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A Study on Face Index of Chemical Graph Structures and their Derivatives

Ali Raza and Asfand Fahad

abstract: A topological index is a numeric parameter that may describe the biological, physical and
chemical properties which are contingent on the structural behaviour of different chemical compounds. In the
vast class of topological indices: one of the index is, the face index which has been recently introduced and it
assists in predicting the bond energies, the intermolecular forces, the boiling points and densities of different
chemical compounds. This paper derives the formulae for the face index of the tadpole, the ladder and the
wheel graphs, their subdivision graphs and the line graphs of their subdivision graphs. And briefly analysis
their face indices trends.
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1. Introduction and Preliminaries

The exploration and study of the newly formed nano-materials, crystalline substances and even phar-
maceutical compounds have received wide attention in the previous years since they have potential appli-
cation in a number of scientific and industrial sectors. Qualifying such materials by some standard test
procedures can be time-consuming and costly. To overcome these difficulties, researchers have progres-
sively turned to computer-based methods of dealing with them, including Quantitative Structure-Activity
Relationship (QSAR) models, and Quantitative Structure -Property Relationship (QSPR) models. The
approaches enable the scientists to calculate the physical, chemical and biological properties of molecules,
merely on the basis of structural aspects, without the use of large scale laboratory testing [1,2,3]. A cen-
tral component in the development of QSPR and QSAR models is the use of topological indices (TIs),
which are numerical descriptors derived from the molecular graph representations of chemical structures.
These indices are invariant under graph isomorphism and encapsulate critical information about the
connectivity and branching of molecular frameworks. Topological indices have played a pivotal role in
theoretical chemistry by enabling the correlation of molecular structure with various properties such as
boiling points, stability, toxicity, and reactivity. For instance, indices like the Wiener index, Zagreb
indices, Randić connectivity index, and the Estrada index have been widely used for the prediction of
thermodynamic properties, biological activity, and pharmacokinetics of chemical compounds [4,5,6].

In addition, the TIs play an important role in rational designing of new materials and medicinals.
They are especially useful in isomer separation, structure-based drug design and the optimization of
molecular libraries to serve high-throughput screening. As well, topological descriptors have also found
significant application in chemical documentation systems and in clustering and similarity analysis of
molecular data sets. Mathematical basis of these indices and its applicability in different fields such as
nanotechnology, environmental chemistry, medicinal chemistry etc has been discussed largely in literature
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[7,8,9]. Several recent studies have further expanded the scope of TIs by incorporating concepts from
algebraic graph theory, spectral graph analysis, and fuzzy logic, thereby enhancing their discriminatory
power and predictive capabilities in modeling complex molecular behaviors. These interdisciplinary ad-
vances have not only enriched the theoretical understanding of molecular graphs but have also led to
more accurate and generalizable QSPR/QSAR models that can accommodate larger and more diverse
chemical datasets [1,2,26].

Graph theory has been found to be a very useful mathematical tool to describe and analyze the prop-
erties of chemical compounds that involves aliasing the molecular structures of these chemical materials
as graphs. Atoms are in this representation represented by the vertices of the graph, and the chemical
bonds between the atoms are modeled through the edges. Such an abstraction makes it possible to ana-
lyze more in detail the geometry of molecules, bonding schemes, and structural periodicities using a range
of graph-theoretic methods. A molecular graph may formally be demonstrated as: G = G(V,E), where
V is the collection of nodes ( atoms ) and E is the collection of edges (bonds). These structural models
have allowed development of numerical descriptors referred to as topological indices (TIs) to correlate
the structure of molecules with their physical, chemical, or biological properties [3,1,8]. Over the last few
decades, numerous topological indices have been developed and widely applied in theoretical chemistry
and QSPR/QSAR studies. These indices include the Wiener index, Randić index, Zagreb indices, molec-
ular connectivity index, edge connectivity index, vertex connectivity index, and more recently, the face
index. Each index captures specific aspects of the molecular structure such as branching, path lengths, or
connectivity. The Wiener index, for instance, is based on the sum of distances between all pairs of vertices
and has found extensive applications in predicting boiling points and other thermodynamic properties
[4,5,9]. The Randić index is another important topological index used to measure molecular branching
and has been associated with various pharmacokinetic and bioactivity parameters. Collectively, these
indices provide valuable insights into molecular behavior without requiring experimental data [6,2,7].

The Face Index (FI) stands out among them, as recently proposed by Jamil et al., and proved to
be a highly effective manner of characterising some classes of compounds with polymeric and planar
structures [24,12,13,27]. In particular, FI shows a good correlation with physio-chemical characteristics
(including boiling points, densities, octane numbers, melting points, bond energy, and the intermolecular
forces). That usefulness of the index is particularly evident when applied to chemical compounds that
show polymerization structures, e.g., silicon carbides, benzenoid hydrocarbons, and carbon nanotubes,
in which standard indices are unlikely to be effective in describing the complexity of ring and surface
structures [24,25,15,28]. For a planar chemical graph G, the face index is defined as:

FI =
∑

𭟋∈F(G)

d(𭟋) =
∑

µ∽𭟋∈F(G)

d(µ)

where F(G) denotes the set of faces of the graph G, d(µ) is the degree of vertex µ, and µ ∽ 𭟋 denotes that
vertex µ is incident to the face 𭟋. This formulation allows FI to encode both face-vertex interactions and
structural complexity of planar chemical graphs, offering a novel angle to model reactivity and interaction
potential in extended molecular frameworks [10,9,8].

Here we shall discuss again some of the most basic types of graph transformation and graph that
we use very commonly in chemical graph theory and also in the description of networks, and these
are the line graph, subdivision graph, tadpole graph and the ladder graph. They are the fundamental
tools in mathematical chemistry, nanotechnology and information science of analyzing the molecular and
extended structures involving these graph constructions. Other special cases of graphs are covered in
more detail e.g. the wheel graph Wn and the rim that is its boundary component that can be found in
[16,17]. Given a simple graph G, the following derived graphs are defined as:

(i) The line graph L(G) is constructed by representing each edge of G as a vertex in L(G). Two
vertices in L(G) are adjacent if and only if their corresponding edges in G share a common vertex.
Line graphs find applications in modeling communication links and molecular bonding interactions
[18,19].

(ii) The subdivision graph S(G) is obtained by replacing each edge of G with a path of length 2,
effectively inserting a new vertex into every edge. This operation results in a bipartite graph
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structure and is particularly useful in representing molecular graphs with intermediate bonding
states [3,8].

(iii) A tadpole graph Tn,k consists of a cycle Cn connected to a path of length k. These graphs are
often used to represent substituted cyclic compounds in organic chemistry, such as alkyl-benzenes
or other mono-substituted aromatics [20,21].

(iv) The ladder graph is the Cartesian product of two paths Pn□P2. Visually resembling a ladder
with n rungs, it is frequently encountered in the modeling of nanoribbon structures and also finds
applications in electrical grid design, circuit analysis, and wireless communication networks [2,22,
23].

The tadpole graph structure is useful in chemical graph theory: many substituted cyclic molecules
e.g. n-alkylbenzenes: with a combination of the cyclic and the linear chain motifs can be topologically
modelled using the tadpole graph. Conversely, the ladder graph and its rigid regularity, symmetry are
perfect to describe the parallel chain or ladder-shaped molecules present in conducting materials and
in sensor arrays. In addition, properties related to graphs like bipartiteness, even degree sequence and
planar embedding, make it applicable when modeling signal paths in electronics and energy distribution
networks. The main purpose of the present paper is to examine the face index corresponding to the
following graph structures- wheel, ladder and tadpole graphs and their line graph and subdivision graph
variants. We seek to obtain analytic expressions of face index in both cases and do a comparative analysis
of values of face index in lower-order cases. This kind of exploration is useful in understanding how face-
vertex interactions develop, in how various graph transformations, and in developing a more profound
understanding of structural complexity in applied graph models [10,24,25].

2. Results

The main results of the paper have been divided in the following three subsections. We partitioned
the face set of a graph G depending upon the degree of each face to prove results.

2.1. Face index for tadpole, wheel and the ladder graphs

In this sub-section, we derive the formulae for the face index of the tadpole, wheel and the ladder
graphs. We begin our results with the following theorem.

Figure 1: Visual representation of transformations applied to the wheel graph Wn:
(a) The subdivision graph S(Wn), illustrating vertex insertion along edges;
(b) The corresponding line graph L(S(Wn)), emphasizing edge adjacency after subdivision.

Theorem 2.1 For any tadpole graph Tn,k, where n ≥ 3 and k ≥ 1, the face incidence index is given by:

FI(Tn,k) = 4n+ 2k + 1.
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Proof: We begin by understanding the structure of the tadpole graph Tn,k. This graph is formed by
attaching a path of length k to a single vertex of a cycle Cn. In terms of planar embedding, such a graph
consists of exactly two faces:

• One internal face, which is bounded by edges forming the cycle and some from the path,

• One external face, which encompasses all the outer region including the remaining part of the
path.

Let us denote a face of degree j by 𭟋j , where the degree is defined as the sum of degrees of all vertices
incident with that face: ∑

µ∽𭟋
d(µ) = j,

and let |𭟋j | represent the number of faces having degree j.
According to the planar representation of Tn,k, the degrees of the faces depend on the number of

vertices in the cycle and the length of the attached path. Table 1 gives the degrees for the internal and
external faces based on the size of the cycle.

Number of vertices in cycle 3 4 5 - - - n

Degree of internal face 7 9 11 - - - 2n+ 1

Degree of external face 2k + 6 2k + 8 2k + 10 - - - 2(k + n)

Table 1: The degrees of internal and external faces of Tn,k.

From Table 1, we observe that:

• The internal face has degree 2n + 1. This comes from the cycle Cn, which contributes n edges,
and the connection to the path contributes n+ 1 additional connections (due to how the cycle and
path are connected in a plane).

• The external face has degree 2(k+ n), accounting for all the outer edges and the path connected
back to the cycle.

By the definition of the face incidence index FI, which is the sum of the degrees of all the faces in
the planar embedding of the graph, we have:

FI(Tn,k) =
∑

µ∽𭟋∈F(G)

d(µ).

Breaking this into contributions from the internal and external faces:

FI(Tn,k) =
∑
µ∽𭟋j

d(µ) +
∑

µ∽𭟋∞

d(µ),

where 𭟋j denotes the internal face and 𭟋∞ denotes the external face.
Since there is only one internal face and one external face:

FI(Tn,k) = (degree of 𭟋j) · |𭟋j |+ (degree of 𭟋∞) · |𭟋∞|.

Substituting the values:

FI(Tn,k) = (2n+ 1) · 1 + 2(k + n) · 1 = (2n+ 1) + 2k + 2n.

Combining like terms:
FI(Tn,k) = 4n+ 2k + 1.
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Hence, the face incidence index of the tadpole graph Tn,k is:

FI(Tn,k) = 4n+ 2k + 1.

This completes the proof.
Now, we derive the formula of the face index for the wheel graph Wn.

Theorem 2.2 Let Wn be the wheel graph formed by connecting a central vertex to all vertices of a cycle
Cn. Then, for n ≥ 3, the face incidence index of Wn is given by:

FI(Wn) = n2 + 9n.

Proof: The wheel graph Wn consists of:

• A central vertex connected to all n vertices of the cycle Cn,

• n triangular regions formed between consecutive vertices of the cycle and the central vertex,

• An outer region bounded by the cycle, forming the external face.

In the planar embedding of Wn, there are two types of faces:

1. n internal faces (denoted by 𭟋j), each being a triangle with an increasing degree as n increases,

2. One external face (denoted by 𭟋∞), surrounding the outer boundary of the wheel.

The degrees of the internal and external faces are shown in Table 2 below.

Number of vertices n 3 4 5 6 - - - n

Degree of internal face j 9 10 11 12 - - - n+ 6

Number of internal faces |j| 3 4 5 6 - - - n

Degree of external face 9 12 15 18 - - - 3n

Table 2: The degrees of the internal and external faces of Wn.

From Table 2, we generalize:

• Each of the n internal faces has degree n+ 6,

• The single external face has degree 3n.

By definition, the face incidence index FI(Wn) is the sum of degrees of all the faces in the planar
embedding of the graph:

FI(Wn) =
∑

µ∽𭟋∈F(G)

d(µ).

This can be split into the sum of degrees of internal and external faces:

FI(Wn) =
∑
µ∽𭟋j

d(µ) +
∑

µ∽𭟋∞

d(µ).

Substituting the known values:

FI(Wn) = (degree of 𭟋j) · |𭟋j |+ (degree of 𭟋∞) · |𭟋∞|.

Using the expressions from Table 2:

FI(Wn) = (n+ 6) · n+ 3n = n2 + 6n+ 3n = n2 + 9n.
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Thus, for n ≥ 3, the face incidence index of the wheel graph Wn is:

FI(Wn) = n2 + 9n,

which completes the proof.

Figure 2: (a) Subdivision graph of the tadpole graph Tn,k, denoted by S(Tn,k); (b) Line graph of the
subdivision graph, denoted by Ls(Tn,k).

In the next theorem, the formula of the F I has been presented for the ladder graph.

Theorem 2.3 For a ladder graph Ln, the face index of Ln is given by:

FI(Ln) = 18n− 20, for n > 2.

Proof: The ladder graph Ln consists of two categories of faces, the internal faces 𭟋10, 𭟋12 and an
external face 𭟋∞. Where |𭟋10| is always 2 and |𭟋12| = (n−3), while sum of degree of vertices of external
face is 6n− 4. Now, by the definition of the face index,

F I(Ln) =
∑

µ∽𭟋∈F(G)

d(µ)

=
∑

µ∽𭟋10

d(µ) +
∑

µ∽𭟋12

d(µ) +
∑

µ∽𭟋∞

d(µ)

= 10.|𭟋10|+ 12.|𭟋12|+ 6n− 4

= 10(2) + 12(n− 3) + 6n− 4

= 18n− 20,

which completes the proof.

2.2. Face index for subdivision graphs of the tadpole, wheel and the ladder graphs

By keeping in view the importance of the subdivision graphs, we devote this subsection to derive the
formulae of the face index for the subdivision graphs S(G) of the tadpole, ladder and wheel graphs.

Figure 3: (a) Subdivision graph of the ladder graph Ln, denoted by S(Ln); (b) Line graph of the
subdivision graph, denoted by L(S(Ln)).
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Theorem 2.4 Consider the subdivision graph S(Tn,k) of the tadpole graph, where n denotes the number
of vertices in the cycle and k is the number of vertices in the path attached to the cycle. Then, for n ≥ 3
and k ≥ 1, the face incidence index of S(Tn,k) is given by:

FI(S(Tn,k)) = 8n+ 4k + 1.

Proof: The subdivision graph S(Tn,k) is constructed by inserting a new vertex into each edge of the
tadpole graph Tn,k, effectively transforming each edge into a path of length two. This operation increases
the number of vertices and edges in the graph, and also alters the structure of the faces in its planar
embedding.

The planar embedding of S(Tn,k) contains exactly two categories of faces. The first is the internal
face, denoted by 𭟋j , where j represents the degree of the face. The second is the external face, denoted
by 𭟋∞, which surrounds the graph from the outside. For each face 𭟋, we define its degree as the sum of
degrees of the vertices incident to it, that is, ∑

µ∽𭟋
d(µ) = j.

Let |𭟋j | denote the number of internal faces of degree j. The values of degrees for both internal and
external faces, corresponding to different values of n, are summarized in Table 3.

Number of vertices in cycle 3 4 5 - - - n

Degree of internal face 13 17 21 - - - 4n+ 1

Degree of external face 4(k + 3) 4(k + 4) 4(k + 5) - - - 4(k + n)

Table 3: The degrees of the internal and external faces of S(Tn,k).

From the pattern observed in the table, the degree of the internal face is given by 4n+ 1, and there
is exactly one such face. The degree of the external face is 4(k+ n), and it also appears only once in the
embedding.

According to the definition of the face incidence index FI, which is the total sum of degrees of all
faces in the planar embedding of the graph, we have:

FI(S(Tn,k)) =
∑

µ∽𭟋∈F(G)

d(µ).

This sum can be separated into contributions from the internal and external faces:

FI(S(Tn,k)) =
∑
µ∽𭟋j

d(µ) +
∑

µ∽𭟋∞

d(µ).

Substituting the values from Table 3, we obtain:

FI(S(Tn,k)) = (4n+ 1) · 1 + 4(k + n) · 1.

Simplifying this expression:

FI(S(Tn,k)) = 4n+ 1 + 4k + 4n = 8n+ 4k + 1.

This gives the required result, and thus the proof is complete.

Theorem 2.5 Let S(Wn) be the subdivision graph of the wheel graph. Then, the face index of S(Wn) is
given by:

FI(S(Wn)) = n2 + 17n, for n ≥ 3.
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Number of vertices (n) 3 4 5 6 - - - n

Degree of internal face (j) 15 16 17 18 - - - n+12

Number of internal face |j| 3 4 5 6 - - - n

Degree of external face 15 20 25 30 - - - 5n

Table 4: The degree of internal and external faces of S(Wn)

Proof: The subdivision graph of the wheel graph S(Wn), as shown in Fig. 1 (a) contains two categories
of faces, 𭟋j the internal face (where j changes with n) and 𭟋∞ the external face. The degrees of the
external and the internal faces are mentioned in Table 4. Now, by the definition of the F I and Table 4,
for n ≥ 3, we have

F I(S((Wn)) =
∑

µ∽𭟋∈F(G)

d(µ)

=
∑
µ∽𭟋j

d(µ) +
∑

µ∽𭟋∞

d(µ)

= (degree of 𭟋j).|𭟋j |+ (degree of 𭟋∞)

= (n+ 12)(n) + 5n

= n2 + 17n,

which is required result and completes our proof.

Theorem 2.6 Let S(Ln) be the subdivision graph of the ladder graph. Then, the face index of S(Ln) is
given by

FI(S(Ln)) = 30n− 28, for n > 1

Proof: The subdivision graph of the ladder graph S(Ln), as shown in Fig. 3(a) consists of two types of
faces, the internal faces 𭟋18, 𭟋20 with |𭟋18| = 2 and |𭟋20| = n− 3 and the external face 𭟋∞. While sum
of degree of vertices of the external face is 10n− 4. Now by these results and definition of the F I

F I(S((Ln)) =
∑

µ∽𭟋∈F(G)

d(µ)

=
∑

µ∽𭟋18

d(µ) +
∑

µ∽𭟋20

d(µ) +
∑

µ∽𭟋∞

d(µ)

= 18.|𭟋18|+ 20.|𭟋20|+ 10n− 4

= 18(2) + 20(n− 3) + 10n− 4

= 30n− 28,

which completes the proof.

2.3. Face Index for line graphs of Subdivision graphs of the Tadpole, Wheel and Ladder
Graphs

This subsection is devoted to the computation of the line graphs of the subdivision graphs of the
tadpole and ladder graphs.

Theorem 2.7 Let Ls(Tn,k) be the line graph of the subdivision of the tadpole graph Tn,k. Then, for
n ≥ 3 and k ≥ 1, the face incidence index of Ls(Tn,k) is given by:

FI(Ls(Tn,k)) = 8n+ 4k + 13.
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Proof: The graph Ls(Tn,k) is obtained by first subdividing the tadpole graph Tn,k, and then taking
the line graph of the resulting subdivision. In a planar embedding, this graph contains three categories
of faces: an internal face of fixed degree 9 (denoted by 𭟋9), internal faces of degree j = 4n+ 2 (denoted
by 𭟋j), and a single external face 𭟋∞ with degree depending on both n and k.

The number and degrees of these faces for small values of n follow a pattern which generalizes as
shown in Table 5.

No. of vertices in cycle 3 4 5 - - - n

Degree of internal face 14 18 22 - - - 4n+ 2

Degree of external face 4k + 14 4k + 18 4k + 22 - - - 4(k + n) + 2

Table 5: The degrees of the internal and external faces of Ls(Tn,k).

From this table, it is clear that the graph contains exactly one internal face of degree 9, denoted by 𭟋9,
and one internal face of degree 4n+2, denoted by 𭟋j , as well as one external face of degree 4(k+n)+ 2.

By definition, the face incidence index FI of a planar graph is the total sum of the degrees of all its
faces:

FI(Ls(Tn,k)) =
∑

µ∽𭟋∈F(G)

d(µ).

This expression can be expanded by separating the contributions of each type of face as follows:

FI(Ls(Tn,k)) =
∑
µ∽𭟋9

d(µ) +
∑
µ∽𭟋j

d(µ) +
∑

µ∽𭟋∞

d(µ).

Since there is only one face of each kind, we substitute the degrees directly:

FI(Ls(Tn,k)) = 9 · 1 + (4n+ 2) · 1 + (4(k + n) + 2) · 1.

Simplifying the expression step-by-step:

FI(Ls(Tn,k)) = 9 + 4n+ 2 + 4k + 4n+ 2.

Combining like terms:

FI(Ls(Tn,k)) = (4n+ 4n) + 4k + (9 + 2 + 2) = 8n+ 4k + 13.

This confirms the required result and completes the proof.

Theorem 2.8 Let L(S(Ln)) be the line graph of the subdivision graph of the ladder graph. Then, the
face index of L(S(Ln)) is given by:

F I(L(S(Ln))) = 54n− 76, for n > 1.

Proof: The line graph of the subdivision graph of the ladder graph L(S(Ln)) as shown in Fig. 3(b)
consists of three internal faces 𭟋9,𭟋20, 𭟋24 and an external face 𭟋∞. The degrees of the internal and
the external faces are mentioned in Table 6.

Now, by the definition of F I and Table 6:

F I(L(S(Ln))) =
∑

µ∽𭟋∈F(G)

d(µ)

=
∑
µ∽𭟋9

d(µ) +
∑

µ∽𭟋20

d(µ) +
∑

µ∽𭟋24

d(µ) +
∑

µ∽𭟋∞

d(µ)

= 9.|𭟋9|+ 20.|𭟋20|+ 24.|𭟋24|+ 12n− 8

= 9(2n− 4) + 20(2) + 24(n− 3) + 12n− 8

= 54n− 76,
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n for L[S(Ln)] 3 4 5 6 - - - n

Number of f9 2 4 6 8 - - - 2n-4

Number of f20 2 2 2 2 - - - 2

Number of f24 0 1 2 3 - - - n-3

Degree of f∞ 28 40 52 64 - - - 12n-8

Table 6: Number of 𭟋9, 𭟋20, 𭟋24 of L(S(Ln)).

which completes our proof.

Remark: The face index of the line graph of the subdivision of the wheel graph cannot be evaluated
because LS(Wn) contains some edges which cannot be avoided to cross each other as shown in Fig. 1(b).
So, the graph is not a planner graph, while the formula for the face index is applicable only for the planar
graphs.

3. Graphical Analysis

In this section, we conclude the paper by illustrating the obtained results through graphical repre-
sentations (see Fig. 4–5). In Fig. 4, the independent variable n is taken along the x-axis. Subfigure (i)
displays the trends of the computed formulae for the face index FI of Wn and S(Wn), represented by
the blue and red curves, respectively. Subfigure (ii) depicts the behavior of the face index for Ln, S(Ln),
and L[S(Ln)], each shown with distinct color patterns to highlight their variations with respect to n.

Figure 4: (i) Face index of Wn and S(Wn). (ii) Face index of Ln, S(Ln), and L[S(Ln)].

Figure 5 presents two additional cases. Subfigure (i) shows the variation of the face index for Tn,k,
while subfigure (ii) corresponds to the face index of S(Tn,k). In both cases, the horizontal axis corresponds
to the parameter n, while k is fixed, allowing a clear observation of how FI changes with n.
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Figure 5: (i) Face index of Tn,k. (ii) Face index of S(Tn,k).

Finally, the corresponding 3D graphs (Fig. 5–??) display the dependence of the face indices for
Tn,k, S(Tn,k), and L(S(Tn,k)) on both parameters n and k. These surfaces provide a comprehensive
visualization of the simultaneous effect of the two variables, making it easier to identify trends and
comparative growth patterns.

4. Conclusion

This study derives explicit formulae for the face index of tadpole, ladder, and wheel graphs, as well
as their subdivision graphs and the line graphs of their subdivision graphs. The results provide a deeper
understanding of how structural modifications influence the face index, which is useful in predicting
various physicochemical properties of chemical compounds. The computed values reveal distinct trends
in the face index for different graph classes, highlighting the impact of edge and vertex subdivisions.
These findings contribute to the broader study of topological indices and their applications in chemical
graph theory. Future research can extend this work by exploring the face index for other graph families
or investigating its correlation with experimental molecular properties.
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