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A New Iterative Approach for Solving Fractal-Fractional Systems of Differential
Equations

Mahesh B. Nagpurkar, Krunal B. Kachhia® and J. F. Gémez-Aguilar

ABSTRACT: This paper presents a new iterative technique for solving fractal-fractional differential equa-
tions (FFDEs) with different kernel functions, such as power-law, exponential and Mittag-Leffler, which are
commonly used in mathematics and physics. Bhalekar and Gejji’s method solves ordinary and partial fractal-
fractional differential equations (ODEs and PDEs). Special algorithms are designed to make the methods
accurate and efficient. These algorithms are implemented on FFDE systems and verified by error analysis
and plots illustrating the fractal nature of the solutions. The findings show that the proposed algorithms
are stable, reliable, and efficient and can be used to solve a broad variety of FFDE problems in science and
engineering.

Key Words: Fractal - fractional derivatives, fractal - fractional integrals, fractal - fractional differ-
ential equation, new iterative method.
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1. Introduction

Fractional calculus is a field of mathematical analysis that extends the principles of differentiation and
integration to non-integer (fractional) orders [1,2,4,3,5]. Classical calculus is concerned with integer-order
derivatives and integrals, which are commonly interpreted as the rate of change of a function or the area
under a curve. However, fractional calculus extends these concepts to encompass derivatives and integrals
of arbitrary, typically non-integer orders, resulting in a more adaptable mathematical framework.

This extension enables fractional calculus to model memory, hereditary characteristics, and higher-
level dynamics of physical, biological and engineering systems that cannot be sufficiently represented by
integer-order calculus. It has been applied in many areas like physics, engineering, economics and biology,
where systems have anomalous diffusion, viscoelasticity and fractal-like structures.

Fractals are intricate geometric forms that have self-similarity at various scales and a fractional or
non-integer dimension instead of an integer one. Developed by Mandelbrot [9] during the 1970s, fractals
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are observed in nature, such as coastlines, clouds and mountain ranges. They are generated using iterative
processes and recursive algorithms and have complex recurring structures. Fractals are investigated with
the help of tools like complex analysis, geometric measure theory and fractional calculus and have practical
applications in fields such as physics, biology and computer graphics.

The fractal derivative concept, proposed in [10], extends classical calculus to deal with irregular,
complex fractal structures. In contrast to classical derivatives which are applied to smooth functions the
fractal derivative exploits fractal geometry concepts to grasp self-similarity across scales. The extension
gives a more realistic description of fractal-like systems.

Atangana’s seminal work [11] brought about the idea of fractal-fractional operators, which combine
the ideas of fractal geometry and fractional calculus. These operators which generalize integration to non-
integer orders, are best suited to describing the intricate irregular patterns seen in natural systems. Fractal
geometry describes self-similar, complex patterns and when used in conjunction with the versatility of
fractional calculus, it offers a sophisticated mathematical tool. This method is particularly useful in the
study of dynamic systems that have fractal-like properties, where integer-order methods may not be able
to capture the intricacies involved.

Fractal-fractional calculus is therefore a cutting-edge mathematics that reconciles fractal geometry
and fractional calculus. Whereas fractional calculus classically addresses differentiating and integrating
functions to non-integer orders in order to describe behaviors such as long-range dependencies and memory
effects, fractal-fractional calculus extends this further by including fractal structures that are self-similar
over various scales. This unification gives rise to novel operators such as the fractal-fractional derivative
and integral to address systems with fractal memory in which history dictates present dynamics in non-
linear and non-local manners. Implementations of this method cut across physics, biology and engineering,
wherein it is utilized in modeling intricate systems whose description through conventional integer-order
derivatives is challenging [21,22,23,24,20,25,8].

Daftardar-Gejji and Jafari [12] proposed a new iterative scheme for the solution of fractional differen-
tial equations. This scheme presents a novel and versatile method, improving the accuracy and efficiency
of solving the equations. It presents a great advantage in mathematical modeling and analysis in specific
areas. Their work represents a significant breakthrough, opening the door to further investigation and
insight into intricate systems [13,14,16,17,18,19,15]. The goal of the present work is to extend the iter-
ative approach introduced by Daftardar-Gejji and Jafari [12] to solve linear and nonlinear ordinary and
partial differential equations of fractal and fractional order.

2. Mathematical Preliminaries

We provide a few definitions that are relevant to our investigation.

Definition 2.1 Let f be a continuous function and 8 > 0. The fractal derivative of f with order £ is
define as [10]:

dit) _ . 1) = [(to) (2.1)

I

Definition 2.2 Let f be a continuous function on (a,b) where 0 < aw < 1 and 5 > 0. The fractal-
fractional derivative of f with fractional order @ and fractal dimension 3, with power law kernel in
the Caputo sense, is given as [11]:

FEPC posf p () i 1_ a)/ dcj;ig) (t —y)~dy. (2.2)

Definition 2.3 If f is continuous on (a,b), then the fractal - fractional integral of f with fractional
order « and fractal dimension S is defined as [11].

PP 10 p(p) = Ffa) / () (- y)* . (2.3)
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Definition 2.4 Let f be a continuous function on (a,b) where 0 < a« < 1 and 5 > 0. The fractal-
fractional derivative of f of fractional order « and fractal dimension 8 with exponential decay kernel
in the Caputo sense is given as [11].

rreepp? o) = 11 [ GWenp |- )| an (24)

where M(«) is a normalization function such that M (0) = M (1) = 1.

Definition 2.5 If f is a continuous function on (a, b), the fractal-fractional integral of f with fractional
order a and fractal dimension j is defined as [11].

SR = gy | vy +

B — o)t f(t)
M(a)

(2.5)

Definition 2.6 Let f be a continuous function on (a,b) where 0 < aw < 1 and 5 > 0. The fractal-
fractional derivative of f with fractional order o and fractal dimension 5, with Mittag-Leffler kernel
in the Caputo sense, is given as [11]:

rrepy g = 42 [ |-y an (2.

where AB(a) =1—a+ NOR

Definition 2.7 If f is a continuous function on (a,b), the fractal-fractional integral of f with order
a and fractal dimension j is defined as [11].

a t — a1y
gFMIf’ﬁf(t)—AB(afr(a)/O zﬁ*lu(y)(tfy)”‘*1dy+ﬂ(1 Agéa) ) (2.7)

3. New Iterative Method

Daftardar - Gejji and Jafari [6] have introduced an new iterative method designed specifically to
tackle nonlinear equations. This method is characterized by its simplicity, making it easy to comprehend
and implement.

Assume that non - linear equations of the form,

¢(z,t) = h(z,t) + L(¢(z,1)) + N (¢(Z, 1)) (3.1)

Let Z = (z1,22,3,...,2,) represent the variable vector. Where h(Z,t) denotes the source term, and
L and N indicate the linear and nonlinear operators, respectively. The solution to Equation (3.1), as
obtained through the new iterative method, can be expressed in an expanded form as follows:

Qb(i'ﬂt) = Z ¢m(j7t) (3‘2)
m=0

Due to the linearity of L, ¢(Z,t) is expressed as,

L (Z ¢m<f,t)> = > L(¢m(®,1)) (3.3)
m=0 m=0

The non - linear operator N presented by Daftardar - Gejji and Jafari [6] is expressed as,

N (Z ¢m<x,t>> = N (ol )+ S AN (S os@n | - [ o (3.4)
m=0 j=0 =0

m=1
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where GQ = N(¢0) and Gj = {N (i:0¢](f,t)> — N (lz:::gbj(l_?,t)) } ,j 2 1

equation (3.2) and (3.4) are substitute in equation (3.1) to obtain

> bm(@t) =h(@,t)+ > L(pm(T,1) + N (¢o(z. )+ > SN[ D ¢s(zt) | - N i@(z,t)
m=0 7=0

m=0 m=1 7=0
(3.5)
Further define the recurrence relation as follows,
¢0(I7t) = h7
¢1(x,t) = L(¢o) + N(¢bo),
¢2(z,t) = L(¢1) + N(do + ¢1) — N(¢o),
Om(2,t) = L(gm-1) + N(do + ¢1+ -+ dm-1) = N(do + ¢1 + - + dm—2),
m=1,2,3,..., (3.6)

The n - term solution of Equations (3.1) and (3.2) is
H(T,t) =do+ P14+ b2+ -+ Pn_1 (3.7)
3.1. Convergence of New Iterative Method

We analyze the convergence of the new iterative approach [18] for solving a general functional equation
(3.1). Let e = ¢* — ¢, where ¢* is the exact answer, ¢ is the approximate solution, and e is the error
associated with solving (3.1). Clearly, e fulfills 3.1. We begin with the functional equation

e(z) = f(x) + N(e(z)). (3.8)

This leads to the following recurrence relation, as described in (3.6):

n n—1
eo=f, e1=N(e), eng1=N (Z@) - N <Zei> , n=1,2... (3.9)
i=0 i=0

Assume the operator N satisfies the Lipschitz condition
IN(z) = NIl < kllz —yll, with 0<k<1.

Under this assumption, we can establish the following estimates for the sequence {e, }. For the first term,

lex]] = [[N(eo) [l < Klleo]- (3.10)
For the second term,
lez]l = [N (eo + 1) = N(eo)|| < kllex|| < k?[leo]l- (3.11)
Similarly, for the third term,
llesll = IN(eo + €1+ e2) — N(eo + e1)|| < kllea|| < &|leo]l. (3.12)

Proceeding in this manner,

() ()

foralln=20,1,2,...

This recursive inequality implies that ||e, 11| approaches zero as n tends to infinity. Consequently, the
iterative process converges, providing a solution to the functional equation (3.1). For a detailed analysis
of this method and its convergence, refer to [7].

we find that
< kllenll < E" e, (3.13)
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4. A New Iterative Approach for Solving Systems of Nonlinear Functional Equations

Consider the following system of nonlinear functional equations [6]:

¢i:fi+Ni(¢la¢2a"'a¢n)7 7;:1,2,...,71- (41)

Here, each f; is a known function, and N; represents a nonlinear operator.
Let us denote by ¢ = (¢1, ..., ¢,) the solution of the system (4.1). Assume that each component ¢;
can be expressed as an infinite series of the form

§=0
The nonlinear operator N; can be decomposed as follows:

Ni(@) = Ni | D brgos ) b
=0 =0

= Ni(¢1,0,---%n0)

o0 ! k k1 k1
FY AN D b1 > ng | N[ D b1 > b || (4.3)
k=1 =0 =0 =0 =0

Making use of (4.2) and (4.3), the system (4.1) becomes equivalent to

> i =Ffi+Ni(10,- -, bn0)
=0

oo k k k—1 k—1
FY AN D b > b | =N [ Db > bni || (4.4)
k=1 j=0 j=0 §=0

j=0
fori=1,2,...,n. We now introduce a recurrence relation for the components ¢; ;, given by
d)i,O = fia
¢i,1 - Ni(d)l,Oa AR d)n,O)a
m m m—1 m—1
qj)i’erl :Ni Z¢1’j""’z¢n’j _Ni Z%J’“"Zqﬁ"’j , m:l,?,... (45)
§=0 §=0 §=0 §=0

Thus, the solution ¢; can be represented as the infinite series
[ee]
¢i=> ijy i=1,2,...,n (4.6)
§j=0

For practical computations, the k-th order approximation of ¢; is given by

k—1
o =3¢ (4.7)
§=0

This framework provides an iterative method for solving the system of nonlinear functional equations.
To illustrate the procedure, we consider the application of this method to the system defined in (4.1).
Initial Step:

¢i70:fi, i:1,2,...,n.
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First Iteration:

é1,1 = Ni(b1,0, 92,05+ - Pny0)s
¢2,1 = No(b1,0 + é1,1, 2,05 - - - Pno),
031 = N3(P1,0 + 01,1, P2,0 + $2,1,83,0, - - - s Pn0),

On,1 = Np(d10+ d1,1,020 + D215+ s Pn—1,0 + Pr—1,1, Pn,0)-

k-th Tteration (k = 2,3,...):

k=1 k-1 k—2 k—2
o1 =Ny <Z ¢1,i7--~7z¢n,i> - N <Z ¢17i7--~7z¢n,i> ,
i=0 i=0 i=0 i=0

k—1

k k—1 k—1 k—2 k—2
o= N (z ¢Li,z¢2,i,...,z¢n,i> N, (z ¢1,i,z¢2,i,...,z¢n,i) ,
1=0 =0 =0 =0 1=0 =0

k k k—1 k—1
b=, (z b .,zasj_l,i,z@,i,...,zqsn,i)
1=0 1=0 1=0 1=0
1

- k1 k=2 k—2
- N; ( ¢1,i7~-~7Z¢j—1,iaz¢j,ia-~-az¢n,i> ;
=0 =0 =0 =0

k k k—1 k—1 k—1 k-2
TEE A DIUTSED STIRYS SI) EE DOLTR) ST 32
i=0 i=0 i=0 i=0 i=0 i=0
As a result, the operator N;(¢) can be expressed as
Ni(¢) = N; Z¢1,j7 s D ng | = Z¢i,j' (4.8)
j=0 j=0 Jj=1

Therefore, the complete solution ¢; is given by
j=0

5. Implementation of New Iterative Method

Example 5.1 Consider the system of fractal-fractional differential equations with a power-law kernel:

FEPDPa(t) = y(t) + 1,

FEP DR 1) = —a(t) + 2 oy

subject to the initial conditions 2:(0) = 1 and y(0) = 2.
Solution: Applying the fractal-fractional integral with power-law kernel (2.3) to system (5.1), and using
the fundamental theorem of fractal-fractional calculus, we obtain

w(t) = (0) + "I (y(t) + 1),

y(t) = y(0) + TPIP (—a(t) + 7). (5.2)
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Using the proposed algorithm, the initial approximations are:

ri0=1, yi0=2
By applying the new iterative method, we construct the following iterative scheme:

10=1, y10=2,

Br(ﬁ) ta+ﬂ—1 BF(/B+1) toz—i—B

x1,1:2-r(a+5) +I‘(a+6+1) ,

_ _BEB) asp1 . BLB+2) aipn

1= "4 5 N ET) M
o — 52 (B) TE2B+a-—-1) f20+26-2 | BT (6 +2) . I'a+26+1) (20428
Y27 Tla+p8) TRa+28-1) Ta+B+2) I'2a+26+1) ’

FREDEE 0 1) (20438 -9) 55 s
INa+ BT (2a+28—-1) T'(Ba+38—2)
_ AT(B+2)T(a+28+1)  T(2a+3p) (30361
Ta+B+2)2a+28+1) L(3a+38) '

Therefore, the three-term approximate solutions for z(¢) and y(t) are given by:

BL(B) pa+B-1 | BL(B+1) jotB
Ta+p) Ma+p+1)
52F(/3) 28 +a-1) 204262

I(a+ B) F(2a +26-1)

BL(B +2) _ Ia+28+1) 20428
MNa+B8+2) T(2a+28+1) ’

Y12 =

z(t)y=14+2-

and

_ 9 61—‘(5) a+B—1 6F(6 + 2) a+B+1
©)=2 T(a+p) "Ta+8+2)
BTBT(26+a—-1) T(a+38-2) (3a+36-3
Tla+ BT (2a+28—1) T'(3a+38—2)
Br(B+2)(+28+1) T(2a+38) 3a+38-1
Ta+B+2)T(2a+238+1) T'(3a+38) '

(5.4)

Example 5.2 Consider the following system of two linear fractal-fractional differential equations with
an exponential kernel:

FEE DO o(t) = (t) + y(t),
FFEDta,ﬁy(t) = —z(t) + y(t).

These equations are subject to the initial conditions:

(5.5)

Solution:
By applying the fundamental theorem of fractal-fractional calculus and using the proposed iterative
algorithm, we begin with the initial approximations:

z10=0, y0=1.
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900 x(t) for Various « and 3 Values 200 y(t) for Various « and [ Values
800 - ni1..‘?:1 0 -
700 [ -200 + —\
600 | a=09,A4=095
-400 ¢
__500F . a=1,8=1
= £ 600t a=09,3=06
 a00| = @=09,4=1
| a=08,3=09
300 - -800 a=06 3=095
oL -1000
100 -1200
0 -1400
0 2 4 6 8 10 0 2 4 6 8 10
Time t Time t
Figure 1: Graphical representation of the three- Figure 2: Graphical representation of the three-
term iterative solutions z(t) for various values of  term iterative solutions y(t) for various values of «
«a and B. and .

Now, applying the fractal-fractional integral operator with an exponential kernel to the system (5.5), we
get:
w(t) = x(0) + TFEIT (2 (t) + (1))

y(t) = y(0) + "FELP (—a(t) + y(1)) -

Using the iterative process, we obtain the two-term approximate solutions for z(t) and y(¢) as follows:

(5.6)

x(t) = Mfz)ﬁt%r 55\14(_05‘)t31. (5.7)
-~ Pa Ba  t*F B(l—a) 95 4
y(t)‘l‘M<a>ﬂ{M<a>'2ﬁ+ M@ | }
BAl—a) [ fa £ B(L—a) og s
T M {Mm) 26-1" M) ' }
Ba 5 B(l—a) B—1
+M(a)6t + M (@) P, (5.8)

Example 5.3 consider the following system of two linear fractal - fractional differential equations with
Mittag -Leffler kernel
FEM DY (t) = w(t),

FFMDgﬁy(t) =x(t) —y(t)

Subject to initial condition z(0) = 1 and y(0) = 2
Solution: By applying the fundamental theorem of fractal-fractional calculus and utilizing the proposed
algorithm, we obtain the results.

(5.9)

2(t) = 2(0) + "M (a (1))

- (5.10)
y(t) = y(0) + "IV (x(t) — y(t)
we get the two term solution x(t) and y(t) respectively is,
r 1—-
a(t) =14+ PO _jarsr  PUZ) (5.11)

AB(a)T'(a+ B) AB(a)
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x(t) for Various « and 3 Values

10
a=108=1
a=0853=09
8 a=023=08
a=07,3=09
a=09,3=095
sl
=
>
ab
ol
0
0 2 4 6 8 10

Figure 3: Graphical representation of the three-
term iterative solutions z(t) for various values of
«a and B.

y(t) for Various « and 3 Values

a=1,4=1

y(f)l

20 a=04,3=06
a=06,3=08

15 a=08,3=09
a=09,3=095

-30

-35

-40

0 2 4 6 8 10

Figure 4: Graphical representation of the three-
term iterative solutions y(¢) for various values of «
and .

and
y(t) =2+ afr(B) afl(a+28 1) 20+26-2 | p—a) pat26-2
AB(a)T(a+ ) | AB(a)T(2a + 28 — 1) AB(a)
n Bl —«a) afl(28 - 1) at+26-2 | Bl —a) 262
AB(a) |AB(a)T(a+28-1) AB(a)
r 1-—
AB(a)(a + B) AB(a)
12 Plot of x(t) for Various « and /3 Values 45 Plot of y(t) for Various « and /3 Values
10l a=1,4=1 40 :i;j;.i;log
a=09,3=08 a=093=1
a=08,3=08 e a=093=08
LI B0 epn e
—_ ~25
% ° :;20
4r 15
10
2L
5
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Time t Time t

Figure 5: Graphical representation of the two-term
iterative solutions x(t) for various values of a and

B.

Figure 6: Graphical representation of the two-term
iterative solutions y(t) for various values of a and

3.

Example 5.4 Consider the nonlinear fractional shallow water (FSW) coupled system with power law
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kernel
FEP DBy (x,t) = —vug — uvg,

(5.13)
FEP DBy (z,t) = —vvg — 2ug

Subject to initial condition u(z,0) = §(2? — 2z + 1) and v(x,0) = 2(1 — z).
Solution: Applying fractal - fractional power law integral (2.3) and using proposed algorithm we get
the value of uy g = §(2? — 2z + 1), v1,0 = 2(1 — x). We get after applying fundamental theory of fractal
- fractional calculus,

w(z,t) = u(z,0) + FFPIP (—vuy — uvy)

and
v(z,t) = v(z,0) + TFPIP (—vv, — 2u,).

Applying proposed algorithm, We get the two term solution u(x,t) and v (x,t) respectively

u(z,t) = %(xz —2r+1)+ %(x - 1)z%t“+51. (5.14)
and
20 o 2 BEB) aws 2 12 PUB) ats-
v(x,t)—§(1 x)+9(1 x)F(OH_B)t +h-1 g(m 1) I‘(a—|—,6)t +h-1
2 o BT(B(a+238-1) ,, 28—2
LR R o Ty (5.15)
3D Mesh Plot of u(x,t) 3D Mesh Plot of v(x,t)
e a=094
4=098

Figure 7: Graphical representation of the two-term Figure 8: Graphical representation of the two-term
iterative solutions u(z, t) for different values of &« =  iterative solutions v(z, t) for different values of a =
0.9 and g = 0.92. 0.94 and 5 = 0.98.

Example 5.5 Consider the system of nonlinear partial differential equations with exponential kernel

FEE DBy (a,t) 4+ vug 4+ u = 1,

(5.16)
FEEDeB (4 1) —uvg —v =1

Subject to initial condition u(z,0) = e® and v(z,0) = e~ *.

Solution: Using new iterative algorithm we get two term solution u(x,t) and v(z,t) respectively is,

u(z,t) = e® —e” M (o) P+ ﬂ5\14(_a)a) Pt (5.17)
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and
v(z,t)=e "+ (2+e77) {Mo(za) tP 4 6(7711(;)6!) tﬂ_l]
.« Ba 23 B(1 —a) 28—1 B(1 —a) Ba 28-1 B(1 —a) 28—2
M{(a) [Mwmt M@ ] T M) [M(a)(w " M@ } |
(5.18)
3D Mesh Plot of u(x,t) 3D Mesh Plot of v(x,t)

u(x,t)

Figure 9: Graphical representation of the two-term Figure 10: Graphical representation of the two-
iterative solutions u(z, t) for different values of « =  term iterative solutions v(z,t) for different values
0.94 and 8 = 0.92. of « =0.99 and S = 0.89.

Example 5.6 Consider the system of linear first-order hyperbolic partial differential equations with
Mittag - Leffler kernel
FFMDf’ﬂu(x,t) = Uy,

(5.19)

FEM DBy (1) = v,
Subject to initial condition u(z,0) = sin(z) and v(x,0) = cos(x)
Solution: Using a new iterative algorithm, a three-term approximate solution for u(x,t) and v(x,t) is
obtained, respectively.

i) = sin(e) + coste) |0 _gorony o]
() AB(Z€§E£)+ 8) {Ag(/ir)(;(; 152;31—) pl %twm}
e L s S

aBL(B) atp-1 , Bl —0a) 54
- COS(JJ) [mt +8 + mtﬂ :| . (520)
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and

AB(a)T(a+ B) AB(a)
afT'(B) [ apl(a+28—-1) f20+26-2 | Bl —a) ta+26—2:|
AB(a)T(a+ B) | AB(a)T(2a + 28 — 1) AB(a)
Bl —a) apl(26 —1) 25— Bl —a) 55
AB(a) [AB(a)F(a ot AR 2} ‘ (5:21)

v(x,t) = cos(x) — sin(x) [ BT (5) goth—L 4 pU — a) tﬂ_l]

— cos(x)

— cos(x)

3D Mesh Plot of u(x,t) 3D Mesh Plot of v(x,t)

T a =097 L a=098
95 | :

u(x,t)

Figure 11: Graphical representation of the three- Figure 12: Graphical representation of the three-
term iterative solutions u(x,t) for different values  term iterative solutions v(z,t) for different values
of @ =0.97 and 3 = 0.95. of @ =0.98 and 8 = 0.92.

6. Error Analysis

The error analysis shows that the proposed iterative method achieves high accuracy, with absolute
errors between successive approximations decreasing steadily. Here, we provide two numerical examples
to demonstrate the error behavior and convergence of the method. The results confirm its reliability and
effectiveness for solving fractal-fractional differential equations.

Table 1: Absolute error for solution z(t) of (5.1) between consecutive approximations for o = 0.9 and
B =0.85

Value of ¢ Z1,0 Z1,1 x1,2 |:171’1 — $1,0| |.T1’2 - $1,1|
0.02 1.0000  0.1100 -0.0002 0.8900 0.1102
0.04 1.0000 0.1858 -0.0005 0.8142 0.1864
0.06 1.0000 0.2531 -0.0010 0.7469 0.2541
0.08 1.0000 0.3156 -0.0015 0.6844 0.3171

0.10 1.0000 0.3748 -0.0021 0.6252 0.3769
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Table 2: Absolute error for solution y(¢) of (5.1) between consecutive approximations for o« = 0.9 and
B =0.7

Value of t 10 Y1,1 Y1,2 ly11 —y10l  |y12 —yial
0.02 2.0000 -0.0972 0.0002 2.0972 0.0974
0.04 2.0000 -0.1473 0.0007 2.1473 0.1481
0.06 2.0000 -0.1878 0.0015 2.1878 0.1893
0.08 2.0000 -0.2230 0.0025 2.2230 0.2255
0.10 2.0000 -0.2547 0.0037 2.2547 0.2584

Table 3: Absolute error for solution u(x,t) of (5.19) between consecutive approximations for a = 0.8 and
B=09

Value of x  Value of ¢t wuq U1, U192 lui1 —urol  Jure — uiql
0.02 0.02 0.0200 0.3617 0.3504 0.3417 0.0113
0.04 0.04 0.0400 0.3799 0.3569 0.3399 0.0230
0.06 0.06 0.0600 0.4013 0.3653 0.3413 0.0360
0.08 0.08 0.0799 0.4227 0.3724 0.3428 0.0504
0.10 0.10 0.0998 0.4437 0.3776 0.3438 0.0660

Table 4: Absolute error for solution v(z,t) of (5.19) between consecutive approximations for o = 0.9 and
8=08

Value of z Value of ¢ V1,0 V1,1 V1,2 |’U1,1 — ’U1,0| |’Ul,2 — ’U1,1|
0.02 0.02 0.9998 -0.0050 -0.8507 1.0048 0.8457
0.04 0.04 0.9992 -0.0106 -0.8513 1.0098 0.8408
0.06 0.06 0.9982 -0.0171 -0.8916 1.0153 0.8745
0.08 0.08 0.9968 -0.0246 -0.9411 1.0214 0.9165
0.10 0.10 0.9950 -0.0329 -0.9928 1.0279 0.9599

The error analysis demonstrates the effectiveness of the proposed method through the numerical
examples provided. As observed in the tables, the absolute errors between consecutive terms decrease
progressively, indicating that the upcoming terms contribute diminishingly to the solution. This behavior
confirms that the method is convergent and reliable for solving fractal-fractional differential equations.

7. Advantages of the Proposed Method

The research on fractal-fractional differential equations (FFDEs) has attracted considerable attention
because FFDEs can represent complicated systems that have memory and anomalous diffusion. No
classical analytical method has been established for solving general FFDEs, so numerical and iterative
methods become inevitable. The Extended New Iterative Method (ENIM) introduced herein provides a
direct computational method of solving FFDEs without specialized software. Differing from conventional
numerical solutions that involve exhaustive programming and hardware, the current method can easily
be applied by hand, as it is easily accessible and highly efficient. Also, the method convergence is
illustrated in a straightforward manner using tables of error analysis, where successive approximations
have diminishing absolute errors. This proves the accuracy and reliability of the method for both ordinary
and partial FFDEs. The suggested method is of significant benefit to researchers and practitioners looking
for a simple yet effective way of solving complicated differential systems.

8. Concluding Remark

The suggested iterative schemes successfully solve fractal-fractional differential equations (FFDEs)
with various kernel functions, including power-law, exponential, and Mittag-Leffler. The schemes are ap-
plicable to both ordinary and partial differential equations, demonstrating their versatility. The schemes
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correctly capture the fractal nature of the solutions, which is critical for simulating systems with memory
effects or anomalous diffusion. Error analysis validates their high accuracy, and the graphs of the numer-
ical and exact solutions give consistent and reliable results. The computational speed of these schemes,
enhanced employing the Bhalekar and Gejji methodology, renders them feasible for computing complex
and big FFDE systems. This predictability renders them applicable to most scientific and engineering
applications, such as materials science, biology, and fluid mechanics. There are still some challenges, such
as the influence of kernel selection on convergence and computation. Adaptative or hybrid algorithms can
be developed in the future to optimize performance and extend these approaches to higher-dimensional
and more complicated FFDE systems.

Finally, the suggested methods present a stable, precise, and efficient method of solving FFDEs,
rendering them useful in mathematical modeling and practical applications.
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