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On the Structure and Generalization of Bihyperbolic Leonardo Sequences

Hasan Gökbaş∗ and Anetta Szynal-Liana

abstract: In this paper, we give some properties of the bihyperbolic Leonardo numbers, among others the
Binet formula, generating function formula and the general bilinear index-reduction formula which implies
d’Ocagne, Vajda, Halton, Catalan, and Cassini identities. We also give the matrix representation and some
sum formulas of the bihyperbolic Leonardo numbers. Moreover, we present a one-parameter generalization of
the bihyperbolic Leonardo numbers and their properties.
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1. Introduction

Let n ≥ 0 be an integer. The nth Leonardo number Len is defined recursively by

Len = Len−1 + Len−2 + 1, for n ≥ 2

with Le0 = 1, Le1 = 1. This sequence is the sequence of the on-line encyclopedia of integers sequences
[14]. The first ten Leonardo numbers are 1, 1, 3, 5, 9, 15, 25, 41, 67, 109. The sequence of Leonardo
numbers can also be defined recursively by the formula

Len = 2Len−1 − Len−3, for n ≥ 3

with Le0 = 1, Le1 = 1 and Le2 = 3. Properties of Leonardo numbers we can find in [5]. This sequence
has applications in the theory of hypercomplex numbers. Many authors studied Leonardo numbers in
the context of complex numbers, dual numbers, hybrid numbers, quaternions, and others. Complex
Leonardo numbers were introduced and studied in [10]. Dual Leonardo numbers were examined in
[9], dual hyperbolic generalised Leonardo numbers in [6], and bicomplex Leonardo numbers in [15].
Kara and Yilmaz [8] studied Gaussian Leonardo numbers and hybrid numbers with Gaussian Leonardo
coefficients. Hybrid Leonardo numbers were investigated in [2]. Spreafico and Catarino introduced hybrid
hyper Leonardo numbers in [12]. In [13], a new class of Leonardo hybrid numbers was presented. In
[11], defined generalized bronze Leonardo sequence. In [7], hyperbolic Leonardo and Francois quaternions
were presented and worked. Hyperbolic k-Leonardo and k-Leonardo Lucas quaternions were studied in
[1].

In this paper, we define bihyperbolic Leonardo numbers and give some of their properties. We also
consider one-parameter generalization of Leonardo numbers and their bihyperbolic version.

Let H2 be the set of bihyperbolic numbers ζ of the form

ζ = x0 + x1j1 + x2j2 + x3j3,
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where x0, x1, x2, x3 ∈ R and j1, j2, j3 /∈ R are operators such that

j21 = j22 = j23 = 1, j1j2 = j2j1 = j3, j1j3 = j3j1 = j2, j2j3 = j3j2 = j1. (1.1)

Note that the multiplication of bihyperbolic numbers can be made analogously to the multiplication
of algebraic expressions. The addition and the subtraction of bihyperbolic numbers is done by adding
and subtracting corresponding terms and hence their coefficients. The addition and multiplication in
H2 are commutative and associative, (H2,+, ·) is a commutative ring. For the algebraic properties of
bihyperbolic numbers, see [4].

Let n ≥ 0 be an integer. The nth bihyperbolic Leonardo number BhLen is defined as

BhLen = Len + Len+1j1 + Len+2j2 + Len+3j3,

where Len is the nth Leonardo number and j1, j2, j3 are units which satisfy (1.1). The bihyperbolic
Leonardo numbers starting from n = 0 can be written as

BhLe0 = 1 + 1j1 + 3j2 + 5j3,

BhLe1 = 1 + 3j1 + 5j2 + 9j3,

BhLe2 = 3 + 5j1 + 9j2 + 15j3,

BhLe3 = 5 + 9j1 + 15j2 + 25j3,

BhLe4 = 15 + 25j1 + 41j2 + 67j3,

BhLe5 = 25 + 41j1 + 67j2 + 109j3.

2. Bihyperbolic Leonardo numbers

In this section, we will start by giving the properties of bihyperbolic Leonardo numbers.

Theorem 1 [5] (Binet formula for Leonardo numbers) For n ≥ 0

Len = 2

(
αn+1 − βn+1

α− β

)
− 1 =

α(2αn − 1)− β(2βn − 1)

α− β
,

where

α =
1 +

√
5

2
, β =

1−
√
5

2
. (2.1)

Theorem 2 (Binet formula for bihyperbolic Leonardo numbers) Let n ≥ 0 be an integer. Then

BhLen =
2αn+1

α− β
α̂− 2βn+1

α− β
β̂ − 1̂, (2.2)

where α, β are given by (2.1) and

α̂ = 1 + αj1 + α2j2 + α3j3, β̂ = 1 + βj1 + β2j2 + β3j3, 1̂ = 1 + j1 + j2 + j3. (2.3)

Proof: By Theorem 1, we get

BhLen =

(
2

(
αn+1 − βn+1

α− β

)
− 1

)
+

(
2

(
αn+2 − βn+2

α− β

)
− 1

)
j1

+

(
2

(
αn+3 − βn+3

α− β

)
− 1

)
j2 +

(
2

(
αn+4 − βn+4

α− β

)
− 1

)
j3

=
2αn+1

α− β

(
1 + αj1 + α2j2 + α3j3

)
− 2βn+1

α− β

(
1 + βj1 + β2j2 + β3j3

)
− (1 + j1 + j2 + j3) ,

which ends the proof.
Using (2.2), we can prove the following theorem.
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Theorem 3 (General bilinear index-reduction formula for bihyperbolic Leonardo numbers) Let a ≥ 0,
b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a+ b = c+ d. Then

BhLea ·BhLeb −BhLec ·BhLed =

=
4

5

(
αaβb + βaαb − αcβd − βcαd

)
α̂β̂

+
2√
5

(
−αa+1 − αb+1 + αc+1 + αd+1

)
α̂1̂

+
2√
5

(
βa+1 + βb+1 − βc+1 − βd+1

)
β̂1̂,

where α, β and α̂, β̂, 1̂ are given by (2.1) and (2.3), respectively.

Proof: By (2.2), we have

BhLea ·BhLeb −BhLec ·BhLed =

=

(
2αa+1

α− β
α̂− 2βa+1

α− β
β̂ − 1̂

)
·
(
2αb+1

α− β
α̂− 2βb+1

α− β
β̂ − 1̂

)
−
(
2αc+1

α− β
α̂− 2βc+1

α− β
β̂ − 1̂

)
·
(
2αd+1

α− β
α̂− 2βd+1

α− β
β̂ − 1̂

)

=
−4αa+1βb+1 − 4βa+1αb+1 + 4αc+1βd+1 + 4βc+1αd+1

(α− β)2
α̂β̂

+
−2αa+1 − 2αb+1 + 2αc+1 + 2αd+1

α− β
α̂1̂

+
2βa+1 + 2βb+1 − 2βc+1 − 2βd+1

α− β
β̂1̂

=
4

5

(
αaβb + βaαb − αcβd − βcαd

)
α̂β̂

+
2√
5

(
−αa+1 − αb+1 + αc+1 + αd+1

)
α̂1̂

+
2√
5

(
βa+1 + βb+1 − βc+1 − βd+1

)
β̂1̂

since a+ b = c+ d, α · β = −1 and α− β =
√
5.

For special values of a, b, c, d, by Theorem 3, we can obtain some identities for bihyperbolic Leonardo
numbers:

• d’Ocagne type identity – for a = n, b = m+ 1, c = n+ 1, d = m,

• Vajda type identity – for a = m+ r, b = n− r, c = m, d = n,

• first Halton type identity – for a = m+ r, b = n, c = r, d = m+ n,

• second Halton type identity – for a = n+ k, b = n− k, c = n+ s, d = n− s,

• Catalan type identity – for a = n+ r, b = n− r, c = d = n,

• Cassini type identity – for a = n+ 1, b = n− 1, c = d = n.

The bihyperbolic Leonardo numbers can also be written in recursive form

BhLen = BhLen−1 +BhLen−2 + 1̂, for n ≥ 2

or
BhLen = 2BhLen−1 −BhLen−3, for n ≥ 3.
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As with any sequence defined by the recurrence relations, we can also define bihyperbolic Leonardo
numbers with negative indices. Let n ≥ 0 be an integer. The bihyperbolic Leonardo number BhLe−n is
defined by

BhLe−n = BhLe−n+2 −BhLe−n+1 − 1̂,

or
BhLe−n = 2BhLe−n+2 −BhLe−n+3.

Using Leonardo numbers, we can also write BhLe−n as

BhLe−n = (−1)n [(Len−2 + 1) + (−Len−3 − 1)j1

+(Len−4 + 1)j2 + (−Len−5 − 1)j3]− 1̂.

Theorem 4 The generating formula for the bihyperbolic Leonardo numbers is

∞∑
n=0

BhLent
n =

=

(
1− t+ t2

)
+
(
1 + t− t2

)
j1 +

(
3− t− t2

)
j2 +

(
5− t− 3t2

)
j3

1− 2t− t3
.

Proof: Let h(t) be the generating function for the bihyperbolic Leonardo numbers as
∞∑

n=0
BhLent

n. We

get the following equations

2th(t) = 2

∞∑
n=0

BhLent
n+1

and

t3h(t) =

∞∑
n=0

BhLent
n+3.

After the needed calculations, the generating function for the bihyperbolic Leonardo numbers is obtained
as

∞∑
n=0

BhLent
n =

(BhLe2 − 2BhLe1) t
2 + (BhLe1 − 2BhLe0) t+BhLe0
1− 2t− t3

,

and consequently

∞∑
n=0

BhLent
n =

=

(
1− t+ t2

)
+
(
1 + t− t2

)
j1 +

(
3− t− t2

)
j2 +

(
5− t− 3t2

)
j3

1− 2t− t3
.

Theorem 5 Let n > 0 be an integer. The following equality holds

a)

 BhLen+3 BhLen+2 BhLen+1

BhLen+2 BhLen+1 BhLen
BhLen+1 BhLen BhLen−1


=

 BhLe3 BhLe2 BhLe1
BhLe2 BhLe1 BhLe0
BhLe1 BhLe0 BhLe−1

 2 1 0
0 0 1
−1 0 0

n

,

b)

 BhLe−n+3 BhLe−n+2 BhLe−n+1

BhLe−n+2 BhLe−n+1 BhLe−n

BhLe−n+1 BhLe−n BhLe−n−1


=

 BhLe3 BhLe2 BhLe1
BhLe2 BhLe1 BhLe0
BhLe1 BhLe0 BhLe−1

 0 0 −1
1 0 2
0 1 0

n

.
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Proof: a) For the proof, we use induction method on n. The equality holds for n = 1. BhLe3 BhLe2 BhLe1
BhLe2 BhLe1 BhLe0
BhLe1 BhLe0 BhLe−1

 2 1 0
0 0 1
−1 0 0


=

 2BhLe3 −BhLe1 BhLe3 BhLe2
2BhLe2 −BhLe0 BhLe2 BhLe1
2BhLe1 −BhLe−1 BhLe1 BhLe0


=

 BhLe4 BhLe3 BhLe2
BhLe3 BhLe2 BhLe1
BhLe2 BhLe1 BhLe0

 .

Now suppose that the equality is true for n > 1. Then, we can verify for n+ 1 as follows BhLe3 BhLe2 BhLe1
BhLe2 BhLe1 BhLe0
BhLe1 BhLe0 BhLe−1

 2 1 0
0 0 1
−1 0 0

n+1

=

 BhLe3 BhLe2 BhLe1
BhLe2 BhLe1 BhLe0
BhLe1 BhLe0 BhLe−1

 2 1 0
0 0 1
−1 0 0

n  2 1 0
0 0 1
−1 0 0


=

 BhLen+3 BhLen+2 BhLen+1

BhLen+2 BhLen+1 BhLen
BhLen+1 BhLen BhLen−1

 2 1 0
0 0 1
−1 0 0


=

 BhLen+4 BhLen+3 BhLen+2

BhLen+3 BhLen+2 BhLen+1

BhLen+2 BhLen+1 BhLen

 .

Thus, the theorem can be proved easily.
b) Similarly, the proof is seen by induction on n.

Lemma 1 [5] Let Len be the nth Leonardo number. In this case

n∑
m=0

Lem = Len+2 − (n+ 2),

n∑
m=0

Le2m = Le2n+1 − n,

n∑
m=0

Le2m+1 = Le2n+2 − (n+ 2).

In the next theorem, we can give the sum of the finite, finite odd and finite even terms of the
bihyperbolic Leonardo numbers.

Theorem 6 Let BhLen be the nth bihyperbolic Leonardo number. In this case

n∑
m=0

BhLem = BhLen+2 −
(
n · 1̂+BhLe2 −BhLe0

)
,

n∑
m=0

BhLe2m = BhLe2n+1 −
(
n · 1̂+BhLe1 −BhLe0

)
,

n∑
m=0

BhLe2m+1 = BhLe2n+2 −
(
n · 1̂+BhLe2 −BhLe1

)
.
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Proof:

n∑
m=0

BhLem =

n∑
m=0

(Lem + Lem+1j1 + Lem+2j2 + Lem+3j3)

=

n∑
m=0

Lem + j1

n∑
m=0

Lem+1 + j2

n∑
m=0

Lem+2 + j3

n∑
m=0

Lem+3

= (Len+2 − (n+ 2)) + (Len+3 − (n+ 4))j1

+ (Len+4 − (n+ 6))j2 + (Len+5 − (n+ 10))j3

= BhLen+2 − (n(1 + j1 + j2 + j3) + 2 + 4j1 + 6j2 + 10j3)

= BhLen+2 −
(
n · 1̂+BhLe2 −BhLe0

)
.

Other sum formulas are proven using through the same method.

3. One-parameter generalization of bihyperbolic Leonardo numbers

One-parameter generalization of Leonardo numbers, i.e. generalized Fibonacci–Leonardo numbers
were introduced in [3] quite recently.

Let n ≥ 0, t ≥ 1 be integers. The generalized Fibonacci-Leonardo numbers Le(t, n) are given by the
recurrence relation

Le(t, n) = Le(t, n− 1) + Le(t, n− 2) + (t− 1) for n ≥ 2, (3.1)

with initial terms Le(t, 0) = Le(t, 1) = 1.
As you can see, for t = 1 we obtain Le(1, n) = Fn+1 and for t = 2, we have Le(2, n) = Len. Recall

that Fn denotes the nth Fibonacci number defined recursively by Fn = Fn−1 + Fn−2 for n ≥ 2 with the
initial terms F0 = 0, F1 = 1.

Theorem 7 [3] (Binet formula for generalized Fibonacci–Leonardo numbers) Let n ≥ 0, t ≥ 1 be integers.
Then

Le(t, n) = t
αn+1 − βn+1

α− β
− (t− 1),

where α, β are given by (2.1).

Let n ≥ 0, t ≥ 1 be integers. The nth bihyperbolic generalized Fibonacci-Leonardo number BhLe(t, n)
is given by

BhLe(t, n) = Le(t, n) + Le(t, n+ 1)j1 + (t, n+ 2)j2 + Le(t, n+ 3)j3, (3.2)

where Le(t, n) is the nth generalized Fibonacci-Leonardo number and j1, j2, j3 are units which satisfy
(1.1).

The generalized Fibonacci-Leonardo numbers starting from n = 0, for t = 2, can be written as

BhLe(2, 0) = 1 + 1j1 + 3j2 + 5j3,

BhLe(2, 1) = 1 + 3j1 + 5j2 + 9j3,

BhLe(2, 2) = 3 + 5j1 + 9j2 + 15j3,

BhLe(2, 3) = 5 + 9j1 + 15j2 + 25j3,

BhLe(2, 4) = 15 + 25j1 + 41j2 + 67j3,

BhLe(2, 5) = 25 + 41j1 + 67j2 + 109j3.

Theorem 8 (Binet formula for bihyperbolic generalized Fibonacci–Leonardo numbers) Let n ≥ 0, t ≥ 1
be integers. Then

BhLe(t, n) =
tαn+1

α− β
α̂− tβn+1

α− β
β̂ − (t− 1)1̂,

where α, β and α̂, β̂, 1̂ are given by (2.1) and (2.3), respectively.
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Proof: The proof of Theorem 8 is analogous to the proof of Theorem 2.
Using (3.2), we get a general bilinear index-reduction formula for bihyperbolic generalized

Fibonacci–Leonardo numbers and other identities (Catalan, Cassini, etc.)

Theorem 9 (General bilinear index-reduction formula for bihyperbolic generalized Fibonacci–Leonardo
numbers) Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a+ b = c+ d. Then

BhLe(t, a) ·BhLe(t, b)−BhLe(t, c) ·BhLe(t, d) =

=
t2

5

(
αaβb + βaαb − αcβd − βcαd

)
α̂β̂

+
t(t− 1)√

5

(
−αa+1 − αb+1 + αc+1 + αd+1

)
α̂1̂

+
t(t− 1)√

5

(
βa+1 + βb+1 − βc+1 − βd+1

)
β̂1̂,

where α, β and α̂, β̂, 1̂ are given by (2.1) and (2.3), respectively.

Theorem 10 The generating formula for the bihyperbolic generalized Fibonacci-Leonardo numbers is

∞∑
n=0

BhLe(t, n)xn =

=

(
1− x+ tx2 − x2

)
+

(
1− x+ tx− x2

)
j1 +

(
1 + t− x− x2

)
j2

1− 2t− t3

+

(
1 + 2t− x− x2 − tx2

)
j3

1− 2t− t3
.

Proof: The proof of Theorem 10 is analogous to the proof of Theorem 4.

Lemma 2 [3] Let Le(t, n) be the nth generalized Fibonacci-Leonardo number. In this case

n∑
m=0

Le(t,m) = Le(t, n+ 2)− (t− 1)n− t,

n∑
m=0

Le(t, 2m) = Le(t, 2n+ 1)− (t− 1)n,

n∑
m=0

Le(t, 2m+ 1) = Le(t, 2n+ 2)− (t− 1)n− t.

In the next theorem, we can give the sum of the finite, finite odd and finite even terms of the
bihyperbolic generalized Fibonacci-Leonardo numbers.

Theorem 11 Let BhLe(t, n) be the nth bihyperbolic generalized Fibonacci-Leonardo number. In this
case

n∑
m=0

BhLe(t,m) =

= BhLe(t, n+ 2)−
(
n(t− 1) · 1̂+ t(BhLe(t, 2)−BhLe(t, 0))

)
,

n∑
m=0

BhLe(t, 2m) =

= BhLe(t, 2n+ 1)−
(
n(t− 1) · 1̂+ t(BhLe(t, 1)−BhLe(t, 0))

)
,
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n∑
m=0

BhLe(t, 2m+ 1) =

= BhLe(t, 2n+ 2)−
(
n(t− 1) · 1̂+ t(BhLe(t, 2)−BhLe(t, 1))

)
.

Proof:

n∑
m=0

BhLe(t,m) =

=

n∑
m=0

(Le(t,m) + Le(t,m+ 1)j1 + Le(t,m+ 2)j2 + Le(t,m+ 3)j3)

=

n∑
m=0

Le(t,m) + j1

n∑
m=0

Le(t,m+ 1) + j2

n∑
m=0

Le(t,m+ 2)

+ j3

n∑
m=0

Le(t,m+ 3)

= (Le(t, n+ 2)− (t− 1)n− t) + (Le(t, n+ 3)− (t− 1)(n+ 1)− t− 1)j1

+ (Le(t, n+ 4)− (t− 1)(n+ 2)− t− 2)j2

+ (Le(t, n+ 5)− (t− 1)(n+ 3)− 2t− 3)j3

= BhLe(t, n+ 2)− (n(t− 1)(1 + j1 + j2 + j3) + t(1 + 2j1 + 3j2 + 5j3))

= BhLe(t, n+ 2)−
(
n(t− 1) · 1̂+ t(BhLe(t, 2)−BhLe(t, 0))

)
.

Other sum formulas are proven using through the same method.

4. Concluding Remarks

In this paper, we introduced and studied bihyperbolic Leonardo numbers and their one-parameter
generalization bihyperbolic generalized Fibonacci–Leonardo numbers. The Leonardo sequence can also
be generalized using Leonardo polynomials. It will be interesting to continue this research by defining and
then examining Leonardo bihypernomials. Recently, the sequences of numbers and polynomials have been
intensively studied, and the sequences of numbers have been widely used in many research areas, such
as architecture, nature, art, statistics, biology, finance, physics, engineering, cryptography and algebraic
topology.

Declarations

Funding: This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.
Conflict of Interest: The authors declare that they have no conflict of interest.

References
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Department of Mathematics,

University of Bitlis Eren,

Turkey.

E-mail address: hgokbas@beu.edu.tr

and

Anetta Szynal-Liana,

Department of Mathematics and Applied Physics,

Rzeszow University of Technology Faculty,

Poland.

E-mail address: aszynal@prz.edu.pl


	Introduction
	Bihyperbolic Leonardo numbers
	One-parameter generalization of bihyperbolic Leonardo numbers
	Concluding Remarks

