, Hamilton [14] introduced the notions of Ricci flow and Yamabe flow concurrently. The solutions of these flows are known as Ricci solitons and Yamabe solitons, respectively [6,10]. The study of a new geometric flow which is a scalar combination of Ricci and Yamabe flow under the name Ricci-Yamabe map [15]. This is also known as Ricci Yamabe flow of the type (α, β) . The Ricci Yamabe flow is an evolution for the metrics on the Riemannian or semi-Riemannian manifolds defined by [11,13,15]

$$\frac{\partial}{\partial t}g(t) = -2\alpha Ric(t) + \beta R(t)g(t), \qquad g_0 = g(0). \tag{1.1}$$

A soliton to the Ricci Yamabe flow is known as Ricci Yamabe soliton if it moves only by one parameter group of diffeomorphism and scaling. A Ricci Yamabe soliton on a Riemannian manifold $M^3(g, V, \lambda, \alpha, \beta)$ satisfies

$$(L_{\kappa}g)(U_1, U_2) + 2\alpha S(U_1, U_2) + (2\lambda - \beta r)g(U_1, U_2) = 0, \tag{1.2}$$

where r, S and L_{κ} is the scalar curvature, the Ricci tensor and the Lie-derivative along the vector field κ on M respectively and λ is a constant, is known as Ricci Yamabe soliton of (α, β) -type, which is a generalization of Ricci and Yamabe solitons. The Ricci Yamabe soliton is α -Ricci soliton if $\beta = 0$ and

^{*} Corresponding author. 2020 Mathematics Subject Classification: 53D10. Submitted June 19, 2025. Published September 01, 2025

β-Yamabe soliton if α = 0. The Ricci Yamabe soliton is said to be expanding if λ is negative or shrinking if λ is positive or steady if λ is zero.

A vector field κ on a Riemannian manifold (M,g) is called a torse-forming vector field [5,9] if it satisfies

$$\nabla_{U_1} \kappa = \Theta U_1 + \nu(U_1) \kappa \ \forall U_1 \in TM, \tag{1.3}$$

where $\Theta \in C^{\infty}(M)$ and ν is a linear form of M.

A torse-forming vector field κ is called

i. recurrent, if $\Theta = 0$,

ii. concircular, if the 1-form ν vanishes identically,

iii. parallel, if $\Theta = 0, \nu = 0$,

iv. concurrent, if $\Theta = 1, \nu = 0$.

In 2017, Chen [1] introduced a new type of vector field called torqued vector field if the vector field κ satisfying (1.2) with $\nu(\kappa) = 0$ where Θ is called the torqued function with the 1-form ν , called the torqued form of κ .

This paper deals with η -Ricci Soliton on f-Kenmotsu manifold[f-KM].

2. Preliminaries

A smooth manifold M of odd dimension is an almost contact metric manifold, if there exist ζ a vector field, a (1, 1) tensor field ϕ , η a 1-form and a Riemannian metric g on M so that

$$\phi^2 U_1 = -U_1 + \eta(U_1)\zeta, \quad \eta(\zeta) = 1, \quad \eta(U_1) = g(U_1, \zeta), \tag{2.1}$$

$$\phi \zeta = 0, \quad \eta \circ \phi = 0, \tag{2.2}$$

$$g(\phi U_1, \phi U_2) = g(U_1, U_2) - \eta(U_1)\eta(U_2).$$
 (2.3)

A manifold of odd dimension is known as an [f-KM] [8] if the covariant differentiation of ϕ satisfies

$$(\nabla_{U_1}\phi)U_2 = f[g(\phi U_1, U_2)\zeta - \eta(U_2)\phi U_1], \tag{2.4}$$

where $f \in C^{\infty}(M)$ is such that $df \Lambda \eta = 0$. If $f = \beta \neq 0$, then the manifold is a β -Kenmotsu manifold. The 1-Kenmotsu manifold is a Kenmotsu manifold. The manifold is cosymplectic if f = 0 [2,3,8,17]. An [f-KM] is regular if $f^2 + f' \neq 0$, where $f' = \zeta f$.

For an [f-KM] from (2.1), we have

$$\nabla_{U_1} \zeta = f[U_1 - \eta(U_1)\zeta]. \tag{2.5}$$

In a three-dimensional Riemannian manifold, we have

$$R(U_1, U_2)U_3 = [g(U_2, U_3)QU_1 - g(U_1, U_3)QU_2] + S(U_2, U_3)U_1 -S(U_1, U_3)U_2 - \frac{r}{2}[g(U_2, U_3)U_1 - g(U_1, U_3)U_2].$$
 (2.6)

In a three-dimensional [f-KM], we get

$$R(U_1, U_2)U_3 = \left(\frac{r}{2} + 2f^2 + 2f'\right)(U_1\Lambda U_2)U_3 - \left(\frac{r}{2} + 3f^2 + 3f'\right)[\eta(U_1)(\zeta\Lambda U_2)U_3 + \eta(U_2)(U_1\Lambda\zeta)U_3],$$
(2.7)

$$S(U_1, U_2) = -(f + \lambda)g(U_1, U_2) + (f - \mu)\eta(U_1)\eta(U_2), \tag{2.8}$$

$$S(U_1,\zeta) = -(\lambda + \mu)\eta(U_1), \tag{2.9}$$

$$QU_1 = -(\lambda + \mu)\zeta. \tag{2.10}$$

Let \overline{M} be a submanifold of an [f-KM] $M^3(\phi, \zeta, \eta, g)$. The Gauss and Weingarten formulae are given by

$$\nabla_{U_1} U_2 = \overline{\nabla}_{U_1} U_2 + h(U_1, U_2), \text{ for all } U_1, U_2 \in (T\overline{M}),$$
 (2.11)

$$\nabla_{U_1} N = -A_N U_1 + \nabla_{U_1}^{\perp} N, \text{ for all } U_1, U_2 \in (T^{\perp} \overline{M}),$$
 (2.12)

where $\nabla_{U_1}U_2 \in (T\overline{M})$ and $[h(U_1, U_2), \nabla_{U_1}^{\perp} N] \in (T^{\perp}\overline{M}).$

3. Generalized symmetric metric connection

In an [f-KM] $M^3(\phi, \zeta, \eta, g)$, the generalized symmetric metric connection $\overline{\nabla}$ is defined as [4,7,12]

$$\overline{\nabla}_{U_1} U_2 = \nabla_{U_1} U_2 + p[\eta(U_2)U_1 - g(U_1, U_2)\zeta] - q\eta(U_1)\phi U_2, \tag{3.1}$$

for any U_1, U_2 on M. The generalized symmetric metric connection reduces to a semi-symmetric metric connection if (p,q)=(1,0) and quarter-symmetric metric connection if (p,q)=(0,1). Let $M^3(\phi,\zeta,\eta,g)$ be [f-KM] with a generalized symmetric metric connection $\overline{\nabla}$. Then we have the

$$(\overline{\nabla}_{U_1}\phi)(U_2) = (f+p)[g(\phi U_1, U_2)\zeta - \eta(U_2)\phi U_1], \tag{3.2}$$

$$\overline{\nabla}_{U_1}\zeta = (f+p)[U_1 - \eta(U_1)\zeta], \tag{3.3}$$

$$\overline{R}(U_1, U_2)U_3 = R(U_1, U_2)U_3 + (f+p)(p[2g(U_1, U_3)U_2 - 2g(U_2, U_3)U_1 - \eta(U_1)\eta(U_3)U_2
+ \eta(U_2)\eta(U_3)U_1 - \eta(U_2)g(U_1, U_3)\zeta + \eta(U_1)g(U_2, U_3)\zeta)]
- q[g(\phi U_1, U_3)\eta(U_2)\zeta - \eta(U_2)\eta(U_3)\phi U_1 - g(\phi U_2, U_3)\eta(U_1)\zeta
+ \eta(U_1)\eta(U_3)\phi U_2] + p^2[q(U_2, U_3)U_1 - q(U_1, U_3)U_2],$$
(3.4)

$$\overline{R}(U_1, U_2)\zeta = [f(f+p) + f'][\eta(U_1)U_2 - \eta(U_2)U_1]
- (f+p)q[\eta(U_1)\phi U_2 - \eta(U_2)\phi U_1],$$
(3.5)

$$\overline{S}(U_1, U_2) = S(U_1, U_2) + (f+p)(p[(1-4n)g(U_1, U_2) + (2n-1)\eta(U_1)\eta(U_2)]$$

$$+ qg(\phi U_1, U_2)) + p^2 2ng(U_1, U_2),$$
(3.6)

for all U_1, U_2 in (TM).

following results [7]

4. CR-submanifolds of an [f-KM] with generalized symmetric metric connection

Definition 4.1 A three-dimensional Riemannian manifold (M,g) of an [f-KM] $M^3(\phi,\zeta,\eta,g)$ is known as a CR-submanifold [16] if ζ is tangent to M and there exists on M a differentiable distribution $G: x \to G_x \subset T_x M$ such that

i. G is invariant under ϕ ,

ii. The orthogonal complement distribution $G^{\perp}: x \to G_x^{\perp} \subset T_xM$ of the distribution G on M is totally real.

Definition 4.2 If the distribution G (resp., G^{\perp}) is horizontal (resp., vertical), then the pair (G, G^{\perp}) is known as ζ – horizontal (resp., ζ – vertical) if $\zeta \in \Gamma(G)$ (resp., $\zeta \in \Gamma(G^{\perp})$) [16]. The CR-submanifold is also known as ζ – horizontal (resp., ζ – vertical) if $\zeta \in \Gamma(G)$ (resp., $\zeta \in \Gamma(G^{\perp})$).

The orthogonal complement $\phi G^{\perp} \in T^{\perp}M$ is defined by

$$TM = G \oplus G^{\perp}, \ T^{\perp}M = \phi G^{\perp} \oplus \mu,$$
 (4.1)

where $\phi \mu = \mu$. Let \overline{M} be a CR-submanifold of [f - KM] $M^3(g, \phi, \zeta, \eta)$ with a generalized symmetric metric connection $\overline{\nabla}$. For every $U_1 \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$, we can write as

$$U_1 = DU_1 + EU_1, \quad DU_1 \in \Gamma G, \quad EU_1 \in \Gamma G^{\perp}, \tag{4.2}$$

$$\phi N = BN + CN, BN \in \Gamma G^{\perp}, CN \in \Gamma \mu. \tag{4.3}$$

The Gauss and Weingarten formulae with respect to $\overline{\nabla}$ are given by

$$\overline{\nabla}_{U_1} U_2 = \overline{\overline{\nabla}}_{U_1} U_2 + \overline{h}(U_1, U_2), \tag{4.4}$$

$$\overline{\nabla}_{U_1} N = -\overline{A}_N U_1 + \overline{\nabla}_{U_1}^{\perp} N \tag{4.5}$$

respectively, where $\overline{\nabla}_{U_1}U_2$, $\overline{\nabla}_{U_1}N \in \Gamma(TM)$.

Here $\overline{\overline{\nabla}}$ is the induced connection on \overline{M} , \overline{h} is the second fundamental form and \overline{A}_N is the Weingarten

mapping with respect to $\overline{\nabla}$.

By virtue of (2.11), (3.1) and (4.4), we yield

$$\overline{\overline{\nabla}}_{U_1} U_2 + \overline{h}(U_1, U_2) = \overline{\nabla}_{U_1} U_2 + h(U_1, U_2) + p[\eta(U_2)U_1 - g(U_1, U_2)\zeta] - q\eta(U_1)\phi U_2. \tag{4.6}$$

In view of (4.2, 4.3, 4.6) and comparing the normal and the tangential components, we have

$$D\overline{\overline{\nabla}}_{U_1}U_2 = D\overline{\nabla}_{U_1}U_2 + p[\eta(U_2)DU_1 - g(U_1, U_2)D\zeta] - Dq\eta(U_1)\phi U_2, \tag{4.7}$$

$$\overline{h}(U_1, U_2) = h(U_1, U_2) - qE\eta(U_1)\phi U_2,$$
(4.8)

$$E\overline{\overline{\nabla}}_{U_1}U_2 = E\overline{\nabla}_{U_1}U_2 + p[\eta(U_2)EU_1 - g(U_1, U_2)E\zeta] - qE\eta(U_1)\phi U_2, \tag{4.9}$$

for any $U_1, U_2 \in (TM)$.

5. Ricci Yamabe soliton on Einstein-like [f-KM]

Definition 5.1 An [f-KM] is called an Einstein-like if S Ricci tensor satisfies

$$S(U_1, U_2) = a_1 g(U_1, U_2) + a_2 g(\phi U_1, U_2) + a_3 \eta(U_1) \eta(U_2), \tag{5.1}$$

where a_1, a_2 and a_3 are some real constants.

Taking $V = \zeta$ in (1.2) and then from (5.1), we obtain

$$g(\nabla_{U_1}\zeta, U_2) + g(\nabla_{U_2}\zeta, U_1) + 2\alpha S(U_1, U_2) + (2\lambda - \beta r)g(U_1, U_2) = 0.$$
(5.2)

In view of (2.5) and (5.2), we have

$$[2f + 2\alpha a_1 + 2\lambda - \beta r]g(U_1, U_2) + [2\alpha a_3 - 2f]\eta(U_1)\eta(U_2) + 2\alpha a_2 g(\phi U_1, U_2) = 0.$$
(5.3)

From the above equation we yield

 $a_1 = \frac{1}{\alpha} \left[\frac{\beta r}{2} - (f + \lambda) \right], \quad a_2 = 0 \quad \text{and} \quad a_3 = \frac{f}{\alpha}.$

$$\nabla_{U_1} \zeta = \left[\frac{\beta r}{2} - (\alpha a_1 + \lambda) \right] [U_1 - \eta(U_1)], \tag{5.4}$$

and

$$S(U_1, U_2) = \frac{1}{\alpha} \left[\frac{\beta r}{2} - (f + \lambda) \right] g(U_1, U_2) + \frac{f}{\alpha} \eta(U_1) \eta(U_2), \tag{5.5}$$

$$S(U_1,\zeta) = \frac{1}{\alpha} \left[\frac{\beta r}{2} - \lambda \right] \eta(U_1), \tag{5.6}$$

$$QU_1 = \frac{1}{\alpha} \left[\frac{\beta r}{2} - \lambda \right] \zeta. \tag{5.7}$$

Thus, we state the following:

Theorem 5.1 If a non-cosymplectic [f-KM] $M^3(g, \phi, \zeta, \alpha, \beta)$ admits a Ricci Yamabe soliton with an Einstein-like Ricci tensor, then the Ricci Yamabe soliton will expand if $\beta r < 2(\alpha a_1 + f)$ or shrink if $\beta r > 2(\alpha a_1 + f)$ or steady if $f = \frac{\beta r}{2} - \alpha a_1$.

If $\beta = 0$, then we have

$$\lambda = -(f + \alpha a_1).$$

Corollary 5.1 If a non-cosymplectic [f-KM] $M^3(g, \phi, \zeta)$ admits a Ricci Yamabe soliton with an Einstein-like Ricci tensor, then the α -Ricci soliton will expand if $f + \alpha a_1 < 0$ or shrink if $f + \alpha a_1 > 0$ or steady if $f = -\alpha a_1$.

6. Ricci Yamabe soliton whose potential vector field is torse-forming

Let (g, λ, κ) be a Ricci Yamabe soliton $M^3(g, \phi, \eta, \zeta)$ with respect to a generalized symmetric metric connection. From (1.2), we yield

$$(\overline{L}_{\kappa}g)(U_1, U_2) + 2\alpha \overline{S}(U_1, U_2) + (2\lambda - \beta \overline{r})g(U_1, U_2) = 0.$$
(6.1)

By Lie derivative's definition, (1.3) and (3.1), we have

$$(\overline{L}_{\kappa}g)(U_{1}, U_{2}) = 2\Theta g(U_{1}, U_{2}) + \nu(U_{1})g(\kappa, U_{2}) + \nu(U_{2})g(U_{1}, \kappa) + p[2\eta(\kappa)g(U_{1}, U_{2}) - \eta(U_{2})g(U_{1}, \kappa) - \eta(U_{1})g(U_{2}, \kappa)] - q[\eta(U_{2})g(\phi U_{1}, \kappa) + \eta(U_{1})g(\phi U_{2}, \kappa)].$$
(6.2)

In view of (6.1) and (6.2), we have

$$[2\Theta + 2p\eta(\kappa) + 2\lambda(1-\alpha) - \beta\overline{r} - 22\alpha p(f+p) - 2\alpha f + 6p^{2}]g(U_{1}, U_{2})$$

$$= p[\eta(U_{1})g(U_{2}, \kappa) + \eta(U_{2})g(U_{1}, \kappa)]$$

$$-q[\eta(U_{1})g(\phi U_{2}, \kappa) + \eta(U_{2})g(\phi U_{1}, \kappa) + 2\alpha g(\phi U_{1}, U_{2})]$$

$$-[\nu(U_{1})g(U_{2}, \kappa) + \nu(U_{2})g(U_{1}, \kappa)]$$

$$-[10\alpha p(f+p) + 2\alpha(f-\mu)]\eta(U_{1})\eta(U_{2}). \tag{6.3}$$

Taking $U_1 = U_2 = e_i$ in the above equation, we obtain

$$\lambda = \frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} - \alpha f(1 + 11p) + p^2(3 - 11\alpha) - \frac{\beta \overline{r}}{2} \right]. \tag{6.4}$$

Thus, we can state the following theorem:

Theorem 6.1 Let (g, λ, κ) be a Ricci Yamabe soliton on 3-dimensional [f-KM] with respect to a generalized symmetric metric connection. If κ is a torse-forming vector field, then (g, λ, κ) is shrinking or steady or expanding accordingly as

$$\frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} - \alpha f(1 + 11p) + p^2(3 - 11\alpha) - \frac{\beta \overline{r}}{2} \right] \stackrel{\geq}{=} 0.$$

In this continuation, we state the following corollaries:

Corollary 6.1 Let (g, λ, κ) be a Ricci Yamabe soliton on 3-dimensional [f-KM] with respect to a generalized symmetric metric connection. Then, the following relations hold:

κ	Existence condition	$Nature\ of\ solitons$
		$(expanding \ or \ steady$
		$or \ shrinking)$
torse-forming	$\frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} - \frac{\beta \overline{r}}{2} \right]$	$\frac{1}{\alpha-1} \left[\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} - \frac{\beta \overline{r}}{2}\right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha)] = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
recurrent	$\frac{1}{\alpha-1}\left[\frac{2p}{3}\eta(\kappa) + \frac{ u(\kappa)}{3} - \frac{eta\overline{r}}{2} ight]$	$\frac{1}{\alpha-1}\left[\frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3} - \frac{\beta\overline{r}}{2}\right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha) = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
concircular	$\frac{1}{\alpha-1}[\Theta + \frac{2p}{3}\eta(\kappa) - \frac{\beta\overline{r}}{2}]$	$\frac{1}{\alpha-1}[\Theta + \frac{2p}{3}\eta(\kappa) - \frac{\beta\overline{r}}{2}]$
	$-\alpha f(1+11p) + p^2(3-11\alpha)] = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
concurrent	$\frac{1}{\alpha - 1} \left[1 + \frac{2p}{3} \eta(\kappa) - \frac{\beta \overline{r}}{2} \right]$	$\frac{1}{\alpha - 1} \left[1 + \frac{2p}{3} \eta(\kappa) - \frac{\beta \overline{r}}{2} \right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha)] = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
parallel	$\frac{1}{\alpha-1} \left[\frac{2p}{3} \eta(\kappa) - \frac{\beta \overline{r}}{2} \right]$	$\frac{1}{\alpha-1} \left[\frac{2p}{3} \eta(\kappa) - \frac{\beta \overline{r}}{2} \right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha) = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha)] \le 0$
torqued	$\frac{1}{lpha-1}[\Theta+rac{2p}{3}\eta(\kappa)-rac{etaar{r}}{2}$	$\frac{1}{\alpha-1} \left[\Theta + \frac{2p}{3}\eta(\kappa) - \frac{\beta\overline{r}}{2}\right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha)] = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha)] \le 0$

If
$$\beta = 0$$
, then we have $\lambda = \frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} - \alpha f(1 + 11p) + p^2(3 - 11\alpha) \right]$.

Corollary 6.2 If an [f-KM] $M^3(g, \phi, \eta, \zeta)$ admits a Ricci Yamabe soliton with κ as a torse-forming vector field, then α -Ricci soliton is shrinking or steady or expanding accordingly as

$$\frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} - \alpha f(1 + 11p) + p^2(3 - 11\alpha) \right] \stackrel{>}{=} 0,$$

$$unless \frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} - \alpha f(1 + 11p) + p^2(3 - 11\alpha) \right] = constant.$$

κ	Existence condition	Nature of solitons
		$(expanding \ or \ steady$
		$or \ shrinking)$
torse-forming	$\frac{1}{\alpha-1}[\Theta + \frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3}]$	$\frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} \right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha) = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
recurrent	$\frac{1}{\alpha-1}\left[\frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3}\right]$	$\frac{1}{\alpha - 1} \left[\frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} \right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha) = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
concircular	$\frac{1}{\alpha-1}[\Theta + \frac{2p}{3}\eta(\kappa)]$	$\frac{1}{\alpha-1}[\Theta + \frac{2p}{3}\eta(\kappa)]$
	$-\alpha f(1+11p) + p^2(3-11\alpha) = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
concurrent	$\frac{1}{\alpha - 1} \left[1 + \frac{2p}{3} \eta(\kappa) \right]$	$\frac{1}{\alpha - 1} \left[1 + \frac{2p}{3} \eta(\kappa) \right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha) = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
parallel	$\frac{1}{\alpha-1}\left[\frac{2p}{3}\eta(\kappa)\right]$	$\frac{1}{\alpha-1} \left[\frac{2p}{3} \eta(\kappa) \right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha) = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$
torqued	$\frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) \right]$	$\frac{1}{\alpha - 1} \left[\Theta + \frac{2p}{3} \eta(\kappa) \right]$
	$-\alpha f(1+11p) + p^2(3-11\alpha)] = constant$	$-\alpha f(1+11p) + p^2(3-11\alpha) \le 0$

If
$$\alpha = 0$$
, then we have $\lambda = \frac{\beta \overline{r}}{2} - [\Theta + \frac{2p}{3} \eta(\kappa) + \frac{\nu(\kappa)}{3} + 3p^2].$

Corollary 6.3 If an [f-KM] $M^3(g, \phi, \eta, \zeta)$ admits a Ricci Yamabe soliton with κ as a torse-forming vector field, then β -Yamabe soliton is shrinking or steady or expanding accordingly as $\Theta + \frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3} + 3p^2 \leq \frac{\beta\overline{r}}{2}$, unless $\frac{\beta\overline{r}}{2} - [\Theta + \frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3} + 3p^2] = constant$.

κ	Existence condition	Nature of solitons
		$(expanding \ or \ steady$
		$or \ shrinking)$
torse-forming	$\frac{\beta \overline{r}}{2} - \left[\Theta + \frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3} + 3p^2\right] = constant$	$\Theta + \frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3} + 3p^2 \stackrel{\geq}{\leq} \frac{\beta \overline{r}}{2}$
recurrent	$\frac{\beta \overline{r}}{2} - \left[\frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3} + 3p^2\right] = constant$	$\frac{2p}{3}\eta(\kappa) + \frac{\nu(\kappa)}{3} + 3p^2 \stackrel{\ge}{\leq} \frac{\beta\overline{r}}{2}$
concircular	$\frac{\beta \overline{r}}{2} - \left[\Theta + \frac{2p}{3}\eta(\kappa) + 3p^2\right] = constant$	$\Theta + \frac{2p}{3}\eta(\kappa) + 3p^2 \rightleftharpoons \frac{\beta\overline{r}}{2}$
concurrent	$\frac{\beta \overline{r}}{2} - \left[1 + \frac{2p}{3}\eta(\kappa) + 3p^2\right] = constant$	$1 + \frac{2p}{3}\eta(\kappa) + 3p^2 \lessapprox \frac{\beta \overline{r}}{2}$
parallel	$\frac{\beta \overline{r}}{2} - \left[\frac{2p}{3}\eta(\kappa) + 3p^2\right] = constant$	$\frac{2p}{3}\eta(\kappa) + 3p^2 \rightleftharpoons \frac{\beta\overline{r}}{2}$
torqued	$\frac{\beta \overline{r}}{2} - \left[\Theta + \frac{2p}{3}\eta(\kappa) + 3p^2\right] = constant$	$\Theta + \frac{2p}{3}\eta(\kappa) + 3p^2 \stackrel{\geq}{=} \frac{\beta \overline{r}}{2}$

7. Ricci Yamabe soliton whose potential vector field is torse-forming on CR-submanifold of [f-KM]

Let M is $\zeta - horizontal$ for every $U_1, U_2 \in \Gamma(G)$ and G is parallel with respect to $\overline{\overline{\nabla}}$, then using (4.7), we yield

$$\overline{\overline{\nabla}}_{U_1} U_2 = \overline{\nabla}_{U_1} U_2 + p[\eta(U_2)U_1 - g(U_1, U_2)\zeta] - q\eta(U_1)\phi U_2. \tag{7.1}$$

In view of (4.1)and (1.2), we conclude that the induced connection $\overline{\nabla}$ is a generalized symmetric metric connection.

This leads to the following theorem:

Theorem 7.1 Let the CR-submanifold \overline{M} of an [f-KM] $M^3(g, \phi, \eta, \zeta)$ admitting a generalized symmetric metric connection $\overline{\nabla}$ is ζ -horizontal (resp. ζ -horizontal) and G is parallel with respect to $\overline{\nabla}$. If (g, λ, κ) is a Ricci Yamabe soliton on \overline{M} and κ is a torse-forming vector field, then (g, λ, κ) is shrinking or steady or expanding accordingly as

$$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) + p^2 (3 - 11\alpha) + \frac{\nu(\kappa)}{3} - \frac{\beta \overline{r}}{2} + \frac{\alpha}{3} (f - \mu) + \frac{5}{6} (f + p) \right] \gtrsim 0.$$

In this continuation, we state the following corollaries:

Corollary 7.1 Let the CR-submanifold \overline{M} of an [f-KM] $M^3(g, \phi, \eta, \zeta)$ admitting a generalized symmetric metric connection $\overline{\nabla}$ is ζ -horizontal (resp. ζ -horizontal) and G is parallel with respect to $\overline{\nabla}$. If (g, λ, κ) is a Ricci Yamabe soliton on \overline{M} and κ is a torse-forming vector field, then the following relations hold:

κ	Existence condition	Nature of solitons
		$(expanding \ or \ steady$
		$or \ shrinking)$
$torse ext{-}forming$	$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha-1}[\Theta + \frac{4}{3}p\eta(\kappa) - \alpha f(1+11p)]$
	$+p^{2}(3-11\alpha)+\frac{\nu(\kappa)}{3}-\frac{\beta\overline{r}}{2}$	$+p^{2}(3-11\alpha)+\frac{\nu(\kappa)}{3}-\frac{\beta\overline{r}}{2}$
	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)$] = constant	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0$
recurrent	$\frac{1}{\alpha - 1} \left[\frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha - 1} \left[\frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$
	$+p^2(3-11\alpha)+\frac{\nu(\kappa)}{3}-\frac{\beta\overline{r}}{2}$	$+p^{2}(3-11\alpha)+\frac{\nu(\kappa)}{3}-\frac{\beta\overline{r}}{2}$
	$\left[+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p) \right] = constant$	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0$
concircular	$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha-1}[\Theta + \frac{4}{3}p\eta(\kappa) - \alpha f(1+11p)]$
	$+p^2(3-11\alpha)-\frac{\beta\overline{r}}{2}$	$+p^2(3-11\alpha)-\frac{\beta \bar{r}}{2}$
	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant$	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p) \le 0$
concurrent	$\frac{1}{\alpha - 1} \left[1 + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha - 1} \left[1 + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$
	$+p^2(3-11\alpha)-\frac{\beta\overline{r}}{2}$	$+p^2(3-11\alpha)-\frac{\beta \bar{r}}{2}$
	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant$	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p) \le 0$
parallel	$\frac{1}{\alpha - 1} \left[\frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha - 1} \left[\frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$
	$+p^2(3-11\alpha)-\frac{\beta\overline{r}}{2}$	$+p^2(3-11\alpha)-\frac{\beta \bar{r}}{2}$
	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant$	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0$
torqued	$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$
	$+p^2(3-11\alpha)-\frac{\beta\overline{r}}{2}$	$+p^2(3-11\alpha)-\frac{\beta\overline{r}}{2}$
	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant$	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0$

If
$$\beta=0$$
, then we have
$$\lambda=\frac{1}{\alpha-1}\left[\Theta+\frac{4}{3}p\eta(\kappa)-\alpha f(1+11p)+p^2(3-11\alpha)+\frac{\nu(\kappa)}{3}+\frac{\alpha}{3}(f-\mu)+\frac{5}{6}(f+p)\right].$$

Corollary 7.2 Let the CR-submanifold \overline{M} of an [f-KM] $M^3(g,\phi,\eta,\zeta)$ admitting a generalized symmetric metric connection $\overline{\overline{\nabla}}$ is ζ -horizontal (resp. ζ -horizontal) and G is parallel with respect to $\overline{\overline{\nabla}}$ of type (p,q)=(1,0). If (g,λ,κ) is a Ricci Yamabe soliton on \overline{M} and κ is a torse-forming vector field, then the following results hold:

κ	Existence condition	Nature of solitons
		(expanding or steady
		or shrinking)
torse-forming	$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha-1}[\Theta + \frac{4}{3}p\eta(\kappa) - \alpha f(1+11p)]$
	$+p^2(3-11\alpha) + \frac{\nu(\kappa)}{3}$	$+p^2(3-11\alpha) + \frac{\nu(\kappa)}{3}$
	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant$	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0$
recurrent	$\frac{1}{\alpha - 1} \left[\frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha - 1} \left[\frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$
	$+p^2(3-11\alpha)+\frac{\nu(\kappa)}{3}$	$+p^2(3-11\alpha) + \frac{\nu(\kappa)}{3}$
	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant$	$ +\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0 $
concircular	$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$
	$+p^2(3-11\alpha)$	$+p^2(3-11\alpha)$
	$ +\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant $	$ +\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0 $
concurrent	$\frac{1}{\alpha - \frac{1}{2}} \left[1 + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha - 1} \left[1 + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$
	$+p^2(3-11\alpha)$	$+p^2(3-11\alpha)$
	$\left[+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p) \right] = constant$	$ +\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0 $
parallel	$\frac{1}{\alpha - 1} \left[\frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha-1} \left[\frac{4}{3} p \eta(\kappa) - \alpha f(1+11p) \right]$
	$+p^2(3-11\alpha)$	$+p^2(3-11\alpha)$
	$ +\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant $	$ +\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0 $
torqued	$\frac{1}{\alpha - \frac{1}{2}} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$	$\frac{1}{\alpha - 1} \left[\Theta + \frac{4}{3} p \eta(\kappa) - \alpha f(1 + 11p) \right]$
	$+p^2(3-11\alpha)$	$+p^2(3-11\alpha)$
	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] = constant$	$+\frac{\alpha}{3}(f-\mu) + \frac{5}{6}(f+p)] \leq 0$

If $\alpha = 0$ then we have $\lambda = \frac{\beta \overline{r}}{2} - [\Theta + \frac{4}{3}p\eta(\kappa) + \frac{\nu(\kappa)}{3} + 3p^2 + \frac{5}{6}(f+p)].$

Corollary 7.3 Let the CR-submanifold \overline{M} of an [f-KM] $M^3(g,\phi,\eta,\zeta)$ admitting a generalized symmetric metric connection $\overline{\overline{\nabla}}$ is ζ -horizontal (resp. ζ -horizontal) and G is parallel with respect to $\overline{\overline{\nabla}}$ of type (p,q)=(0,1). If (g,λ,κ) is a Ricci Yamabe soliton on \overline{M} and κ is a torse-forming vector field, then the following results hold:

κ	Existence condition	Nature of solitons
		(expanding or steady
		or shrinking)
torse-forming	$\frac{\beta \overline{r}}{2} - \left[\Theta + \frac{4}{3}p\eta(\kappa) + \frac{\nu(\kappa)}{3}\right]$	$\Theta + \frac{4}{3}p\eta(\kappa) + \frac{\nu(\kappa)}{3}$
	$+3p^2 + \frac{5}{6}(f+p)] = constant$	$+3p^2 + \frac{5}{6}(f+p)] \stackrel{\ge}{=} \frac{\beta \overline{r}}{2}$
recurrent	$\frac{\beta \overline{r}}{2} - \left[\frac{4}{3}p\eta(\kappa) + \frac{\nu(\kappa)}{3}\right]$	$\left[\frac{4}{3}p\eta(\kappa) + \frac{\nu(\kappa)}{3}\right]$
	$+3p^2 + \frac{5}{6}(f+p)] = constant$	$+3p^2 + \frac{5}{6}(f+p) \stackrel{?}{=} \frac{\beta \overline{r}}{2}$
concircular	$\frac{\beta \overline{r}}{2} - \left[\Theta + \frac{4}{3}p\eta(\kappa)\right]$	$\left[\Theta + \frac{4}{3}p\eta(\kappa)\right]$
	$+3p^2 + \frac{5}{6}(f+p)] = constant$	$+3p^2 + \frac{5}{6}(f+p)] \stackrel{\geq}{=} \frac{\beta \overline{r}}{2}$
concurrent	$\frac{eta \overline{r}}{2} - \left[1 + \frac{4}{3}p\eta(\kappa)\right]$	$\left[1+\frac{4}{3}p\eta(\kappa)\right]$
	$+3p^2 + \frac{5}{6}(f+p)] = constant$	$+3p^2 + \frac{5}{6}(f+p)] \stackrel{\ge}{=} \frac{\beta \overline{r}}{2}$
parallel	$\frac{\beta \overline{r}}{2} - \left[\frac{4}{3}p\eta(\kappa) + 3p^2 + \frac{5}{6}(f+p)\right] = constant$	$\left[\frac{4}{3}p\eta(\kappa) + 3p^2 + \frac{5}{6}(f+p) \right] \stackrel{\geq}{=} \frac{\beta\overline{r}}{2}$
torqued	$\frac{\beta \overline{r}}{2} - \left[\Theta + \frac{4}{3}p\eta(\kappa)\right]$	$\left[\Theta + \frac{4}{3}p\eta(\kappa)\right]$
	$+3p^2 + \frac{5}{6}(f+p)] = constant$	$+3p^2 + \frac{5}{6}(\tilde{f} + p)] \stackrel{\geq}{=} \frac{\beta \overline{r}}{2}$

8. Conclusion

This study establishes that Ricci Yamabe solitons on 3-dimensional f-Kenmotsu manifolds admitting a generalized symmetric metric connection, with particular focus on solitons whose potential vector fields are torse-forming. We derived explicit conditions under which the solitons are expanding, steady, or shrinking, considering various types of torse-forming vector fields. The study was further extended to CR-submanifolds of such manifolds, leading to comprehensive scalar criteria that describe the nature of the

solitons. Also provide a unified framework for studying Ricci Yamabe solitons in contact geometry. Future research should explore higher-dimensional f-Kenmotsu manifolds, other types of geometric solitons, or different ambient structures such as LP-Sasakian and trans-Sasakian manifolds.

9. Acknowledgments

The authors are grateful to the referees for their comments and valuable suggestions for improvement of this work.

References

- 1. B.Y. Chen, (2017), classification of torqued vector fields and its applications to Ricci solitons, *Kragujevac J. Math.* 41(2), 239-250.
- 2. D. Janssens and L. Vanhecke, (1981), Almost contact structures and curvature tensors, Kodai Math.J., 4(1), 1-27.
- 3. G. Pitis, (1988), A remark on Kenmotsu manifolds, Bul. Univ. Brasov Ser. C, 30, 31-32.
- G.S.Shivaprasanna, Md. Samiul Haque and G.Somashekhara, (2020), η-Ricci soliton on f-Kenmotsu manifolds, Journal
 of Physics: Conference Series, doi:10.1088/1742-6596/1543/1/012007.
- 5. G.S.Shivaprasanna, Md. Samiul Haque and G.Somashekhara, (2020), η -Ricci soliton in three-dimensional (ε, δ) -trans-Sasakian manifold, Waffen-UND Kostumkunde Journal, 11(3), 13-26.
- G.S.Shivaprasanna, Md. Samiul Haque, Savithri Shashidhar and G.Somashekhara, (2021), Ricci Yamabe soliton on LP-Sasakian manifolds, J. Math. Comput. Sci., 11(5), https://doi.org/10.28919/jmcs/6253, 6242-6255.
- G.S. Shivaprasanna, Prabhavati G. Angadi, R. Rajendra, P. S. K. Reddy and Somashekhara Ganganna, (2023), f-Kenmotsu manifolds with generalized symmetric metric connection, Bulletin of the International mathematical virtual institute, 13(3), DOI: 10.7251/BIMVI2303517A, 517-527.
- 8. K. Kenmotsu, (1972), A class of almost contact Riemannian manifolds, *Tohoku Math. J.*, 24(1), *DOI:* 10.2748/tmj/1178241594, 93-103.
- 9. K Yano, (1944), on torse-forming direction in a Riemannian space, *Proc.Imp. Acad. Tokyo* 20(6), *DOI:* 10.3792/pia/1195572958, 340-345.
- 10. Md. Samiul Haque, G.S.Shivaprasanna and G.Somashekhara, (2024), Ricci Yamabe soliton in three-dimensional (ε, δ) -trans-Sasakian manifolds, Tuijin jishu/journal of propulsion technology, 45(1), 4837-4847.
- M.Ramesha, S.K. Narasimhamurthy, (2017), Projectively Flat Finsler Space of Douglas Type with Weakly-Berwald (α, β)-Metric, International Journal of Pure Mathematical Sciences, 18, doi:10.18052/www.scipress.com/IJPMS.18.1, 1-12.
- 12. O. Bahadir, S. K. Chaubey, (2020), some notes on LP-Sasakian manifolds with generalized symmetric metric connection, Honam Mathematical Journal, 42(3), DOI:10.5831/HMJ.2020.42.3.461 461-476.
- 13. Pradeep Kumar, S. K. Narasimhamurthy, H. G. Nagaraja and S. T. Aveesh, (2009), On a special hypersurface of a Finsler space with (α, β) -metric, *Tbilisi Mathematical Journal*, 2, 51-60.
- 14. R.S. Hamilton, (1988), The Ricci flow on surfaces, *Contemporary Mathematics*, 71, https://doi.org/10.1090/conm/071/954419, 237-262.
- 15. S. Güler, and M. Crasmareanu, (2019), Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J. Math., 43(5), DOI:10.3906/mat-1902-38, 2631-2641.
- U.C. De, A.K. Sengupta, (2000), CR-submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malaysian Math. Sci. Soc. 23(2), 99-106.
- 17. Z. Olszak and R. Rosco, (1991), Normal locally conformal almost cosympletic manifolds, Publ. Math. Debrecen, 39(3), DOI: 10.5486/PMD.1991.39.3-4.12, 315-323.

Md. Samiul Haque (Corresponding author), Department of Mathematics,

Acharya Institute of Technology,

Bengaluru-560107, India.

E-mail address: samiulmoslempur@gmail.com

and

 $Shivaprasanna\ G\ S,$

Department of Mathematics,

 $Dr.\ Ambedkar\ Institute\ of\ Technology,$

 $Bengaluru-560056,\ India.$

 $E ext{-}mail\ address: shivaprasanna280gmail.com}$

and

Deepasree S Kumar,
Department of Mathematics,
Acharya Institute of Technology,
Bengaluru-560107, India.

 $E ext{-}mail\ address: drdeepasreeskumar@gmail.com}$

and

Somashekhara G, Department of Mathematics and Statistics, M.S. Ramaiah University of Applied Science, Bengaluru-560058, India.

 $E ext{-}mail\ address: somashekhar960gmail.com}$

and

Prabhavati Angadi,
Department of Mathematics,
Dr. Ambedkar Institute of Technology,
Bengaluru-560056, India.

 $E ext{-}mail\ address: dr.prabhavati@gmail.com}$