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Almost Sure Linear Independence of Absolutely Continuous Hilbert Space-Valued
Random Vectors with Respect to a Special Class of Hilbert Space Probability Measures

Nizar El Idrissi and Hicham Zoubeir

abstract: This note examines the implications of randomly selecting vectors from an infinite-dimensional
Hilbert space on linear independence, assuming that for all k, the first k vectors follow an absolutely continuous
law with respect to a probability measure. It demonstrates that no constraints on the random dimension of
their span are necessary, provided that all finite dimensional vector subspaces are considered negligible with
respect to the Hilbert space probability measure.
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1. Introduction

In [1], Christensen and Hasannasab proved the following result.

Proposition 1.1 Let E be a vector space of (countably or uncountably) infinite dimension and (en)n∈N
be a sequence of vectors with values in E. Then

(∃T ∈ L(span{en}n∈N, E) : ∀n ∈ N : T (en) = en+1) and dim span{en}n∈N = +∞] ⇒

(en)n∈N is free.

In [2], the first author of the present article and S. Kabbaj explored a little bit this proposition. They
proved for instance that the function appearing in the lower indices of the vectors (namely the successor
function n ∈ N 7→ n+ 1 ∈ N) can’t be replaced by an essentially different function φ : N → N. They also
pushed it in two new directions: they proved that a similar model-theoretic result holds if one accepts to
use a certain definition of independence expressible in any algebraic structure, and that the operatorial
condition consisting of only one shifting operator can be replaced by a set of operators acting together.

In this short note, we consider a yet different perspective, which is to assume that the vectors are
randomly chosen from an infinite dimensional Hilbert space, with no prescription on their mutual law
except that for all k, the first k vectors are absolutely continuous with respect to the product probability
measure. Surprisingly, no condition on the random dimension of their span is needed. However, this
comes at the price of assuming that all finite dimensional vector subspaces are negligible with respect to
the Hilbert space probability measure.

∗ These authors contributed equally to this work.
2020 Mathematics Subject Classification: 15A03, 46C99, 60B12, 60B20, 28A20.

Submitted June 22, 2025. Published December 29, 2025

1
Typeset by BSPMstyle.
© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.77439


2 N. El Idrissi and H. Zoubeir

Theorem 1.1 Let (Ω,F, P ) be a probability space and H be a real Hilbert space of infinite dimension.
Let (en)n∈N be a sequence of random variables defined on (Ω,F, P ) and with values in H.
Let Q be a complete σ-finite probability measure on H such that any finite dimensional vector subspace
A of H satisfies Q(A) = 0.
Suppose that for all k ∈ N, ((e0, · · · , ek)∗(P )) is absolutely continuous with respect to Q⊗(k+1), so that

the Radon-Nykodym derivative d((e0,··· ,ek)∗(P ))
dQ⊗(k+1) exists, which we denote by p(k) : Hk+1 → [0,∞).

Then (en)n∈N is free almost surely.

For potential probability measures satisfying the above condition, see [4] and [3].

2. Proof of theorem

Proof: For all k ∈ N, let fk : (v0, · · · , vk) ∈ Hk+1 7→ detGram(v0, · · · , vk) ∈ R.
By a well-known formula for Gramian determinants exposed in the appendix A, we have

fk(v0, · · · , vk) = fk−1(v0, · · · , vk−1)h
k(v0, · · · , vk−1, vk)

2,

where

hk(v0, · · · , vk) := d(vk, span(v0, · · · , vk−1)),

and for any a ∈ H and V ⊆ H, d(a, V ) denotes the distance of a to V .
Let’s show by induction on k that

∀k ∈ N : Q⊗k+1((fk)−1(0)) = 0. (2.1)

• If k = 0, then

∀v ∈ H : f0(v0) = ∥v0∥2.

Therefore (f0)−1(0) = {0} is Q-negligible due to the hypothesis on Q, as {0} is a finite dimensional
vector subspace of H.

• Suppose the property is true at the index k − 1, k ≥ 1.
Let vk ∈ H, and suppose that

∀(v0, · · · , vk−1) ∈ Hk : fk(v0, · · · , vk−1, vk) = 0.

Then

∀(v0, · · · , vk−1) ∈ Hk : fk−1(v0, · · · , vk−1)h
k(v0, · · · , vk)2 = 0,

and so

∀(v0, · · · , vk−1) ∈ Hk :
(
hk(v0, · · · , vk−1, vk) = 0

)
or

(
fk−1(v0, · · · , vk−1) = 0

)
Hence

(fk)−1(0) ⊆
[
(fk−1)−1(0)×H

]⋃
{(v0, · · · , vk−1, vk) ∈ Hk+1 : h(v0, · · · , vk−1, vk) = 0}.
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Therefore, we have

0 ≤ Q⊗k+1((fk)−1(0)) =

∫
Hk+1

1{fk(v0,··· ,vk−1,vk)=0}dQ
⊗k+1(v0, · · · , vk)

=

∫
Hk+1\{[(fk−1)−1(0)×H]}

1{hk(v0,··· ,vk−1,vk)=0}dQ
⊗k+1(v0, · · · , vk)

since Q⊗k+1([(fk−1)−1(0)×H]) = 0

=

∫
Hk+1

1{hk(v0,··· ,vk−1,vk)=0}dQ
⊗k+1(v0, · · · , vk)

=

∫
Hk

(∫
H

1{hk(v0,··· ,vk−1,vk)=0}dQ(vk)

)
dQ⊗k(v0, · · · , vk−1)

by Fubini’s theorem

≤
∫
Hk

Q(span(v0, · · · , vk−1))dQ
⊗k(v0, · · · , vk−1)

= 0

since span(v0, · · · , vk−1) is a finite dimensional vector subspace of H.

Hence, equation 2.1 is proved.
Next, let

∀k ∈ N : E(k) := (e0, · · · , ek),

and
∀k ∈ N : Gk := Gram(e0, · · · , ek) = E(k)∗E(k).

By definition of p(k), this function satisfies the property:

E
[
g(k)(E(k))

]
=

∫
Hk+1

g(k)(V (k))p(k)(V (k))dQ⊗k+1(V (k)) (2.2)

for all bounded Borel measurable g(k) : Hk+1 → R.
Notice that we have, for all ϵ, t > 0,

P (detGk > ϵ) = 1− P (detGk ≤ ϵ)

= 1− P (− detGk ≥ −ϵ)

= 1− P (e−t detGk ≥ e−tϵ)

≥ 1− E(e−t detGk)etϵ

Passing to the limit ϵ → 0+, we obtain

P (detGk > 0) ≥ 1− E(e−t detGk)

= 1− E(e−t detE(k)∗E(k)

)

= 1−
∫
Hk+1

e−t det(V (k)∗V (k))p(k)(V (k))dQ⊗k+1(V (k))

= 1−
∫
[(fk)−1(0)]c

e−t det(V (k)∗V (k))p(k)(V (k))dQ⊗k+1(V (k))

for any t > 0. Passing to the limit t → +∞ and using the dominated convergence theorem, we have

P (detGk > 0) ≥ 1,

hence the equality
P (detGk > 0) = 1.
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Therefore

P ((en)n∈N is free) = P (detGk > 0, for all k ∈ N) = inf
k∈N

P (detGk > 0) = 1.

2

Remark 2.1 For all k ∈ N, ((e0, · · · , ek)∗(P )) is absolutely continuous with respect to Q⊗(k+1) in case
(en)n∈N is a sequence of independent and absolutely continuous (with respect to Q) random variables.
Indeed, for any k ∈ N and for any measurable subset V :=

⋃
j∈N Vj :=

⋃
j∈N W j

0 × · · · ×W j
k ⊆ Hk+1, we

have

Q⊗k+1(V ) = 0 ⇒ ∀j ∈ N : ∃i ∈ [[0, k]] : Q(W j
i ) = 0

⇒ ∀j ∈ N : ∃i ∈ [[0, k]] : (ei)∗(P )(W j
i ) = 0

⇒ (e0, · · · , ek)∗(P )(V ) ≤
∑
j∈N

Πk
i=0(ei)∗(P )(W j

i ) = 0,

which shows that (e0, · · · , ek)∗(P ) is absolutely continuous with respect to Q⊗k+1. More precisely, we

have d((e0,··· ,eu)∗(P ))
dQ⊗(u+1) (v0, · · · , vu) = Πu

i=0
d((ei)∗(P ))

dQ (vi) in this case.

A. Ratio of two successive Gramian determinants

Since we couldn’t find a good bibliographic reference for this formula, we include its proof in this
appendix.
Consider v0, · · · , vk ∈ H, and w0, · · · , wk ∈ H the set produced from the first by iterating the Gram-
Schmidt process.
For eachm ∈ [[0, k]], the span of the vectors (w0, w1, · · · , wm) equals the span of the vectors (v0, v1, · · · , vm).
Let

v′k := vk −
k−1∑
i=0

⟨vk, wi⟩wi.

Since v′k is orthogonal to all the vectors w0, · · · , wk−1, it is orthogonal to all the vectors v0, · · · , vk−1 as
well.
Consider the Gramian determinant

fk(v0, · · · , vk−1, v
′
k).

Using the definition, we see that it is equal to

fk(v0, · · · , vk−1, vk)

because v′k ∈ vk + span(v0, · · · , vk−1).
But it is also equal to

fk(v0, · · · , vk−1)∥v′k∥2

by a straightforward computation of the determinant of a block-diagonal matrix.
Or ∥v′k∥ is nothing else but the explicit formula for d(vk, span(v0, · · · , vk−1)).
Hence, we have the formula:

fk(v0, · · · , vk) = fk−1(v0, · · · , vk−1)h
k(v0, · · · , vk−1, vk)

2,

where

hk(v0, · · · , vk) := d(vk, span(v0, · · · , vk−1)),

and for any a ∈ H and V ⊆ H, d(a, V ) denotes the distance of a to V .
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B. Finite dimensional affine subspaces are negligible in Hk if they are in H

The result in this appendix is not needed in the proof of the theorem, but since it is a good complement
to the subject of our paper and might be of independent interest, we include it here.
We claim that under the condition that Q(A) = 0 for every finite dimensional affine subspace of H, we
have Q⊗k(A) = 0 for every strict affine subspace of Hk and for all k ∈ N∗.
Let’s show it by induction on k ∈ N∗:

• If k = 1, then Q(A) = 0 by the hypothesis on Q.

• Suppose the property is true at the index k, k ≥ 1.
Let A be a strict affine subspace of Hk+1.
For all vk ∈ H, let

CA(vk) := {(v0, · · · , vk−1) ∈ Hk : (v0, · · · , vk−1, vk) ∈ A}.

We have by Fubini’s theorem :

Q⊗k+1(A) =

∫
Hk+1

1(v0,··· ,vk−1,vk)∈AdQ
⊗k+1(v0, · · · , vk)

=

∫
H

(∫
Hk

1(v0,··· ,vk−1)∈CA(vk)dQ
⊗k(v0, · · · , vk−1)

)
dQ(vk)

by Fubini’s theorem

=

∫
H

Q⊗k(CA(vk))dQ(vk)

Hence, we see that if the sets CA(vk) are proven to be either empty or finite dimensional affine
subspaces of Hk, we will be done by the induction hypothesis, since we will have Q⊗k(CA(vk)) = 0
in the integral.
This is the case indeed, since if CA(vk) is not empty, then it is the finite dimensional affine subspace
passing through pt ∈ CA(vk) and with associated vector subspace CA(vk)− pt.
CA(vk)− pt is indeed a finite dimensional vector subspace since

x ∈ CA(vk)− pt ⇔ pt+ x ∈ CA(vk)

⇔ (pt+ x, vk) ∈ A

⇔ (pt+ x, vk) ∈ (pt, vk) +
#»

A

⇔ (x, 0) ∈ #»

A

where
#»

A denotes the finite dimensional vector subspace associated to A.
The last passage explains why we are working in this appendix with affine subspaces (as opposed
to vector subspaces), since CA(vk) is not in general a vector subspace even if A is. This happens
when A doesn’t contain (0, · · · , 0, vk).

C. Strict affine subspaces are negligible in Hk if they are in H

Again, the result in this appendix is not needed in the proof of the theorem, but since it is a good
complement to the subject of our paper and might be of independent interest, we include it here.
We claim that under the condition that Q(A) = 0 for every strict affine subspace of H, we have Q⊗k(A) =
0 for every strict affine subspace of Hk and for all k ∈ N∗.
Let’s show it by induction on k ∈ N∗:

• If k = 1, then Q(A) = 0 by the hypothesis on Q.
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• Suppose the property is true at the index k, k ≥ 1.
Let A be a strict affine subspace of Hk+1.
For all vk ∈ H, let

CA(vk) := {(v0, · · · , vk−1) ∈ Hk : (v0, · · · , vk−1, vk) ∈ A}.

We have by Fubini’s theorem :

Q⊗k+1(A) =

∫
Hk+1

1(v0,··· ,vk−1,vk)∈AdQ
⊗k+1(v0, · · · , vk)

=

∫
H

(∫
Hk

1(v0,··· ,vk−1)∈CA(vk)dQ
⊗k(v0, · · · , vk−1)

)
dQ(vk)

by Fubini’s theorem

=

∫
H

Q⊗k(CA(vk))dQ(vk)

Hence, we see that if the sets CA(vk) are proven to be either empty or strict affine subspaces of Hk

for almost all vk, we will be done by the induction hypothesis, since we will have Q⊗k(CA(vk)) = 0
in the integral.
First, if CA(vk) is not empty, then it is the affine subspace passing through pt ∈ CA(vk) and with
associated vector subspace CA(vk)− pt.
CA(vk)− pt is indeed a vector subspace since

x ∈ CA(vk)− pt ⇔ pt+ x ∈ CA(vk)

⇔ (pt+ x, vk) ∈ A

⇔ (pt+ x, vk) ∈ (pt, vk) +
#»

A

⇔ (x, 0) ∈ #»

A

where
#»

A denotes the vector subspace associated to A.
The last passage explains why we are working in this appendix with affine subspaces (as opposed
to vector subspaces), since CA(vk) is not in general a vector subspace even if A is. This happens
when A doesn’t contain (0, · · · , 0, vk).
Now, suppose to the contrary that there exists a measurable subset α ⊆ H such that Q(α) > 0 and
∀vk ∈ α : CA(vk) = Hk. So, ∀vk ∈ α : Hk × {vk} ⊆ A. Therefore

Hk+1 = Hk ×H = Hk × ⟨{vk}vk∈α⟩aff ⊆ A,

where ⟨X⟩aff denotes the smallest affine subspace containing X, for any subset X ⊆ H, which is a
contradiction.
Indeed, if ⟨{vk}vk∈α⟩aff were a strict affine subspace of H, we would have

0 ≤ Q(α) ≤ Q(⟨{vk}vk∈α⟩aff) = 0,

a contradiction. So, we have ⟨{vk}vk∈α⟩aff = H indeed.
The last inclusion can be proven as follows. Let x ∈ Hk, (vjk)

l
j=1 in α, and (αj)

l
j=1 scalars such

that
∑l

j=1 αj = 1. Then (x,
∑

j=1 αjv
j
k) =

∑l
j=1 αj(x, v

j
k) ∈ A, since A is affine.
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