(3s.) **v. 2025 (43)** : 1–6. ISSN-0037-8712 doi:10.5269/bspm.77519

Z-S- Coprime Modules

Farhan Dakhil Shyaa

ABSTRACT: In this essay, we present the idea Z-S- coprime modules. M is called an Z-S- coprime modules. if $ann_RM=ann_R\frac{M}{A}\forall A\ll_Z M$ and A< M. In this work examines the characteristics of the Z-S- coprime modules as a expanding upon of the coprime. This paper provides various characterizations and properties Z-S- coprime modules.

Key Words: Coprime modules, S – coprime modules, Z – S – coprime modules.

Contents

1	Introduction	1
2	Z-S-Coprime Modules	1
	2.1 Remarks and Examples	. 2

1. Introduction

Algebra has established it self as an important mathematical tool in wide variety subjects see [4,9]. During this article, all rings are assumed to be commute rings with unity $1 \neq 0$. Additionally, all modules considered as left module. If M is an R-module, we indicate $U \leq M(U < M)$ for U is a submodule (proper submodule) of M, $[U:_R M]$ stands for $\{r \in R : rM \subseteq U\}$, when U = (0), then $[0:_R M]$ means $ann_R M$. A submodule U of M is called small (denoted by $U \ll M$) if $U + K \neq M$, for any K < M [6]. As a dual notion of small submodule is essential (or large) submodule, where a submodule is A of A is called essential denoted by $A \subseteq B$ for any $A \subseteq B$ for any $A \subseteq B$. Equivalently, if $A \cap B = 0$, $A \subseteq B$, then $A \subseteq B$ if $A \subseteq B$ for any $A \subseteq B$ f

Remember that if $ann_RM = ann_RU$ for every non-zero submodule A of M, then an R-module M is prime Equivalently M is prime if $ann_RM = ann_R(x)$, for each $0 \neq x \in R$ [8]. S. Annine in [2] presented a dual notion of prime module namely coprime module, an R-module M is called coprime if $ann_RM = ann_R\frac{M}{A}$ for each A < M. Equivalently M is coprime if for each $0 \neq r \in R$, either M = 0 or rM = M(M) is a second submodule of M. Note that second submodules introduced in 2001 by S. Yassmi [10].

Rasha in [1,7], introduced the concepts principally coprime, S-coprime modules by restricting the definition of coprime module on cyclic submodule, small submodules, respectively.

Within this work, we will be exploring Z-S-coprime using Z-small submodules which is introduced by in [5] where a submodule U of M is named Z-small (abbreviated $U \ll_Z M$) if whenever U+W=M and $W \geq Z_2(M)$, then W=M. Note that $Z_2(M)$ is the second submodule of M(or Golde torsion) defined by $Z(\frac{M}{Z(M)} = \frac{Z_2(M)}{Z(M)}$ where $Z(M) = x \in R : ann(x) A \leq_{ess} R$. It is clear that every small submodule is Z-small, but not conversely, see [5].

Note that M is small submodule iff M=0, however, M may be Z-small of M and $M\neq 0$. In this paper we introduce a new generalization of coprime namely Z-S-coprime satisfies $ann_RM=ann_R\frac{M}{A}$ for all $A\ll_Z M$ and A< M. In this work various properties for this class of module were discussed.

2. Z - S-Coprime Modules

Definition 2.1. The name of an R-module M is Z-S-coprime module if $ann_R M = ann_R \frac{M}{A} \forall A \ll_Z M$ and A < M.

2010 Mathematics Subject Classification: 16D10. Submitted June 26, 2025. Published December 05, 2025 F. D. Shyaa

2.1. Remarks and Examples

Remark 2.2 (1). If M is a Z-S-coprime module, then M is S-coprime, but the converse may be not hold.

Proof. Let $A \ll M$. Hence $A \ll_Z M$, as MZ - S-coprime, if $ann_R M = ann_R \frac{M}{A}$. Thus MS-coprime.

Example 2.3 (2). Consider Z_6 as Z-module. Z_6 is S-coprime since Z_6 is semi-simple see [[7], Example 3.2.2 (2)]. On other hand, every submodule of Z_6 is Z-small so $A = < \overline{2} > \ll_Z Z_6$, but $ann_Z Z_6 \neq ann_{\frac{Z_6}{2}}$, so that Z_6 is not Z - S-coprime.

Remark 2.4 (3). A multiplication R-module is denoted by M. Then M is Z - S-coprime if and only if (0) is the only Z - S-small submodule in M.

Proof. ⇒ Let A < M, $A \ll_Z$. So that $ann_R M = [A:_R M]$, $(ifann_R M)M = [A:_R M]M$ and so (0) = A. \Leftarrow It is clear since (0) is only Z-small in M and $ann_R M = ann_R \frac{M}{(0)}$.

Remark 2.5 (4). If M is hollow R-module. Next, the corresponding statement is equivalent:

- (i) M is Z S coprime module.
- (ii) M is S-coprime module.
- (iii) M is coprime.

Proof. (i) \Rightarrow (ii) by part (1). (ii) \Rightarrow (iii) [[7], Proposition 3.2.7]. (iii) \Rightarrow (i) Let $A \ll_Z M$ and $A \neq M$. Because of M is hollow, $A \ll M$. But M is S-coprime so, $ann_R M = ann_R \frac{M}{A}$.

Remark 2.6. An R-module Mwith $Z_2(M) = 0$, then M is S-coprime if and only if M is Z - S-coprime.

The following are characterizations of is Z - S—coprime module, but first recall that a homothety. An R-endomorphism r^* is called homothety if, for every x in M $r^*(x) = rx$ and M an R-module [10]. \square

Theorem 2.7.

- 1. M is Z- S-coprime.
- 2. $\forall r \in R, rM \ll_Z M$, then rM = M or rM = (0). For every ideal I of R, $IM \ll_Z M$, implies IM = M or IM = (0).
- 3. \forall homothety $r^*(M) \ll_Z M$, implies rM = M or rM = (0).

Proof. (1) \Rightarrow (2) Let $rM \ll_Z M$. Then either rM = M or $rM \neq M$. If rM = M, therefore nothing to prove. If rM < M, $rM \ll_Z M$, then $ann_R M = ann_R \frac{M}{rM} = [rM :_R M]$. As $r \in [rM :_R M]$, so that $r \in annM$; that is rM = (0).

- $(2) \Rightarrow (1)$ Let $A \ll_Z M, A < M$. Let $r \in [A:_R M], r \neq 0$; hence $rM \leq A$. Since $A \ll_Z M, rM \ll_Z M$. By condition (2) either rM = M or rM = 0, but rM = M implies contradiction. Thus rM = 0 and so $r \in annM$. Therefore, M is Z S-coprime.
 - $(2) \Leftrightarrow (4)$ It is clear.
 - (1) \Rightarrow (3) If $IM \ll_Z M$, then either IM = M or IM < M. If IM = M, therefore nothing to verify. If IM < M, then $I \leq [IM :_R M] \leq annM$. Hence, IM = 0.
- $(3) \Rightarrow (1)$ Let $A \ll_Z M, A \neq M$. Assume $r \in [A:_R M], r \neq 0$. Then $rM \leq A$ and also, $rM \ll_Z M, rM \neq M$. Thus, $(r)M \ll_Z M$. By part (3), (r)M = 0; that is rM = (0), then $r \in annM$. Therefore, M is Z S-coprime module

Lemma 2.8. Suppose M represent a finitely generated faithful multiplication of an R-module. Let I be an ideal of R. Then $I \ll_Z R$ if and only if $IM \ll_Z M$.

Proof. ⇒ Asume $I \ll_Z R$ and IM + B = M with $B \geq Z_2(M)$. As M is faithful finitely generated multiplication R-module, so $Z_2(M) = Z_2(R) M$, also B = JM for some ideal J of R. Hence IM + JM = M; that is (I + J) M = RM. But Mis a faithful finitely generated multiplication R-module implies that I + J = R and $J \geq Z_2(R)$. Since $I \ll_Z R$, we conclude that J = R and so B = JM = RM = M.

 \Leftarrow Assume $IM \ll_Z M$ and I+K=R with $J \geq Z_2(R)$. Then IM+JM=M and $JM \geq Z_2(R)M=Z_2(M)$. As $IM \ll_Z M$, we get JM=M and since M s a faithful multiplication with finite generation, J=R.

Corollary 2.9. Considering that M is a finitely generated faithful multiplication module, $A \leq M$, then A is Z-small submodule of $M \iff [A:_R M] \ll_Z R$.

Proposition 2.10. Presume M be a faithful multiplication R-module that is finitely generated. R is Z - S-coprime, If and only if M is Z - S-coprime.

Proof. \Rightarrow $Let I \ll_Z R$. Then via Lemma 2.8 $IM \ll_Z M$. But M is Z - S-coprime, so either IM = M or IM = 0, if IM = M, then I = R if IM = 0 implies $I \leq annM = 0$.

 $\Leftarrow Let A \ll_Z M$. Then A = IM for some $I \leq R$. Hence $IM \ll_Z M$ which implies $I \ll_Z R$ via Lemma 2.8. But R is Z - S-coprime, so I = 0 (since R is Z - S-coprime). Thus A = IM = 0.

Lemma 2.11. If $\frac{W}{N} \ll_Z \frac{M}{N}$, $N \ll_Z M$ and $Z_2\left(\frac{M}{N}\right) = \frac{Z_2(M)+N}{N}$. Then $W \ll_Z M$.

Proof. Let W+V=M such that $V\geq Z_2(M).\frac{W}{N}+\frac{V+N}{N}=\frac{M}{N},\frac{V+N}{N}\geq \frac{Z_2(M)+N}{N}=Z_2\left(\frac{M}{N}\right)$. Since $\frac{W}{N}\ll_Z\frac{M}{N}$, we get $\frac{V+N}{N}=\frac{M}{N}$, implies that V+N=M. But $N\ll_Z M$, hence V=M. Thus $W\ll_Z M$.

Proposition 2.12. Let M be Z-S-coprime, $N \ll_Z M$. Then $\frac{M}{N}$ is Z-S-coprime, provided $Z_2\left(\frac{M}{N}\right) = \frac{Z_2(M)+N}{N}$.

Proof. Let $\frac{W}{N} \ll_Z \frac{M}{N}$. But $N \ll_Z M$, then via Lemma 2.11 $W \ll_Z M$. As M is an Z-S-coprime, then $ann_R M = ann_R \frac{M}{N}$. Since $ann_R \frac{M}{N} / \frac{W}{N} = ann_R \frac{M}{N}$. Thus $ann_R \frac{M}{N} / \frac{W}{N} = ann_R M$. Therefore, $ann_R \frac{M}{N} / \frac{W}{N} = ann_R \frac{M}{N}$. Thus $\frac{M}{N}$ is Z-S-coprime.

For instance, we see that the opposite of this **assertion 2.8** is generally untrue. \Box

Example 2.13. $\frac{Z_{12}}{(2)} \cong Z_2$ as Z-module is Z-S-coprime and Z_{12} is not Z-S-coprime.

However, the converse of Proposition 2.12 is true under specific circumstances, according to the following assertion

Proposition 2.14. Consider M be an R-module and $N \ll M$ such that $ann_R \frac{M}{N} = ann_R M$ and $Z_2\left(\frac{M}{N}\right) = \frac{Z_2(M) + N}{N}$. If $\frac{M}{N}$ is Z - S-coprime, then M is Z - S-coprime.

Proof. To show M is Z-S-coprime, we must prove $ann_R\frac{M}{W}=ann_RM$ for each $W\ll_Z M$ and W< M. Since N and W are Z-small in M, then by [[8], Remarks and examples 2.2 (8)] $W+N\ll_Z M$ and $\frac{W+N}{N}\ll_Z\frac{M}{N}$. But $\frac{M}{N}$ is Z-S-coprime, hence $W+N\neq M$, so $ann_R\frac{M}{N}=ann_R\frac{M}{W+N}$. Thus $ann_R\frac{M}{N}=ann_R\frac{M}{W+N}$.

Now, let $r \in ann_R \frac{M}{W}$, then $rM \leq W$. Therefore, $rM \leq W + N$; that is $\in [W + N :_R M]$. Thus $r \in ann_R \frac{M}{W+N} = ann_R \frac{M}{N}$. But $ann_R M = ann_R \frac{M}{N}$ by hypothesis. Therefore, $r \in ann_R M$ and $ann_R \frac{M}{W} \leq ann_R M$. Thus $ann_R \frac{M}{W} = ann_R M$. Hence, M is Z - S-coprime.

Corollary 2.15. Presume N be a small submodule of M and $ann_R \frac{M}{N} = ann_R M$. Then $\frac{M}{N} Z - S$ -coprime iff M Z - S-coprime.

F. D. Shyaa

Proposition 2.16. If $M \cong M'$, then M is Z - S-coprime if and only if M' Z - S-coprime.

Proof. Let M be Z-S-coprime. Since $M\cong M'$, then there exists $f:M'\longmapsto M$ such that f is an isomorphism. Let $rM'\ll_Z M', r\neq 0$, then $f\left(rM'\right)=rf\left(M'\right)=rM$. By [[5], Proposition 2.3] $rM\ll_Z M$ and since M is Z-S-coprime rM=0, then $f\left(rM'\right)=0$. Hence, rM'=0. Thus M'Z-S-coprime.

The opposite is similarly proven.

Since the zero submodule is only Z-small in M but $N = (0) \oplus Z_4$ is not Z - S-coprime in M because it is not S-coprime [3].

Nevertheless, we possess the subsequent.

Proposition 2.17. Consider M as an R-module that is Z - S-coprime and N be a submodule of M such that $[U:_R N] = [U:_R M]$ for every Z-small submodule U of N, then N is Z - S-coprime.

Proof. We must prove $ann_RN = [U:_RN]$ for every $U \ll_Z N$, and $U \neq N$ then we have $U \ll_Z M$. Since M is Z - S-coprime, then $[U:_RM] = ann_RM \leq ann_RN$. But by hypothesis $[U:_RN] = [U:_RM]$. Thus $[U:_RN] \leq ann_RN$. Therefore, N is Z - S-coprime.

Proposition 2.18. Let M_1 , M_2 be two faithful's Z-S-coprime modules, then $M=M_1 \oplus M_2$ is Z-S-coprime.

Proof. Let $r \in R, r \neq 0$ such that $r(M_1 \oplus M_2) \ll_Z M$. $r(M_1 \oplus M_2) = rM_1 \oplus rM_2$. Hence by [8, proposition 2.7] $rM_1 \ll_Z M_1$ and $rM_2 \ll_Z M_2$. Since M_1 and M_2 are Z - S—coprime, then by Theorem 2.7 $rM_1 = M_1$, and $rM_2 = M_2$. This implies that $r(M_1 \oplus M_2) = M_1 \oplus M_2$. Thus, via Theorem 2.7 $M_1 \oplus M_2$ is Z - S—coprime.

Theorem 2.19. Consider two R -modules, denoted as M_1, M_2 such that $ann_R M_1$ and $ann_R M_2$ are non-comparable prime ideals of R. If $M = M_1 \bigoplus M_2$ is an Z - S-coprime, then M_1 and M_2 are Z - S-coprime.

Proof. $N_1 \ll_Z M_1$ and $N_2 \ll_Z M_2$ and $N_1 \neq M_1$, $N_2 \neq M_2$. To prove $ann_R M_1 = [N_1 :_R M_1]$ and $ann_R M_2 = [N_2 :_R M_2]$. Since $N_1 \ll_Z M_1$ and $N_2 \ll_Z M_2$, then by [8, proposition 2.7] $N_1 \oplus N_2 \ll_Z M_1 \oplus M_2$, moreover, $N_1 \oplus N_2 \neq M_1 \oplus M_2$ But M is Z - S-coprime, hence $ann_R M_1 \oplus M_2 = [N_1 \oplus N_2 :_R M_1 \oplus M_2]$, so $ann_R M_1 \cap ann_R M_2 = [N_1 :_R M_1] \cap [N_2 :_R M_2]$. Thus, $= [N_1 :_R M_1] \cap [N_2 :_R M_2] \leq ann_R M_1$ and $= [N_1 :_R M_1] \cap [N_2 :_R M_2] \leq ann_R M_2$. Since, $ann_R M_1$ and $ann_R M_2$ are prime ideals, then $[N_1 :_R M_1] \leq ann_R M_1$ or $[N_2 :_R M_2] \leq ann_R M_1$ and $[N_1 :_R M_1] \leq ann_R M_2$ or $[N_2 :_R M_2] \leq ann_R M_2$. Hence, we get $[N_1 :_R M_1] = ann_R M_1$ or $ann_R M_1 \leq ann_R M_2$ or $[N_2 :_R M_2] = ann_R M_2$. But $ann_R M_1$ and $ann_R M_2$ are non-comparable, then $[N_1 :_R M_1] = ann_R M_1$ and $[N_2 :_R M_2] = ann_R M_2$. Therefor, M_1 and M_2 are Z - S-coprime.

Lemma 2.20. Consider two R-modules, M_1, M_2 , such that $ann_R M_1 + ann_R M_2 = R$. Then $ann_R M_1$ and $ann_R M_2$ are non-comparable.

Hance, We get the following result.

Corollary 2.21. Presume M_1, M_2 are two R-modules, $M = M_1 \oplus M_2$ such that $ann_R M_1 + ann_R M_2 = R$ and $ann_R M_1$, $ann_R M_2$ are prime ideals. If M is Z - S-coprime, then M_1, M_2 are Z - S-coprime.

Corollary 2.22. Let M_1 , M_2 be two R-modules such that ann_R M_1 , ann_RM_2 are prime ideals, then M_1 , M_2 are Z-S-coprime if and only if $M_1 \oplus M_2$ is Z-S-coprime.

Proposition 2.23. Let M be an R-module such that $Hom_R(M, N) = 0$ for every $N \ll_Z M$ and $N \neq M$. Then M is an Z-S-coprime module.

Proof. Let $N \ll_Z M$ and $N \neq M$ clearly $ann_R M \subseteq [N:_R M]$. Let $r \in [N:_R M]$. Then $rM \subseteq N$. Define $f: M \longmapsto N$ by f(m) = rm for each $m \in M$ f is well defined R-homomorphism; that is $f \in Hom(M, N) = 0$. Thus f(M) = rM = 0 and so $r \in ann_R M$.

Proposition 2.24. Let M be scalar R-module, then M is an Z-S-coprime module over E=End(M) if and only if Hom(M,N)=0 for each Z-small N of M.

Proof. To prove $Hom_R(N,M)=0$ for every $N\ll_Z M, N\neq M$. Let $f\in Hom_R(N,M)$, then $f(M)\subseteq N$. Since M is a scalar R-module every submodule is E-submodule. Also, every Z-small submodule is Z-small E-submodule. Thus, N is Z-small E-submodule and so $f(M)\subseteq N$ implies $f\in [N:_R M]=ann_E M=0$. Hence, f=0. Thus f=0 for every $N\ll_Z M, N\neq M$. Then, by Proposition 2.23 M is an Z-S-coprime.

The proof of the converse is similarly.

Proposition 2.25. If M is an Z-S-coprime E-module, then M is -S-coprime R-module.

Proof. Let $rM \ll_Z M$, $rM \neq M$, $r \neq 0$. To prove rM is Z-small E-submodule. Let rM + B = M, $B \supseteq Z_2(M)$, since $rM \ll_Z M$, so B = M. But M Z - S-coprime E-module, so rM = 0. Thus, M is an Z - S-coprime R-module.

Proposition 2.26. Let M be a chained module over regular ring, then the following are equivalent.

- 1. M is an S-coprime R-module.
- 2. M is an Z-S-coprime R-module.
- 3. M is a coprime R-module.
- 4. M is a prime M-module.
- 5. M is a quasi-dedkind R-module.

Proof.

- $(1) \iff (2) \iff (3)$ by Remark 2.2 (3)
- $(3) \iff (4) \iff (5)$. It follows that by [7], Proposition 3.2.27]

References

- 1. A. M. Ali and I. K. Rasha, S-coprime modules, Journal of Basrah Researches: Sciences 34 (2011), no. 4.
- S. Annin, Associated and attached primes over noncommutative rings, Phd thesis, University of California, Berkeley, Berkeley, CA, USA, 2002.
- 3. Kenneth Goodearl, Ring theory: Nonsingular rings and modules, vol. 33, CRC Press, 1976.
- 4. I. M. A. Hadi and F. D. Shyaa, *T-stable-extending modules and strongly t-stable extending modules*, Iraqi Journal of Science **61** (2020), no. 2, 401–408.
- Amina T Hamad and Alaa A Elewi, Z-small submodules and z-hollow modules, Iraqi journal of science 62 (2021), no. 8, 2708–2713.
- 6. F. Kasch, Modules and rings, London Mathematical Society Monograph, Academic Press, London, UK, 1989.
- RI Khalaf, Dual notions of prime submodules and prime modules, Msc. thesis, University of Baghdad, Baghdad, Iraq, 2009.
- 8. SA Saymach, On prime submodules, University Noc. Tucumare Ser. A 29 (1979), 121-136.
- 9. F. D. Shyaa, Approximately 2-absorbing and weakly approximately 2-absorbing sub-modules, Journal of Discrete Mathematical Sciences & Cryptography 28 (2025), no. 2, 303–309.
- 10. Siamak Yassemi, The dual notion of prime submodules, Archivum Mathematicum 37 (2001), no. 4, 273-278.

F. D. Shyaa

Farhan Dakhil Shyaa,
Department of Mathematics,
College of Education, University of Al-Qadisiyah,
Al-Qadisiya, Iraq.
E-mail address: farhan.shyaa@qu.edu.iq