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New Rational-Type Contractions and their Applications in b-Metric Spaces
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abstract: In this paper, we analyze new rational-type contractions in the context of b-metric spaces,
establish a theoretical foundation for these contractions, and explore their applications in Fredholm integral
inclusions. The paper also provides examples to verify the validity of the results.
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1. Introduction and Preliminaries

Fixed point theory is one of the most important areas in mathematics and nonlinear analysis, with
widespread applications in several scientific fields, such as computer science, engineering, chemistry [1],
biology, economics [2], medical sciences, and telecommunications. The study of metric spaces was initiated
by French mathematician Maurice Frechet in 1906 [3]. In 1922, Banach [4] introduced his theory of the
Banach contraction mapping. The Banach fixed point theorem, often referred to as the contraction
principle, is a pivotal concept in metric spaces. Over time, the theory has seen numerous developments
and generalizations. The literature on fixed point theory contains many extensions of both metric spaces
and the Banach contraction principle [5,6,7,8,9,10,11,12,13,14,15,16].

In the domain of fixed point theory, Banach’s result was later extended by Juliusz Schauder [17] in
1930. Furthermore, in 1968, Kannan [18] introduced a version of Banach’s contraction, known as the
Kannan-type contraction. Reich [19] contributed further by generalizing both Banach and Kannan’s
contraction principles, employing b-metric spaces and generalized metric spaces, and introducing Reich-
type contraction, a new contraction type that generalized Kannan’s fixed point results. Geraghty [20]
significantly broadened the scope of the Banach contraction principle. In 1973, ’Ciri’c [21,22] established
the well-known ’Ciri’c-type fixed point theorem, which replaced the constant with an auxiliary function
and demonstrated a fixed point result for mappings in the context of complete metric spaces. This is
regarded as one of the most important generalizations of the Banach contraction principle. Many authors
have continued to extend and generalize both Banach and Kannan contractions in the fixed point theory
literature.

The concept of b-metric spaces was introduced by Bakhtin [23] and Czerwik [24,25] as a generalization
of metric spaces, where the triangular inequality is relaxed. Many fixed point theorems specific to b-
metric spaces have been established [26,27]. For those looking for more detailed information, [32,33,34,
35,36,37,38,39,40,41] can be consulted for further studies.

This work introduces a few fixed point results for a novel class of generalized contractions in b-metric
spaces. We also include examples to highlight the relevance of the conclusions derived from our research.
One of our significant results is applied to solve an integral problem. In order to validate our findings,
we rely on the following key concepts and results from the existing literature.
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Definition 1.1 [23,24,25] Consider the non-empty set Ω. If there is a number b ≥ 1, then a mapping
σ : Ω× Ω → [0,+∞) is referred to as a b-metric. In this way, for any r, s, w ∈ Ω,

1. σ(r, s) = 0 if and only if r = s;

2. σ(r, s) = σ(s, r);

3. σ(r, w) ≤ b(σ(r, s) + σ(s, w)).

Then the pair (Ω, σ) is then referred to as a b-metric space. Every metric space is obviously a
b-metric space with b = 1, although this is not always the case. Indeed, compared to the class of
metric spaces, the class of b-metric spaces is bigger.

Definition 1.2 [28] Let (Ω, σ) be a b-metric space with b ≥ 1. Next, the following sequence is called
in Ω:
1. If ϵ > 0 for all n0 ∈ N such that σ(rn, rm) < ϵ for all n,m ≥ n0, then the sequence is Cauchy.
2. Convergent if l ∈ Ω exists such that for every ϵ > 0, there exists n0 ∈ N such that σ(rn, l) ∈ ϵ
for all n ≥ n0. The sequence {rn} is said to converge to l in this case.

Definition 1.3 [28] If every Cauchy sequence converges in a b-metric space (Ω, σ) with b ≥ 1, the
space is considered complete.
The following lemma is useful in proving all main results.

Lemma 1.1 [29] Every sequence{rn} of elements from a b-metric space (Ω, σ) with b ≥ 1, with the
condition that there exists λ ∈ [0, 1) such that σ(rn, rn+1) ≤ λσ(rn−1, rn) for every n ∈ N ,

Example 1.1 [30] Let (Ω, σ) be a metric space and let the mapping σ : Ω× Ω → [0,∞) be defined by

σ(r, s) = (σ(r, s))η, ∀r, s ∈ Ω

where η > 1 is a fixed real number. Then (Ω, σ) is a b-metric space with b = 2η−1. In particular, if
Ω = R, σ(r, s) = |r − s| is the usual Euclidean metric and

σ(r, s) = (r − s)2, ∀r, s ∈ R.

then (R, σ) is a b-metric with b = 2. However, (R, σ) is not a metric space on R since the axiom 3 in
Definition 1.1 does not hold. Indeed,

σ(−2, 2)− 16 > 8− 4 + 4− σ(−2, 0) + σ(0, 2).

Example 1.2 [31] Let Ω be the set of Lebesgue measurable functions on [0, 1] such that∫ 1

0

|r(t)|2dt < ∞.

Define σ : Ω× Ω → [0,∞) by

σ(r, s) =

∫ 1

0

|r(t)− s(t)|2dt.

Then σ satisfies the following properties

1. σ(r, s) = 0 if and only if r = s,

2. σ(r, s) = σ(s, r), for any r, s ∈ Ω

3. σ(r, s) ≤ 2(σ(r, w) + σ(w, s)), for any points r, s, w ∈ Ω.

Clearly, (Ω, σ) is a b-metric space with b = 2 but is not a metric space. For example, take r(t) = 0, s(t) = 1
and w(t) = 1

2 , for all t ∈ [0, 1]. Then

σ(0, 1) = 1 >
1

2
=

1

4
+

1

4
= σ

(
0,

1

2

)
+ σ

(
1

2
, 1

)
.
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2. Main Results

This section presents a novel class of contractions involving rational expressions, which we use to
derive various fixed point theorems in the setting of b-metric spaces.

Theorem 2.1 Let (Ω, σ) be a complete b-metric space with b ≥ 1. We say that F : Ω → Ω is a contraction
mapping such that for every r, s ∈ Ω satisfied

σ(Fr, Fs) ≤ λmax
{
σ(r, s), σ(r, Fr), σ(s, Fs)σ(s, Fr),

σ(r, Fr)σ(s, Fr)

σ(r, s) + σ(s, Fr)

}
, (2.1)

where λ ∈ [0, 1), σ(r, s) + σ(s, Fr) ̸= 0, then F has a unique fixed point.

Proof: Let s0 ∈ Ω. Specify a sequence {sn} in Ωl as sn = Fsn−1 for all n ≥ 1. Assume that any two
consecutive terms of the sequence {sn} are distinct, otherwise, F has a fixed point. For thus, let n ∈ N .
Consider,

σ(sn, sn+1) ≤ σ(Fsn−1, Fsn).

Utilizing (2.1), we have

≤ λmax
{
σ(sn−1, sn), σ(sn−1, Fsn−1), σ(sn, Fsn)σ(sn, Fsn−1),

σ(sn−1, Fsn−1)σ(sn, Fsn−1)

σ(sn−1, sn) + σ(sn, Fn−1)

}
= λmax

{
σ(sn−1, sn), σ(sn−1, sn), σ(sn, sn+1)σ(sn, sn),

σ(sn−1, sn)σ(sn, sn)

σ(sn−1, sn) + σ(sn, sn)

}
= λmax

{
σ(sn−1, sn), σ(sn−1, sn)

}
. (2.2)

Since max
{
σ(sn−1, sn), σ(sn−1, sn)

}
= σ(sn−1, sn), then inequality (2.2) becomes,

σ(sn, sn+1) ≤ σ(sn−1, sn).

On repeating this process, we obtain

σ(sn, sn+1) ≤ λnσ(s0, s1) ∀n ≥ 1. (2.3)

As, λ ∈ [0, 1), then the sequence {sn} is a Cauchy sequence according to the Lemma (1.1). Since (Ω, σ)
is complete, then there exists some p ∈ Ω such that sn → p as n → ∞.
By (2.1), it is easy to see that

σ(sn+1, Fp) = σ(Fsn, Fp)

≤ λmax
{
σ(sn, p), σ(sn, Fsn), σ(p, Fp)σ(p, Fsn),

σ(sn, Fsn)σ(p, Fsn)

σ(sn, p) + σ(p, Fsn)

}
= λmax

{
σ(sn, p), σ(sn, sn+1), σ(p, Fp)σ(p, sn+1),

σ(sn, sn+1)σ(p, sn+1)

σ(sn, p) + σ(p, sn+1)

}
. (2.4)

Taking the limit as n → ∞ on both sides of (2.4), we have

lim
n→∞

σ(sn+1, Fp) = 0. (2.5)

That is, sn+1 → Fp. Hence, Fp = p, so p is a fixed point of F .
Finally, we prove the uniqueness of the fixed point. Indeed, if there is additional point q, then by (2.1),

σ(p, q) = σ(Fp, Fq)

≤ λmax
{
σ(p, q), σ(p, Fp), σ(q, Fq)σ(q, Fp),

σ(p, Fp)σ(q, Fp)

σ(p, q) + σ(q, Fp)

}
= λmax

{
σ(p, q), σ(p, p), σ(q, q)σ(q, p),

σ(p, p)σ(q, p)

σ(p, q) + σ(q, p)

}
= λmax

{
σ(p, q), 0, 0, 0

}
= λσ(p, q).
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Since 0 ≤ λ < 1, so we obtain that σ(p, q) = 0. Thus, p = q and we conclude that F has a unique fixed
point. 2

Corollary 2.1 Let (Ω, σ) be a complete b-metric space with b ≥ 1. We say that F : Ω → Ω is a
contraction mapping such that for every r, s ∈ Ω satisfied

σ(Fr, Fs) ≤ hmax
{
σ(r, s), σ(r, Fr), σ(s, Fs)σ(s, Fr)

}
, (2.6)

for all r, s ∈ Ω, where 0 ≤ h < 1 is a constant. Then F has a unique fixed point in Ω.

Proof: The proof can be obtained from Theorem 2.1 by taking λ(t) = ht for each t ≥ 0, where h ∈ [0, 1)

and σ(r,Fr)σ(s,Fr)
σ(r,s)+σ(s,Fr) = 0. 2

Theorem 2.2 Let (Ω, σ) be a complete b-metric Space with b ≥ 1. We say that F : Ω → Ω is a
contraction mapping such that every r, s ∈ Ω satisfied

σ(Fr, Fs) ≤ λmax
{
σ(r, s),

σ(r, Fr)σ(s, Fr)

1 + σ(s, Fr)
,
σ(s, Fs)σ(r, Fs)

σ(r, Fs)
, σ(s, Fr)

}
, (2.7)

where λ ∈ [0, 1), σ(r, Fs) ̸= 0, then F has a unique fixed point.

Proof: Let s0 ∈ Ω. Define a sequence {sn} in Ω as sn+1 = Fsn for all n ≥ 1. Assume that any two
consecutive terms of the sequence {sn} are distinct, otherwise, F has a fixed point. For thus, let n ∈ N .
Consider,

σ(sn, sn+1) ≤ σ(Fsn−1, Fsn)

≤ λmax
{
σ(sn−1, sn),

σ(sn−1, Fsn−1)σ(sn, Fsn−1)

1 + σ(sn, Fsn−1)
,

σ(sn, Fsn)σ(sn−1, Fsn)

σ(sn−1, Fsn) + σ(sn, Fsn−1)

}
= λmax

{
σ(sn−1, sn),

σ(sn−1, sn), σ(sn, sn)

1 + σ(sn, sn)
,
σ(sn, sn+1)σ(sn−1, sn+1)

σ(sn−1, sn+1) + σ(sn, sn)

}
= λmax

{
σ(sn−1, sn), σ(sn, sn+1)

}
. (2.8)

If max
{
σ(sn−1, sn), σ(sn, sn+1)

}
= σ(sn, sn+1) then from (2.8), we obtain that

σ(sn, sn+1) ≤ λσ(sn, sn+1)

< σ(sn, sn+1),

a contradiction. This means that max
{
σ(sn−1, sn), σ(sn, sn+1)

}
= σ(sn−1, sn). Hence, we obtain that

σ(sn, sn+1) ≤ λσ(sn−1, sn).

Repeating the process we get
σ(sn, sn+1) ≤ λnσ(s0, s1) ∀n ≥ 1. (2.9)

Since, λ ∈ [0, 1), then the sequence {sn} is a Cauchy sequence according to the Lemma 1.1. Since Ω is
complete, then there exists some p ∈ Ω such that sn → p as n → ∞.
By (2.7), it is easy to see that

σ(sn+1, Fp) = σ(Fsn, Fp)

≤ λmax
{
σ(sn, p),

σ(sn, Fsn)σ(p, Fsn)

1 + σ(p, Fsn)
,

σ(p, Fp)σ(sn, Fp)

σ(sn, Fp) + σ(p, Fsn)

}
= λmax

{
σ(sn, p),

σ(sn, sn+1)σ(p, sn+1)

1 + σ(p, sn+1)
,

σ(p, Fp)σ(sn, Fp)

σ(sn, Fp) + σ(p, sn+1)

}
. (2.10)
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Taking the limit as n → ∞ by both sides of (2.10), we have

lim
n→∞

σ(sn+1, Fp) = 0. (2.11)

That is, sn+1 → Fp. Hence, Fp = p, so p is a fixed point of F .
Finally, we prove the uniqueness of the fixed point. Indeed, if there is another point q, then by (2.7),

σ(p, q) = σ(Fp, Fq)

≤ λmax
{
σ(p, q),

σ(p, Fp)σ(q, Fp)

1 + σ(q, Fp)
,

σ(q, Fq)σ(p, Fq)

σ(p, Fq) + σ(q, Fp)

}
= λmax

{
σ(p, q),

σ(p, p)σ(q, p)

1 + σ(q, p)
,

σ(q, q)σ(p, q)

σ(p, q) + σ(q, p)

}
σ(p, q) ≤ λσ(p, q).

Since 0 ≤ λ < 1, so we obtain that σ(p, q) = 0. Thus, p = q and we conclude that F has a unique fixed
point. 2

Corollary 2.2 Let (Ω, ν) be a complete b-metric space with b ≥ 1. We Say that F : Ω → Ω is a
contraction mapping such that for every r, s ∈ Ω satisfied

ν(Fr, Fs) ≤ λmax
{
ν(r, s),

ν(r, Fr)ν(s, Fr)

1 + ν(s, Fr)
,

ν(s, Fs)ν(r, Fs)

ν(r, Fs) + ν(s, Fr)

}
, (2.12)

where λ ∈ [0, 1), ν(r, Fs) + ν(s, Fr) ̸= 0, then F has a unique fixed point.

Proof: If we put σ = ν in Theorem 2.2, we get the proof of above corollary. 2

Example 2.1 Let Ω = [0, 1] to be fitted using the b-metric provided by

σ(r, s) = (r + s)2,

with b = 2. Describe the self mapping F : Ω → Ω by

F (r) =
r

2
,

for all r, s ∈ Ω. We have

σ(Fr, Fs) =
(r
2
− s

2

)2
=

1

4
(r − s)2 =

1

4
σ(r, s)

≤ λmax
{
σ(r, s),

σ(r, Fr)σ(s, Fr)

1 + σ(s, Fr)
,

σ(s, Fs)σ(r, Fs)

σ(r, Fs) + σ(s, Fr)

}
,

for 1
4 ≤ λ < 1. All conditions of Theorem 2.2 are satisfied, so clearly, r = 0 is the unique fixed point of

F .

Theorem 2.3 Let (Ω, σ) be a complete b-metric Space with b ≥ 1. We say that F : Ω → Ω is a
contraction mapping such that every r, s ∈ Ω satisfied

σ(Fr, Fs) ≤ λmax
{
σ(r, s),

σ(r, Fr)σ(s, Fs)

σ(r, s)
, σ(s, Fr)

}
, (2.13)

where λ ∈ [0, 1), σ(r, s) ̸= 0, then F has a unique fixed point.
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Proof: Let s0 ∈ Ω. Define a sequence {sn} in Ω as sn+1 = Fsn for all n ≥ 1. Assume that any two
consecutive terms of the sequence {sn} are distinct, otherwise, F has a fixed point. For this, let n ∈ N .
Consider,

σ(sn, sn+1) ≤ σ(Fsn−1, Fsn)

≤ λmax
{
σ(sn−1, sn),

σ(sn−1, Fsn−1)σ(sn, Fsn)

σ(sn−1, sn)
, σ(sn, Fsn−1)

}
= λmax

{
σ(sn−1, sn),

σ(sn−1, sn)σ(sn, sn+1)

σ(sn−1, sn)
, σ(sn, sn)

}
= λmax

{
σ(sn−1, sn), σ(sn, sn+1)

}
. (2.14)

If max
{
σ(sn−1, sn), σ(sn, sn+1)

}
= σ(sn, sn+1) then from (2.14), we obtain that

σ(sn, sn+1) ≤ λσ(sn, sn+1)

< σ(sn, sn+1),

a contradiction. This means that max
{
σ(sn−1, sn), σ(sn, sn+1)

}
= σ(sn−1, sn) for all n ≥ 1.

Hence, we obtain that
σ(sn, sn+1) ≤ λσ(sn−1, sn).

Repeating this process we get

σ(sn, sn+1) ≤ λnσ(s0, s1) ∀n ≥ 1. (2.15)

Since, λ ∈ [0, 1), then the sequence {sn} is a Cauchy sequence according to the Lemma 1.1. Since Ω is
complete, then there exists some p ∈ Ω such that sn → p as n → ∞.
By (2.13), it is easy to see that

σ(sn+1, Fp) = σ(Fsn, Fp)

≤ λmax
{
σ(sn, p),

σ(sn, Fsn)σ(p, Fp)

σ(sn, p)
, σ(p, Fsn)

}
= λmax

{
σ(sn, p),

σ(sn, sn+1)σ(p, Fp)

σ(sn, p)
, σ(p, sn+1)

}
. (2.16)

Taking the limit as n → ∞ by both sides of (2.16), we have

lim
n→∞

σ(sn+1, Fp) = 0. (2.17)

That is, sn+1 → Fp. Hence, Fp = p, so p is a fixed point of F .
Finally, we prove the uniqueness of the fixed point. Indeed, if there is another fixed point q, then by
(2.13),

σ(p, q) = σ(Fp, Fq)

≤ λmax
{
σ(p, q),

σ(p, Fp)σ(q, Fq)

σ(p, q)
, σ(q, Fp)

}
≤ λmax

{
σ(p, q),

σ(p, p)σ(q, q)

σ(p, q)
, σ(q, p)

}
σ(p, q) ≤ λσ(p, q).

Since 0 ≤ λ < 1, so we obtain that σ(p, q) = 0. Thus, p = q and we conclude that F has a unique fixed
point. 2
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Example 2.2 Let Ω = [0, 1] to be fitted using the b-metric provided by

σ(r, s) = |r − s|3

with b = 2. Describe the self mapping F : Ω → Ω by.

F (r) =
r

3
,

for all r, s ∈ Ω. We have

σ(Fr, Fs) =
∣∣∣r
3
− s

3

∣∣∣3
=

1

27
|r − s|3 =

1

27
σ(r, s)

≤ λmax
{
σ(r, s),

σ(r, Fr)σ(s, Fs)

σ(r, s)
, σ(s, Fr)

}
,

for 1
27 ≤ λ < 1. All conditions of Theorem 2.3 are satisfied, so clearly, r = 0 is the unique fixed point of

F .

3. Application

This section discusses the existence of a solution to the Fredholm integral equation using Theorem
2.2. Let Ω = C[a, b] be the set of all conditions real valued functions define on [a, b]. Note that Ω
is complete b-metric space by considering σ(r, s) = supt∈[a,b](r(t) − s(t))η, with b = 2η−1 and where,
η > 1, σ : Ω× Ω → [0,+∞). Now, consider the Fredholm integral equation as:

r(t) =

∫ b

a

N(t, τ, r(τ))dτ + f(t), t, τ ∈ [a, b] (3.1)

where f : [a, b] → R, r ∈ C[a, b] is the unknown functions, λ ∈ R, and N : [a, b]× [a, b]×R → R are given
continuous functions.

Theorem 3.1 Suppose that all r, s ∈ C([a, b], R) satisfy the following requirements,
1. There exists a continuous function ϕ : [a, b]×[a, b] → R such that for all r, s ∈ Ω, λ ∈ R and t, τ ∈ [a, b],
we have

|N(t, τ, r(τ))−N(t, τ, s(τ))|η ≤ ϕ(t, τ)M(r, s),

where

M(r, s) ≤ λmax
{
σ(r, s),

σ(r, Fr)σ(s, Fr)

1 + σ(s, Fr)
,

σ(s, Fs)σ(r, Fs)

σ(r, Fs) + σ(s, Fr)

}
.

2. |λ| < 1, and supt∈[a,b]

∫ b

a
ϕ(t, τ)dτ ≤ 1

2η−1(b−a)η−1 .

Proof: The Fredholm integral equation (3.1) allows us to define an operator F : Ω → Ω as follows:

Fr(t) = λ

∫ b

a

N(t, τ, r(τ))dτ + f(t), ∀t ∈ [a, b].
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Therefore, the existence of a solution to (3.1) is equivalent to the existence of a fixed point and its
uniqueness in F . Given α ∈ R, let 1

η + 1
α = 1. Applying conditions 1 and 2, we have

σ(Fr, Fs) = sup
t∈[a,b]

|Fr(t)− Fs(t)|η

≤ |λ|η sup
t∈[a,b]

(∫ b

a

|N(t, τ, r(τ))−N(t, τ, s(τ)))|dτ

)η

≤ sup
t∈[a,b]

(∫ b

a

1αdτ

) 1
α
(∫ b

a

|(N(t, τ, r(τ))−N(t, τ, s(τ)))ηdτ

) 1
η

η

≤ (b− a)
η
α sup

t∈[a,b]

(∫ b

a

|N(t, τ, r(τ)−N(t, τ, s(τ)|ηdτ

)

≤ (b− a)η−1 sup
t∈[a,b]

(∫ b

a

ϕ(t, τ)dτM(r, s)

)

≤ (b− a)η−1 sup
t∈[a,b]

(∫ b

a

ϕ(t, τ)dτ

)
M(r, s)

≤ 1

2η−1
M(r, s).

Ultimatly we get

σ(Fr, Fs) ≤ λmax

{
σ(r, s),

σ(r, Fr)σ(s, Fr)

1 + σ(s, Fr)
,

σ(s, Fs)σ(r, Fs)

σ(r, Fs) + σ(s, Fr)

}
.

The requirements of Theorem 2.2 are thus all met. Thus, a solution to the integral equation (3.1) exists.
2

4. Conclusions

In this study, we introduced a novel form of contractions with rational expressions by applying the
concept of b-metric spaces. Subsequently, we proved several fixed point theorems in this setting. To val-
idate the applicability of our results, two examples are provided. Additionally, an application is included
to demonstrate the relevance of one of our key findings.
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