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Spectral analysis of a higher-order self-adjoint Differential operator with unbounded
operator coefficients

Erdal GÜL and Mehmet ALBAYRAK∗

abstract: In contrast to the setting considered by Adıgüzelov and Sezer [4], where the differential op-
erator involves classical scalar derivatives followed by multiplication with a self-adjoint unbounded opera-
tor, this study investigates a structurally distinct operator–differential model. The dual appearance of the
unbounded operator both inside the highest–order derivatives and as an independent power term has not
been systematically investigated in the literature. This structural feature induces a fundamentally differ-
ent functional–analytic framework, leading to novel spectral properties and domain regularity requirements.
Specifically, we examine expressions of the form

Lo(y(x)) := (−1)m
(
Ay(x)

)(2m)
+Am(y(x)),

where the operator A appears both inside the highest-order derivatives and as a power term. This formula-
tion modifies the spectral characteristics and imposes distinct regularity conditions on the domain. Although
the analytical techniques employed are analogous to those in [4], the operator structure considered here falls
into a different class, requiring boundary conditions directly on Ay(x). The paper establishes the funda-
mental spectral framework for this setting, including explicit eigenvalue–eigenfunction formulas, symmetry,
self-adjointness, and lower semi-boundedness of the associated operator.
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1. Introduction

The spectral theory of higher-order differential operators with unbounded operator coefficients has
been extensively studied in the literature, with significant contributions addressing both classical and
operator-valued coefficient settings (see, e.g., [7,8,15]). In [4], the primary focus was on operators of the
form

Lo(y(x)) := (−1)m
d2my(x)

dx2m
+A(y(x)),

where A is a positive self-adjoint operator in a Hilbert space H, appearing only as a multiplicative term
after differentiation.

In the present paper, we consider an alternative formulation given by

Loy(x) := (−1)m
(
Ay(x)

)(2m)
+Am(y(x)),

in which the highest-order derivatives are applied directly to Ay(x), and the operator A also appears in an
iterated composition form Am. In contrast to classical models, the present formulation requires boundary
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conditions directly on Ay(x), thereby altering the functional analytic setting and the associated spectral
structure. This departure from the standard framework motivates a detailed spectral analysis within
this alternative operator model. The dual placement of both within the highest–order derivatives and as
an independent power term has not been systematically addressed in the literature. This configuration
imposes domain regularity conditions and spectral characteristics that are fundamentally different from
those arising in the classical framework. This change in structure leads to a distinct functional–analytic
framework: the domain requires higher regularity for both y and Ay, and the boundary conditions are
imposed directly on Ay(x) rather than on y(x).

Although the methods employed (spectral decomposition, eigenfunction expansions, and coercivity
estimates) share similarities with those in [4], the model considered here leads to a distinct eigenvalue
structure,

λk,j = k2mδj + δmj ,

where {δj} are the eigenvalues of A.

The purpose of this study is to establish the self-adjointness, lower semi-boundedness, and explicit
spectral representation for this operator-differential problem, thereby providing a rigorous analytical
foundation for further developments, such as regularized trace formulas and asymptotic spectral analysis,
within this alternative operator setting.

The spectral theory of differential operators with operator-valued (and potentially unbounded) coef-
ficients has deep roots in classical analysis. The seminal works of Gelfand and Levitan [7,8] introduced
spectral transformation techniques and laid the groundwork for trace identities, which were later extended
to non-selfadjoint settings by Lidskii [15,16] through the development of generalized trace formulas.

In more recent decades, significant progress has been made in abstract frameworks involving operator-
differential equations. In particular, the work of Adıgüzelov and collaborators [1,3,4,5,2] has conducted
comprehensive analyses on spectral properties and established regularized trace identities for higher-
order differential expressions with unbounded self-adjoint operator coefficients in Hilbert spaces. While
this paper does not derive explicit regularized trace formulas, it establishes the foundational spectral
framework by rigorously proving self-adjointness, lower semi-boundedness, and characterizations of the
discrete spectrum for Lo.

This study also builds upon the prior contributions of Gül [10,12,13], who developed spectral de-
compositions and coercive estimates in the context of abstract elliptic and operator-differential systems.
The operator-theoretic formulation adopted here is intended to both complement and extend this line of
research.

Furthermore, recent developments by Sezer and Bakşı [17] have examined regularized traces and
spectral completeness for operator-differential systems under generalized or non-classical boundary con-
ditions. Classical analytical treatments, such as those of Smirnov [19], continue to provide essential tools
in the functional analytic setting employed in this work.

2. Preliminaries

We begin by establishing the operator framework and functional setting necessary to analyze dif-
ferential expressions with unbounded operator coefficients in an infinite-dimensional separable Hilbert
space.

Let H be an infinite-dimensional separable Hilbert space, and let A : D(A) ⊂ H → H be a self-adjoint
operator such that A ≥ I, A−1 ∈ σ∞(H). Define H1 := L2([0, π];H) with the inner product

(f, g)H1
=

∫ π

0

(f(x), g(x))Hdx.

The differential operator of interest is defined by

Loy(x) := (−1)m(Ay(x))2m +Amy(x),

subject to boundary conditions ensuring the self-adjointness of the associated operator
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3. The Operator Lo and Its Spectral Properties

We define the differential operator Lo in the Hilbert spaceH1 and conduct a detailed examination of its
spectral structure under suitable boundary conditions. The eigenvalues and eigenfunctions are explicitly
derived and shown to form a complete spectral decomposition. Let H be an infinite-dimensional separable
Hilbert space, where the inner product and the norm are denoted by (·, ·) and ∥ · ∥, respectively. We
denote the set of kernel operators from H to H as σ1(H). Let H1 = L2([0, π];H) denote the space of
all strongly measurable functions f defined on the interval [0, π] with values in H, such that for every
g ∈ H, the scalar function (f(x), g) is measurable on the interval [0, π], and∫ π

0

∥f(x)∥2dx < ∞.

The space H1 is also a separable Hilbert space with the inner product

(f, g)H1 =

∫ π

0

(f(x), g(x))dx, f, g ∈ H1.

We consider the operator Lo in H1, generated by the differential expression

ℓo(y) = (−1)m(Ay(x))2m +Amy(x),

where A : D(A) → H is a densely defined operator on H and Am = A ◦A ◦ · · · ◦A (with m applications
of A). A∗ is the adjoint operator of A.

We assume that A is self-adjoint, satisfies A ≥ I (where I is the identity operator), and that A−1 ∈
σ∞(H), meaning that A−1 is a compact operator.

Let δ1 ≤ δ2 ≤ · · · ≤ δn ≤ . . . be the eigenvalues of the operator A, and let ν1, ν2, . . . , νn, . . . be the
orthonormal eigenvectors corresponding to these eigenvalues. Each eigenvalue is repeated according to
its multiplicity.

Let D(Lo) denote the set of functions y(x) and A(y(x)) of the space H1 satisfying the following
conditions:

1. y(x) has a continuous derivative of order 2m with respect to the norm in H on the interval [0, π].

2. Ay(x) has a continuous derivative of order 2m with respect to the norm in H on the interval [0, π].

3. For every x ∈ [0, π], y(x) ∈ D(A) is continuous with respect to the norm in H.

4. (Ay(0))2i−1 = (Ay(π))2i−1 = 0 for i = 1, 2, . . .m.

The operator Lo is symmetric, and its domain is dense in ; its closure in H1 will also be shown to be
symmetry. The operator Lo is symmetric, and its closure D(Lo) = H1. Let us consider the linear operator
L0y = ℓo(y) from D(Lo) to H1. The eigenvalues and eigenvectors of Lo are given by:

k2mδj + δmj , Mk cos(kx)νj ,

where k = 0, 1, 2, . . . and j = 1, 2, . . . , with the normalization constants Mk defined as:

Mk =


1√
π
, if k = 0,√
2
π , if k = 1, 2, . . .

These eigenvalues and eigenvectors form the spectral decomposition of the operator Lo
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4. Main Results

We now present the principal theoretical findings of the paper, including rigorous statements and
proofs of key properties of the operator Lo and its relation to the underlying operator A.

Loy(x) := (−1)m(Ay(x))2m +Amy(x)

defined in the Hilbert space H1 = L2([0, π];H), where A is a self-adjoint, positive, and unbounded
operator acting in an infinite-dimensional separable Hilbert space H, satisfying A ≥ I and A−1 ∈ σ∞(H).
Under these conditions, we establish the following main result.

To construct higher-order differential expressions involving unbounded operator coefficients, it is cru-
cial to establish the domain and well-definedness of powers of the underlying operator.

Theorem 4.1 Let A : D(A) ⊂ H → H be a densely defined linear operator on a Hilbert space H such
that D(A) = H. For a fixed integer m ≥ 1, define the operator Am recursively by

A1 = A, Ak+1 = A ◦Ak for k = 1, 2, . . . ,m− 1.

Then the operator power Am is well-defined and densely defined on the domain

D(Am) := {y ∈ D(A) | Aky ∈ D(A) for all k = 1, . . . ,m− 1}.

The domain D(Am) is dense in H, ensuring the operator Am is densely defined.

Proof: Let y : [0, π] → H be a function such that y ∈ C2m([0, π];H)) and y(x) ∈ D(A) for all x ∈ [0, π].
Under the given assumption, Ay(x) ∈ C2m([0, π];H), so that Ay(x) ∈ H and is sufficiently regular to
ensure Ay(x) ∈ D(A) for all x. We conclude that

Ay(x) ∈ D(A) for all x ∈ [0, π]

and
A2(y(x)) := A(A(y(x))).

Continuing inductively, assume that Ak(y(x)) ∈ D(A) for some k ≤ m− 1. Then the composition

Ak+1(y(x)) := A(Ak(y(x))).

By the principle of mathematical induction, we conclude that Amy(x) ∈ H and Am(y(x)) is well-defined
on D(Am).

To prove that D(Am) is dense in H, we use the spectral properties of A. Since A is self-adjoint with
compact inverse A−1 ∈ σ∞(H), it admits a countable orthonormal basis {νj}∞j=1 ⊂ D(A) consisting of
eigenvectors corresponding to eigenvalues δj > 0. For each j,

Aνj = δjνj ⇒ Akνj = δkj νj ∈ D(A), for all k = 1, . . . ,m.

Thus, νj ∈ D(Am) for all j ∈ N, and since {νj} is an orthonormal basis of H, it follows that

D(Am) ⊃ span{νj} = H.

Therefore, the domain D(Am) is dense in H. 2

Analyzing the transformation behavior of eigenvalues and eigenvectors under operator powers is funda-
mental in spectral theory.

Theorem 4.2 Let δ1 ≤ δ2 ≤ · · · ≤ δn ≤ . . . be the eigenvalues of the operator A, with corresponding
orthonormal eigenvectors ν1, ν2, . . . , νn, . . . Then the eigenvalues of the operator Am are

δm1 ≤ δm2 ≤ ... ≤ δmn ≤ ...

and the corresponding orthonormal eigenvectors are identical to those of A
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Proof: Let A : D(A) ⊂ H be a self-adjoint operatorin an infinite-dimensional separable Hilbert space
with D(A) = H, with compact inverse. Then its spectrum consists of a countable sequence of positive
real eigenvalues {δj}∞j=1, and there exists a complete orthonormal set of eigenvectors {νj}∞j=1 ⊂ D(A)
such that

Aνj = δjνj , for each j ∈ N.

We now show that each νj is also an eigenvector of Am, with corresponding eigenvalue δmj , and that
Amνj is well-defined for all m ∈ N.

This follows from the recursive application of A:

A2(νi) := A(Aνi) = A(δiνi) = δiAνi = δ2i νi,

A3(νi) := A(A2νi) = A(δ2i νi) = δ2iAνi = δ3i νi,

and, in general,
Amνi = δmi νi,

Moreover, since each νj satisfies Akνj = δkj νj ∈ D(A) for all 1 ≤ k < m, and νj ∈ D(A), it follows
that Amνj is well-defined and νj belongs to the domain of Am.

Therefore, νi remains an eigenvector of Am with eigenvalue δmi . Since νi is an orthonormal basis
of eigenvectors for A, it is also an orthonormal basis of eigenvectors for Am, and the corresponding
eigenvalues are δmi . 2

To ensure the self-adjointness of differential expressions involving operator powers, we must verify the
self-adjointness of these powers.

Theorem 4.3 Let A : D(A) ⊂ H be a self-adjoint operator with D(A) = H and unbounded linear
operator in an infinite-dimensional separable Hilbert space H, with compact inverse. Assume that for any
y ∈ D(A), the mapping x → y are 2m times continuously diffrentiable on [0, π] in the norm of H, and
that A is independent of x. Then the operator Am, defined as the m-fold composition Am = AoAo...oA,
is self-adjoint on its natural domain D(Am).

Proof: We first note that since

y(x) ∈ C2m([0, π];H)) and Ay(x) ∈ C2m([0, π];H)),

and A is independent of x, the operator, being independent of x, commutes with differentiation; hence,
one may interchange their order. That is

dk

dxk
(A(y(x)) = A(

dk

dxk
y(x)),

for all 0 ≤ k ≤ 2m. (Ay(x))k ∈ C2m([0, π];H)), for all k = 1, ...,m. y(x) ∈ D(Am) for each x ∈ [0, π].
Consider the operator Am defined by the composition, where the domain is given by

D(Am) :=
{
y ∈ D(A)

∣∣Aky ∈ D(A), for all k = 1, 2, . . . ,m− 1
}
.

This recursive definition ensures that the composition A ◦Ak is well-defined for each k, and the domain
D(Am) is dense in H. Now we prove that Am is self-adjoint. The self-adjointness of Am is established
via mathematical induction on m.
For m = 1, this is the self-adjointness of A :

(Ax, y) = (x,Ay).

Assume that the equality holds for m = k, i.e.,

(Akx, y) = (x,Aky).



6 E. GÜL and M. ALBAYRAK

Assume that Ak is self-adjoint for some k ≥ 1. Define Ak+1 := AoAk, we aim to demonstrate that Ak+1

inherits self-adjointness. Let x, y ∈ D(Ak+1) ⊂ D(Ak) ∩D(A). Then

(Ak+1x, y) = (A(Akx), y) = (Akx,Ay) = (x,Ak(Ay)) = (x,Ak+1y),

(Ax, y) = (x,Ay).

(Akx, y) = (x,Aky).

Since A and Ak are self-adjoint, then for m = k + 1 : Furthermore, since A and Ak are both closed
and densely defined, their composition Ak+1 is closed and densely defined. A closed, symmetric, densely
defined operator whose adjoint is an extension of itself is self-adjoint. Therefore, by induction Am is self
adjoint on its natural domain D(Am), as claimed. By induction, Am is self-adjoint on D(Am). 2

We now derive the eigenvalues and corresponding eigenfunctions of the operator, linking them to those
of the generating operator.

Theorem 4.4 Let {νj}j∈N be an orthonormal system in H, and let k ∈ N. Suppose νj ∈ D(Am). Then
the functions

φk,j(x) := cos(kx)νj

belong to H1 = L2([0, π];H), and are eigenfunctions of the operator Lo corresponding to the eigenvalues
λk,j := k2mδj + δm.

j

Proof: Note that νj ∈ D(Am) implies cos(kx)νj ∈ D(Am) for all x ∈ [0, π], since the scalar multiplier
does not affect domain membership. Therefore, the operator Am acts pointwise on φk,j(x) := cos(kx)νj ,
and all expressions involving Am and higher derivatives are valid. To verify the eigenstructure, we
apply the operator Lo to the functions cos kxνj , where νj is an eigenvector of A with eigenvalue δj , i.e,
Aνj = δjνj , and Amνj = δmj νj . A straightforward computation yields the following expression:

Lo(cos(kx)νj) = (−1)m(A(cos(kx)νj))
2m +Am(cos(kx)νj).

As νj is independent of x, differentiation acts solely on the cosine term.

d2m

dx2m
[cos(kx)νj ] = (−1)mk2m cos(kx)νj (4.1)

and
d2m

dx2m
(A(cos(kx)νj) = A(

d2m

dx2m
(cos(kx)νj)) = (−1)mk2m cos(kx)νj (4.2)

From 4.1 and 4.2

Lo(cos kx.νj) = (−1)m(A(cos(kx)νj))
2m +Am(cos(kx)νj)

= (−1)m(cos kx)2mνjδj + cos(kx)δmj νj

= (k2mδj + δmj ) cos(kx)νj

Consequently, cos(kx)νj is an eigenfunction of Lo, corresponding to the eigenvalue k
2mδj+δmj , as required.

2

This integral identity plays a crucial role in establishing the symmetric nature of the operator.

Lemma 4.1 Let y(x), z(x) ∈ D(L0). Then the following identity holds:∫ π

0

((Ay(x))2m, z(x))dx =

∫ π

0

(y(x), (Az(x))2m)dx.
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Proof: The proof proceeds by successive integration by parts, leveraging the boundary conditions

(Ay(0))2i−1 = (Ay(π))2i−1 = 0, i = 1, . . . ,m,

which guarantee the vanishing of boundary terms. The identity is established through successive appli-
cations of integration by parts and the self-adjointness of the operator A. Let us denote the derivatives
with respect to x by primes. Starting with the left-hand side:∫ π

0

((Ay(x))2m, z(x))dx.

Applying integration by parts, we obtain:

= ((Ay(x))2m−1, z(x)) |π0 −
∫ π

0

((Ay(x))2m−1, z|(x))dx

Repeating this process for each derivative order:

= −((Ay(x))2m−2, z|(x)) |π0 +

∫ π

0

((A(y(x))2m−2, z||(x))dx,

After carrying out the integration procedure iteratively, we obtain:

=

∫ π

0

(Ay(x), z2m(x))dx.

Since A is self-adjoint

(Ay(x), z2m(x)) = (y(x), Az2m(x)),

and from linear operator of A, and we have:

(Ay(x), z2m(x)) = (y(x), (Az(x))2m).

Thus, ∫ π

0

((Ay(x))2m, z(x))dx =

∫ π

0

(y(x), (Az(x))2m)dx.

2

Before establishing self-adjointness, we first verify the symmetry of the operator.

Theorem 4.5 Suppose that y, z ∈ D(Lo)and for every x ∈ [0, π], y(x), z(x) ∈ D(Am). Then the operator
Lo is symmetric on the Hilbert space H1, i.e.,

(Loy, z)H1 = (y, Loz)H1 .

The operator Lo is symmetric on the Hilbert space H1.

Proof: We further assume that for every x ∈ [0, π], both y(x) and z(x) possess sufficient regularity
under the operator A, so that all iterated compositions up to order m are defined. In particular,
Aky(x), Akz(x) ∈ D(A) for all k < m, ensuring that all terms involving (Ay(x))2m, Amy(x), and similarly
for z(x), are well-defined in H. We aim to prove that for all y, z ∈ D(Lo), the symmetric condition

(Loy, z)H1
= (y, Loz)H1

,
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holds.

By the definition of the inner product in H1, we have :

(Loy, z)H1
=

∫ π

0

(Loy, z)Hdx =

∫ π

0

(ℓo(y), z)Hdx

substituting this into the inner product the definition ofLo,

=

∫ π

0

((−1)m(Ay(x))2m +Amy(x), z(x))dx

= (−1)m
∫ π

0

((Ay(x))2m, z(x))dx+

∫ π

0

(Amy(x), z(x))dx

By applying Lemma 4.1 in conjunction with Theorem 4.3

= (−1)m
∫ π

0

(y(x), (Az(x))2m)dx+

∫ π

0

(y(x), Amz(x))dx

=

∫ π

0

(y(x), (−1)m(Az(x))2m +Amz(x))dx

=

∫ π

0

(y(x), ℓo(z))dx

=

∫ π

0

(y(x), Loz)Hdx.

Hence,
(Loy, z)H1

= (y, Loz)H1
, ∀y, z ∈ D(Lo).

2

The following example illustrates the abstract theory in a concrete Hilbert space setting, clarifying the
spectral structure.

Example 4.1 Let H = L2([0, 1]), and consider the differential operator

A := − d2

dx2

with domain
D(A) :=

{
f ∈ H2([0, 1])

∣∣ f(0) = f(1) = 0
}
.

Then A is a positive self-adjoint operator with compact inverse in H. The eigenvalues of A are given by

δn = (nπ)2, n ∈ N,

and the corresponding orthonormal eigenfunctions are

νn(x) =
√
2 sin(nπx), n ∈ N.

We define the operator Lo in the Hilbert space H1 = L2([0, π];H), generated by the expression

Loy(x) = (−1)m(Ay(x))2m +Amy(x),

subject to boundary conditions

(Ay(0))2i−1 = (Ay(π))2i−1 = 0, i = 1, . . . ,m.

In this setting, the eigenfunctions of Lo are

φk,n(x) = cos(kx)νn, k ∈ N0, n ∈ N,
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and the corresponding eigenvalues are

λk,n = k2mδn + δmn = k2m(nπ)2 + (nπ)2m.

This example demonstrates how the abstract theory applies to a classical differential operator with
well-known spectral properties. The operator A satisfies all required conditions: it is self-adjoint, posi-
tive, has compact inverse, and possesses a discrete spectrum. The construction of Lo follows naturally
from this setting, and the spectral data of Lo can be explicitly described in terms of the eigenvalues and
eigenfunctions of A

We establish that the powers of the operator are bounded below by the identity, which is crucial for
coercivity.

Theorem 4.6 Let A be a self-adjoint operator in a Hilbert space H, and suppose that A ≥ I where I
is the identity operator and D(A) = H. Assume further that for a given positive integer m, the iterated
compositions

A1 := A, Ak+1 := A ◦Ak

are well-defined on the domain

D(Am) :=
{
y ∈ D(A)

∣∣ Ajy ∈ D(A) for all j = 0, 1, . . . ,m− 1
}
,

where A0 := I and D(A) is dense in H. Then the operator Am, defined on the domain D(Am), is
self-adjoint and satisfies the inequality:

Am ≥ I on D(Am).

Proof: The iterated powers Ak are considered to act on elements y ∈ D(A) such that the successive
compositions are well-defined, i.e., Ajx ∈ D(A) for all j < k. This structure guarantees that Aky ∈
D(A) ⊂ H for all k ≤ m, and in particular, that the inequality Am ≥ I is meaningful on its natural
domain. We proceed by induction on the positive integer m. For m = 1, the assumption implies that
A ≥ I. Assume that Ak ≥ I for some k ∈ N. Since A is a positive self-adjoint operator, it follows that
Ak is also positive and self-adjoint. Then

Ak+1 = AkA ≥ AkI = Ak ≥ I.

Therefore, by induction, Am ≥ I holds for all m ∈ N .
Hence, the operator Am is bounded below by the identity operator. 2

Theorem 4.7 [9,14] Let A be a self-adjoint operator on a Hilbert space H. Then the spectrum of A lies
entirely within the set of real numbers, i.e.,

σ(A) ⊂ R.

Theorem 4.8 [11] Let A be a self-adjoint operator on a Hilbert space H such that A ≥ I. Then every
eigenvalue δj of A satisfies δj ≥ 1, and the operator A−1 exists and is bounded.

This result consolidates key spectral properties of the operator, including positivity and invertibility.

Corollary 4.1 Let A be a self-adjoint operator such that A ≥ I and let Am = A ◦A ◦ · · · ◦A (m times).
Then:

1. The set of eigenvalues of the operator is contained in the real line, i.e., σ(Am) ⊂ R.

2. The eigenvalues of Am are greater than or equal to 1, i.e., σ(Am) ⊂ [1,∞).

3. The inverse operator A−m exists and is bounded.
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4. The eigenvalues of the operator ℓo(y) = (−1)m(Ay(x))2m +Amy(x) are all positive.

Proof:

1. Since Am is self-adjoint and by Theorem 5.3, we have σ(Am) ⊂ R.

2. From Theorem 4.6, we have Am ≥ I, which implies that for all x ∈ H,

(Amx, x) ≥ (Ix, x).

Since A has purely discrete spectrum, it follows that σ(Am) = {δmj }∞j=1, where each δmj ≥ 1.

3. By Theorem 4.8, since A ≥ I, the operator A−1 exists and is bounded. Hence, A−m = (A−1)m also
exists and is bounded. As Am is self-adjoint by Theorem 4.3, all points in R \ [1,∞) are regular
points, i.e., 0 ∈ ρ(Am), implying (Am − 0I)−1 = A−m is defined on the entire space.

4. As the eigenvalues of ℓo possess the same property as those of Am, it follows that the eigenvalues
of ℓo are positive

2

5. Closure Properties

Within the theory of unbounded operators, it is critical to confirm that the constructed differential
operator is closable and that its closure retains key structural properties such as symmetry and positivity.
In this study, we establish that the symmetric operator Lo admits a closure Lo, which is itself symmetric
and densely defined in the Hilbert space H1. Furthermore, the quadratic form associated with Lo is shown
to be coercive, satisfying

(Loy, y)H1 ≥ ∥y∥2H1
, ∀y ∈ D(Lo).

This ensures that the spectrum of Lo is bounded below and lies entirely on the real axis. Consequently,
the interval (−∞, 1) is included in the resolvent set ρ(Lo), ensuring the closed operator is suitable for
rigorous spectral analysis and further trace considerations.

Theorem 5.1 [4] Let A be a symmetric operator. Then:

1. A ⊂ A∗.

2. A is symmetric.

Theorem 5.2 [6,18] If a closed symmetric operator has a complete set of eigenvectors, then it is self-
adjoint.

We confirm that the symmetric operator admits a closure, which is also symmetric.

Corollary 5.1

1. Since Lo is symmetric, we have Lo ⊂ L∗
o.

2. Let Lo be a symmetric operator. Then its closure Lo is symmetric.

3. If Lo is closed and symmetric, it follows that Lo is self-adjoint.

Proof: Direct consequence of Theorem 5.1 and Theorem 5.2 2

We denote the closure of L
′

o := Lo. Then L
′

o is a closed symmetric operator defined as

L
′

o : D(L
′

o) → H1.
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Theorem 5.3 [9,14] Let A be a self-adjoint operator on a Hilbert space H. Then the spectrum of A lies
entirely within the set of real numbers, i.e.,

σ(A) ⊂ R.

We establish the positivity of the quadratic form associated with the closure of the operator.

Theorem 5.4 Let L
′

o be the closure of the operator Lo. Assume that for every y ∈ D(L
′

o), there exists a
sequence {yn} ⊂ D(Lo) such that yn(x) ∈ D(Am) for all x ∈ [0, π]. Then the following inequality holds:

(L
′

oy, y)H1
≥ (y, y)H1

.

Proof: Since L
′

o := D(Lo), observe that y ∈ D(L
′

o) implies y ∈ D(Lo). Then there exists a sequence
(yn) ⊂ D(Lo) such that lim yn = y and limLoyn = y∗, with Loy = y∗.
We analyze

(L
′

oy, y), y)H1
=

∫ π

0

(L
′

oy, y)Hdx =

∫ π

0

(Loy, y)H .dx (5.1)

Then,
(Loy, y) = (y∗, y) = (limLoyn, lim yn) = lim(Loyn, yn) = lim

n→∞
(ℓoyn, yn). (5.2)

It follows that

(ℓoyn, yn) = ((−1)m(Ayn(x))
2m +Amy(x), yn(x))

= ((−1)m(Ayn(x))
2m, yn(x)) + (Amy(x), yn(x)). (5.3)

Substituting (5.3) into (5.2):

(Loy, y) = lim
n→∞

{((−1)m
(
Ayn(x))

2m, yn(x)
)
+ (Amy(x), yn(x))} (5.4)

Substituting (5.4) into (5.1):

(L
′

oy, y)H1
=

∫ π

0

(Loy, y)Hdx

= lim
n→∞

∫ π

0

{(
(−1)m(Ayn(x))

2m, yn(x)
)
+ (Amy(x), yn(x))

}
= lim

n→∞
{
∫ π

0

((−1)m
(
Ayn(x))

2m, yn(x)
)
}+ lim

n→∞
{
∫ π

0

(Amy(x), yn(x))}

The first term is evaluated by repeated integration by parts using repeated integration by parts. Due to
the boundary conditions

(Ay(0))2i−1 = (Ay(π))2i−1 = 0 for i = 1, 2, . . . ,m,

the boundary terms arising from integration by parts vanish. Therefore,

(−1)m
∫ π

0

(
Ayn(x))

2m, yn(x)
)
H
dx = (−1)m(−1)m

∫ π

0

(
Amyn(x), y

(m)
n (x)

)
H
dx.

Thus,

(L
′

oy, y)H1
=

= lim
n→∞

∫ π

0

((Ayn(x))
m, y(m)

n (x))Hdx+ lim
n→∞

∫ π

0

(Amyn(x), yn(x))Hdx.

= lim
n→∞

∫ π

0

((Aymn (x)), y(m)
n (x))Hdx+ lim

n→∞

∫ π

0

(Amyn(x), yn(x))Hdx.
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In Theorem 4.6, since A ≥ I, it follows that Am ≥ I, due to the linearity of the operator A

(Amyn(x), yn(x))H ≥ ∥yn(x)∥2H for all x ∈ [0, π],

and
((Ayn(x))

m, ymn (x))H ≥ ∥ymn (x)∥2H for all x ∈ [0, π].

Integrating both sides: ∫ π

0

((Amyn(x)), yn(x)))Hdx ≥
∫ π

0

∥yn(x)∥2Hdx = ∥y∥2H1
,

and ∫ π

0

((Ayn(x))
m, ymn (x)))Hdx ≥

∫ π

0

∥ymn (x)∥2Hdx = ∥ym∥2H1
.

Finally, since the first term (coming from (A)2m via integration by parts) is non-negative due to
coercivity and positivity of Am, we conclude:

(Loy, y)H1 ≥ ∥y∥2H1
= (y, y)H1 .

2

The spectral lower bound implies that the interval (−∞, 1) lies in the resolvent set of the operator.

Corollary 5.2 The interval (−∞, 1) lies in the resolvent set of L
′

o, i.e.,

(−∞, 1) ⊂ ρ(L
′

o).

Proof: Since L
′

o is bounded from below by the identity operator as shown in Theorem 5.4, and its
spectrum is real due to symmetry, it follows that the entire negative real line (−∞, 1) and the interval
lies in the resolvent set ρ(L

′

o). 2

6. Conclusion

This work has examined a class of higher–order self–adjoint differential operators in which the un-
bounded operator appears both within the highest–order derivatives and as an independent power term .
The simultaneous occurrence of the unbounded operator in these two distinct roles, together with the im-
position of boundary conditions directly on, yields a functional–analytic framework that is fundamentally
distinct from those treated in earlier studies, including [4].

Within this framework, we have rigorously determined the domain of the operator, established its
well–posedness, and proved self–adjointness, lower semi–boundedness, and an explicit spectral decompo-
sition. The spectral representation demonstrates that the eigenfunctions constitute a complete orthonor-
mal basis of, and that the associated eigenvalues are strictly positive and can be expressed explicitly in
terms of the spectrum of.

The results obtained here form a rigorous analytical foundation for subsequent investigations aimed
at deriving regularized trace formulas, asymptotic eigenvalue distributions, and other spectral invariants
within this operator setting. Such developments will enable a more comprehensive comparison with clas-
sical operator–differential models and may reveal further structural properties intrinsic to the formulation
presented in this paper.

In addition to their theoretical significance, the techniques and conclusions established are applicable
to a broader class of operator–differential systems in which the coefficient operator occupies a dual
position, acting both inside and outside the differential expression. This structural flexibility allows for
enriched modelling capacity while preserving the fundamental spectral properties required for precise
mathematical analysis. The present results also serve as a groundwork for a forthcoming study in which
regularized trace formulas and related spectral invariants will be derived for this class of operators.
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5. Adıgüzelov E, Kanar P., The second regularized trace of a second order differential operator with unbounded operator
coefficient, International Journal of Pure and Applied Mathematics. 22(3), 349-365, (2005).

6. A. A. Fazullin., Trace formulae for systems with operator coefficients, Sib. Math. J. 62, 217-230, (2021).

7. Gelfand IM., On identities for eigenvalues of a differential operator of second order, Uspehi Mat. Nauk. 1(67), 191-198,
(1956).

8. Gelfand IM, Levitan MB., On a simple identity for the eigenvalues of a second-order differential operator, Dokl. Akad.
Nauk SSSR. 88(4), 593-596, (1953).

9. I. M. Gelfand and B. M. Levitan., Spectral theory of differential operators, Uspekhi Mat. Nauk 15, 3-72, (1960).

10. Gül E. The trace formula for a differential operator of fourth order with bounded operator coefficients and two term,
Turk. J. Math. 28, 231-254, (2004)

11. Gül E., A regularized trace formula for differential operator of second order with unbounded operator coefficients given
in a finite interval, International Journal of Pure and Applied Mathematics. 32(2), 225-244, (2006).

12. Gül E., On the regularized trace of a second order differential operator, Applied Mathematics and Computation 198,
471-480, (2008).

13. Gül E., On the second regularized trace formula for a differential operator with unbounded coefficients, Int.Sci.Conf.
Algebraic and geometric methods of analysis, Book of abs., Odesa, Ukraine. 22-23, (2018).

14. Lidskii VB, Sadovnicii VA., Regularized sums of roots of a class of entire functions, Func. Anal. and its apps. 1(2),
52-59,(1967).

15. Lidskii VB, Sadovnicii VA., Asymptotic formulas for the roots of a class of entire functions, Math. USSR. Sb. 4,
519-528 (1968).

16. Lidskii VB, Sadovnicii VA., Trace Formulas in the Case of the Orr-Sommerfeld Equation, Izv. Akad. Nauk SSSR Ser.
Mat. 32(3), 633–648, (1968).
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