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Spectral Properties of the Cartesian Product of K,,,[1K;, Graph

Abhishek. M, Prashanth. B* and K. N Prakasha

ABSTRACT: This paper investigates the Laplacian spectral properties of the Cartesian product of graph
KnOK, focusing on the trace, energy, and characteristic polynomial coefficients of Laplacian matrix of the
graph. We derive general formulas for the trace of Laplacian matrix powers and provide recursive relations
for the Laplacian coefficients of characteristic polynomial using trace identities for Kp,[0K, graph, also found
upper bounds of eigenvalue of Laplacian matrix of K, [OKj.
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1. Introduction.

For all terminology and concepts related to Graph theory, readers are referred to [7]. Here we consider
simple and non-loop graphs including the restricted number of nodes and edges.

The Cartesian product of two simple graphs H and K is the graph G = HOK with V(G) =
V(H)OV(K) in which vertices (a,b) and (c,d) are adjacent in K if and only if either ¢ = ¢ and b,d
are adjacent in K, or b = d and a, ¢ are adjacent in H.

Let G = (V,E) be a connected graph, L = D — A is the Kirchhoff matrix (Laplacian matrix) of
G, where D and A are the diagonal degree matrix and the adjacency matrix of G respectively. It is
recognized that L is positive semi-definite, symmetric and |L| = 0.

Let a1 > ag > -+ > a(u_1) = ap = 0 are the eigenvalues of L. The Kirchhoff eigenvalues of a graph
are important in the graph theory since they have a near relation to frequent graph invariants. Several
new inequalities are obtained for the modules, the real part, and imaginary part of a linear arrangement
of the ordered eigenvalues of a square matrix.

The spectrum of a graph G involves of its eigenvalues, with the leading eigenvalue «; mentioned
to as the spectral radius or index of G. In spectral graph theory, spectral inequalities involve one or
more spectral invariants, typically eigenvalues play a crucial role in describing a graph’s structure. These
inequalities have diverse applications and are derived using various methods, including the Rayleigh prin-
ciple, eigenvalue interlacing, spectral moments, eigenvector analysis, and relationships between spectral
and structural invariant. A specific type of spectral inequality is a bound on a spectral invariant, which
may apply to entire graphs or a particular class of graphs. In both cases, extremal graphs for a given
invariant are those that achieve the bound, if it exists. For instance, it is established that «y > 0, with
equality occurring only when G is absolutely disconnected. (Lower or greater)

In this article we gave a new greater bound for the Kirchhoff eigen values of a Cross product of graph.

Theorem 1.1 The greatest Laplacian eigenvalue of K,,[ 1K, is g +m.

Proof: Let L(K,,) and L(K,) be the Laplacian matrices of K, and K, respectively.
The Laplacian eigenvalues of K, are:

{0,m,m,...,m} (m—1 times m)

* Corresponding author.
2020 Mathematics Subject Classification: 05C22, 05C50, 15A18.

Submitted June 27, 2025. Published January 20, 2026

Typeset by BS% style.
1 © Soc. Paran. de Mat.


www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.77537

2 ABHISHEK. M, PRASHANTH. B AND K. N. PRAKASHA

and of K are:
{0,9797;9} (g—ltlmeb g)

Since the Laplacian of the Cartesian product satisfies:
spec(L(K,,,0Ky)) = {\i + p; : A € spec(L(Ky,)), iy € spec(L(Ky))},
the maximum eigenvalue occurs at:

a; =max{\; + p;} =m+g.

Proposition 1.1 The trace of the Laplacian matriz of K,,JJK, is given by
tr(L) = (9= Dg+ (m—1Lm+ (m —1)(g — 1)(m + g).

Proof: The Laplacian eigenvalues of K, are 0 (once) and m (multiplicity m — 1), and of K, are 0 (once)
and g (multiplicity g — 1). The eigenvalues of K,,,[JK, are given by A, + u; for eigenvalues A; of K,, and
wj of K.

The trace sums over all combinations of eigenvalues:
tr(L) = (g = 1)g + (m = 1)m + (m = 1)(g = 1)(m + g).

Proposition 1.2 The trace of the k' power of the Laplacian matriz of K,OK, is
tr(L*) = (9 = 1)g* + (m — )ym* + (m — 1)(g — 1)(m + g)".

Proof: The eigenvalues of L(K,,00K) consist of all sums \; + p; for eigenvalues \; € 0,m and p; € 0, g.
The terms are categorized by multiplicity:
e 0+ 0 =0 with multiplicity 1
e 0+ g = ¢g with multiplicity g — 1
e m + 0 = m with multiplicity m — 1
e m + g =m + g with multiplicity (m — 1)(g — 1)

Then,
tr(LF) =1-0% + (g — 1)g* + (m — 1)m"* + (m — 1)(g — 1)(m + g)*

= (9= 1)g" + (m — DmF + (m —1)(g — 1)(m + g)*.

Example:

For k£ =1, 2, 3 and 4 from the above expression we have the following.
tr(L) =(g—1)g+ (m—1)m+ (m—1)(g —1)(m+g).

tr(L?) = (g — 1)g? + (m — 1)m? + (m — 1)(g — 1)(m + 9)*.
tr(L?) = (g — 1)g* + (m — D)m® + (m — 1)(g — 1)(m + g)>.
tr(L*) = (g — 1)g* + (m — Dm* + (m — 1)(g — 1)(m + g)*.
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2. Laplacian coeflicients of Characteristic polynomial of K,,[1K, graph.

In studying the chemical characteristics of molecules, coefficients of a characteristic polynomial are
helpful. The characteristic polynomial of a graph can be evaluated using a variety of techniques ([1], [2],
[10], [13], [14] ). In [14], it is asserted that the Faddeev-Le Verrier- Frame approach [16,18] is the most
effective technique for calculating the characteristic polynomial. Balasubramanian ([11], [12]) frequently
used the computerized version technique.

The coefficients of the characteristic polynomial

pol@) =a" + o™ + a i+ + g,

of a graph G encode important structural information about the graph.

For instance, the number of edges in G is given by —g2, and the number of triangles is given by —%.
These relationships are derived from the combinatorial interpretation of the characteristic polynomial, as
described in [15]. The following theorem from that work explicitly connects the polynomial’s coefficients
to the graph’s topology.

Theorem 2.1 [3] The Laplacian characteristic polynomial of a graph G is
¢(G,$) = 'Tn + Q1xn_1 +-+ qn—1T + Adn,

where q;(i = 1,2,3...n) are the Laplacian coefficients, E; (1 < i < n) denotes the set of elementary sub
graphs of G with i vertices, and r(A) and s(A) are the rank and co-rank of E;, respectively. We then have

(D'gi= Y (12,

NEE;

Using the trace of the Laplacian matrix, Ivailo M. Mladenov et al. proposed an elegant method to
determine the coefficients of the characteristic polynomial. In addition, Samuel Jurkiewicz et al. studied
the computation of Laplacian coefficients using structural properties of the graph, as discussed in [3].

In this work, we introduce an alternative technique for identifying the Laplacian coefficients of the
characteristic polynomial for the Cartesian product K,,[0K,. This approach is grounded in the use of the
trace of the Laplacian matrix, combined with the classical Faddeev—LeVerrier algorithm and the theorem
provided in [15].

Proposition 2.1 Let the characteristic polynomial of the Laplacian matriz of K, 1K, be

¢(x) =det(x] — L) = 2™ + 2" " + q22" % + gz + qua" T 4

then
@ =—[g—Dg+(m—-1)m+(m—1)(g—1)(m+g)].
N *m +2¢°m? — 4¢*m — g% + gm?® — 4gm?
Q2 = 3 -Mg 9 .
+2gm 4+ 39 —m° 4+ 3m — 2

g°m? + 3g4m3 — 6g*m? — 3g4m + 3g?’m4 —12¢°m® + 3¢3m? + 15¢°m + 2¢°
1
q3 = 5 gm | + ¢*>m® — 6g°m* + 3¢°m> + 22¢°m? — 18¢*m — 84>
— 3gm* + 15gm> — 18gm? + 6g 4 2m3 — 8m? + 6m

g'm3 + 4¢°m* — 8¢5m> — 6¢5m? + 6¢°m® — 24¢°m* + 42¢°m? + 11¢°m
+ 4g*m® — 24¢*m® + 12¢*m* + 94¢*m3 — 64¢*m? — 669 m — 6¢* + ¢>m”

qq = i -mg | —8¢°mb 4+ 94¢°>m* — 134¢°m3 — 62¢°m? + 103¢°m + 309> — 6¢g>mS + 42¢*m®
— 64g%m* — 62¢9°m> + 138¢°m? — 24¢*m — 24¢° + 11gm® — 66gm* + 103gm?>
— 24gm? — 24gm — 6m* + 30m> — 24m>
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Proof: ¢, = —tr(L)

—[lg—=1g+ (m—1)m+ (m—1)(g - 1)(m+g)],
g2 = %tr{BlL} where By =L+ q11
= 7711‘,7”([/2 + Q1L)
from the above examples:
—g*m —2¢°m? + 3¢°m — ¢*m3 + 4¢°m? — 8¢°m
g )
+3¢% + 3gm? — 8gm + 69 — 2m + 2
q3 = _Tltr{BgL} where By = BiL + gaf
= Ftr{(L+ @)L’ + gL}
= _Tltr{L?’ +q1L? + goL}
from the the above examples:
g°m? + 3¢*m3 — 6g4m2 —3¢*m +3¢°m* — 12¢°m> + 3¢°m? + 15¢°m + 24°
g3 =—2%-gm | +g*m® —6g°m"* + 3¢°m® + 22¢g°m? — 18¢°m — 8¢°
— 3gm®* + 15gm® — 18gm? + 6g + 2m3 — 8m? + 6m
qs = _TltT{BgL} where By = BsoL + ¢31
= Ztr{(BsL + g3I)L}
= ZHr{L* + L3 + ¢oL2 + ¢3L}
from the above examples:
g'm® + 4¢5m* — 8¢5m3 — 6¢°m? + 6¢°m® — 24¢°m* + 42¢°m> + 11¢°m
+4g*mS — 24¢*m® + 12¢*m* + 94¢*m3 — 64¢*m? — 669 *m — 6¢* + ¢>m”
1
@u=— mg| —85°m° +94¢g3m* — 134¢>m> — 62¢°m? + 103¢g3m + 30g> — 6¢°m® + 42¢*m°

24
— 64g%m* — 62¢9°m> + 138¢%m? — 24¢>m — 24¢° + 11gm® — 66gm* + 103gm?>
— 24gm? — 24gm — 6m* + 30m?> — 24m?

From the above Proposition we came to know that the following result:

q1 = —S1

& = (st = 5

g3 = %(—s:{’ + 35152 — 2s3)

qa = 1(8411 — G575z + 353 + 85183 — 6s4) -+

4
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where
sp=m"m—-1)+g"(g—1)+(m+g)Fm-1)(g—1), fork=1,234--

Theorem 2.2 The Laplacian characteristic equation of the graph K,,[K, is
Py, t) =y +ty" 4 .+t 1y + t, with tg = 1 then,

=
_ -
th = —— thtr(L 7).
7=0
where, ty, are the coefficients of the characteristic polynomial and h # 0.

Proof:
Here t; = —tr(L).

ty = SHtr(tiL)
= Zr((L+t1)L)
= SH{tr(L?) + tytr(L)}
= F{totr(L?) + t1tr(L)}.
Similarly for an integer k,
th= 2 520ty tr(LEI).

we have,
trr1 = 7ytr(tel)

= o tr((te—1 L+ tx)L)
= ot (Lth—o + tr—1)L? + t4L)
= o (tr (L3t ) + tr_1tr(L?) + tytr(L))
= 5 (tr (L) + tr(L3)tg 1 + tr(L?)tg + tr(L))
trr = g {totr(LFFY) + tatr (LF) + totr (LA 1) + o+ tytr (L)}
e, bipr = 5k ity tr(LAHI),
Hence by induction,

th = 5 Z?;é titr(LP7) where h# 0.

Theorem 2.3 Let G = K,,,00K,, the kth Laplacian coefficient of a graph G is given by

k

=

th = %1 tj [(m—=1)(g = D(m+g)* 7 + (m - 1)m" 7 + (g - 1)g"7].

=0
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Proof: We substitute the trace formula from the previous Theorem 2.2 & Proposition 1.2 into Newton’s
identities to obtain the recursive form of ¢. O

The energy E(G) of a graph G is defined to be the sum of the absolute values of its eigen values. Hence
if A(G) is the adjacency matrix of G and p1, p2, p3 . . . py, are eigenvalues of A(GQ), then E(G) ="' _, |pil-

Theorem 2.4 The energy of the Cartesian product of graph K,,L1K, is given by:

EK,O0K;))=(m+g—2)+m—2[(g—1)+|g—2[(m—1)+2(m—1)(g — 1).

Proof:
The adjacency spectrum of a complete graph K, is:

Spec(K,) = {n—1,(~1)" "V}
That is:
e One eigenvalue n — 1
e n — 1 eigenvalues of —1
Now consider the Cartesian product K,,[JK,. The spectrum is the sum of eigenvalues of K,, and K:
Spec(K,,OKy) = {\i + 15 | Ai € Spec(K), pj € Spec(Ky)}

So the eigenvalues of K,,,[1K are:

(m—1)4(g—-1)=m+g—2 (1 time)
m—-1)+(-1)=m-2 (g - 1 times)
(-D)+(g—-1)=g—2 (m - 1 times)
(1) +(-1)=-2 ((m - 1)(g - 1) times)

The energy of a graph is the sum of the absolute values of its eigenvalues:

E(KnOKg) =m+g=2[-1+[m=2[-(g=1)+|g=2[- (m=1)+|=2[- (m-1)(¢g - 1)
=(m+g-2)+[m=2/(g—-1)+1lg—2|/(m—1)+2(m —-1)(g—1)

3. Upper bounds for «o; of the graph K,,[1K,.

Bounds on eigenvalues of a graph provide valuable insights into the graph’s structure and properties.
These bounds can be used to estimate the connectivity, degree distribution, and other characteristics of
the graph. Various theorems and techniques exist to derive these bounds, depending on the type of graph
and the specific eigenvalue being considered.

We specifically found some upper bounds of a;:

Proposition 3.1 Let G = K,,1K, then the largest Laplacian eigenvalue oy of G satisfies:

1
5 G-V ENF sm-)VE V% +m1>v (- )V F (mrgVE | VE

N S St +m (1)
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Proof:

We have by the power mean inequality,

[(9*1)9+<m*1)m+(mfl)(9*1)(m+9)]
5

1
< [(g1)\/?9\/?“7,11)\/?”1\/?“”11)\/?@1)\/?(m+g)\/?] VE
= 5

tr{L}
5

IN

ﬁ

1
[@_l)ﬁgﬁﬂm_l)ﬁmﬁﬂm_mﬁ(g_nﬁ(mmﬁ] %
5

ﬂ

27
5

1
mg(m+g=2) < [(g—l)v TV E i)V EmVE =)V E (- )V E (mtg)V 25”]
5 5

ﬁ

1
R - {(gl)v TV 4=V EmVE )V F -1V F (mig)V 25”} ki
— m(m+4g—2 5

From Theorem 1.1,

1
.5 (9 = DVFQVE 4 (m - )VEmVE 4 (- )VF (- )V m s gVE|VE |
a= m(m+ g — 2) 5 m
O
The following theorem establishes an upper bound that improves upon inequality (1).
Theorem 3.1 Let o1 be the mazimum Laplacian eigenvalue of K,,JK,. Then
1
ay < h+ —, where h = m + g. (2)
g
Proof: By Theorem 1.1, we know that the largest Laplacian eigenvalue of K, 0K is:
a1 (KnOKy) =h=m+y.
Since g > 1, define:
1
U(g):g+m+§>g+m:h-
As g — oo, we observe:
lim u(g) =g+m=h.
g—o0
Therefore,
1
a1 S h + —.
g
O

For a vertex v, we denote its degree by d,,, the set of its adjacent vertices by N,, and the mean degree
of the neighbors of v by m,, [15].

Known Upper Bounds for a; of the graph G

Among the known upper bounds for the largest Laplacian eigenvalue « of a graph, the following are
noteworthy:

e Anderson and Morley’s bound [19]:

a1 <max{d, +d, | uv € E} (3)
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e Li and Zhang’s bound [9]:

a1 <24 /(di +dz —2)(dy +ds — 2)

e Another Li and Zhang’s bound [9]:

a1 <24 +/(r—2)(s—2)

(4)

(5)

where r = d, + d, for all zy € E, and s = max{d, +d, | uv € E\ {zy}}.

e Merris’s bound [17]:

ag <max{d, +m, |veV} (6)
Upper bounds of a; of Laplacian matrix of K,,,[1K, as follows:
Tablel:Upper bounds of a4

m | g |[oa | Eq(l) || Eq(2) || Eq@) || Eq(4) | Eq(5) || Eq(6)

2 2 4 4.1285 4.5000 5 4.0000 4.4495 5.0000
2 3 5 5.2310 5.3333 6 6.0000 5.4641 6.0000
3 3 6 6.2590 6.3333 7 8.0000 6.4721 7.5000
3 4 7 7.3780 7.2500 8 10.0000 || 7.4772 8.5000
4 4 8 8.4123 8.2500 9 12.0000 || 8.4807 | 10.0000
4 5 9 9.5444 9.2000 10 14.0000 || 9.4833 | 11.0000
5 5 || 10 || 10.5760 | 10.2000 11 16.0000 || 10.4853 | 12.5000
5 6 || 11 || 11.7172 || 11.1667 12 18.0000 || 11.4868 | 13.5000
6 6 || 12 || 12.7456 || 12.1667 13 20.0000 || 12.4881 || 15.0000
6 7 || 13 || 13.8934 || 13.1429 14 22.0000 || 13.4891 || 16.0000
7 7 || 14 || 14.9190 || 14.1429 15 24.0000 || 14.4900 || 17.5000
7 8 || 15 || 16.0718 || 15.1250 16 26.0000 || 15.4907 || 18.5000
8 8 || 16 || 17.0951 || 16.1250 17 28.0000 || 16.4914 || 20.0000
8 9 || 17 || 18.2518 || 17.1111 18 30.0000 || 17.4919 || 21.0000
9 9 || 18 || 19.2731 || 18.1111 19 32.0000 || 18.4924 || 22.5000
9 || 10 || 19 | 20.4329 || 19.1000 20 34.0000 || 19.4929 || 23.5000
10 || 10 || 20 || 21.4525 || 20.1000 21 36.0000 || 20.4932 || 25.0000
10 || 11 || 21 || 22.6149 || 21.0909 22 38.0000 || 21.4936 || 26.0000
11 || 11 || 22 || 23.6331 || 22.0909 23 40.0000 || 22.4939 || 27.5000
11 || 12 || 23 || 24.7977 || 23.0833 24 42.0000 || 23.4942 || 28.5000
12 || 12 || 24 || 25.8147 || 24.0833 25 44.0000 || 24.4944 || 30.0000
12 || 13 || 25 || 26.9810 || 25.0769 26 46.0000 || 25.4947 || 31.0000
13 || 13 || 26 || 27.9970 || 26.0769 27 48.0000 || 26.4949 || 32.5000
13 || 14 || 27 || 29.1649 || 27.0714 28 50.0000 || 27.4951 || 33.5000
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m || g || oa| Ea(l) | Eq(2) | Eq@3) || Eaq(4) Eq(5) Eq(6)

14 | 14 || 28 | 29.8623 || 28.0714 | 29 || 52.0000 | 28.4953 || 35.0000
14 [ 15 || 29 | 30.1800 | 29.0667 | 30 || 54.0000 | 29.4955 || 36.0000
15 | 15 || 30 || 31.3492 | 30.0667 | 31 || 56.0000 || 30.4956 || 37.5000
15 | 16 || 31 || 32.3635 || 31.0625 | 32 || 58.0000 | 31.4958 || 38.5000
16 || 16 || 32 || 33.5339 || 32.0625 | 33 || 60.0000 || 32.4959 || 40.0000
16 || 17 || 33 |[ 35.7190 || 33.0588 || 34 || 62.0000 | 33.4960 || 41.0000
17 |17 || 34 [ 36.7318 || 34.0588 || 35 || 64.0000 || 34.4962 || 42.5000
17 |18 || 35 | 37.9043 | 35.0556 | 36 || 66.0000 | 35.4963 || 43.5000
18 | 18 || 36 || 38.9165 | 36.0556 | 37 || 68.0000 || 36.4964 || 45.0000
18 [ 19 || 37 |[ 40.0899 | 37.0526 || 38 || 70.0000 | 37.4965 || 46.0000
19 [ 19 || 38 [ 41.1016 || 38.0526 || 39 || 72.0000 || 38.4966 || 47.5000
19 [ 20 || 39 |[ 42.2757 | 39.0500 || 40 || 74.0000 || 39.4967 || 48.5000
20 || 20 || 40 || 432869 || 40.0500 || 41 || 76.0000 || 40.4968 | 50.0000
20 |[ 21 || 41 || 44.4617 | 41.0476 || 42 || 78.0000 || 41.4968 | 51.0000
21 |[ 21 || 42 | 45.4725 | 42.0476 || 43 | 80.0000 || 42.4969 | 52.5000
21 || 22 || 43 | 46.6479 || 43.0455 || 44 || 82.0000 || 43.4970 | 53.5000
22 |[ 22 || 44 | 47.6583 | 44.0455 || 45 | 84.0000 || 44.4971 || 55.0000
22 || 23 ][ 45 || 488342 || 45.0435 || 46 || 86.0000 || 45.4971 | 56.0000
23 || 23 ][ 46 || 49.8443 || 46.0435 || 47 || 88.0000 || 46.4972 | 57.5000
23 || 24 || 47 | 51.0208 || 47.0417 || 48 || 90.0000 || 47.4973 | 58.5000
24 || 24 || 48 | 52.0304 || 48.0417 | 49 || 92.0000 || 48.4973 | 60.0000
24 || 25 || 49 | 532074 || 49.0400 | 50 || 94.0000 || 49.4974 | 61.0000
25 || 25 || 50 || 54.2168 || 50.0400 | 51 || 96.0000 || 50.4974 | 62.5000
25 || 26 || 51 || 55.3942 || 51.0385 || 52 | 98.0000 | 51.4975 | 63.5000
26 || 26 || 52 || 56.4033 || 52.0385 || 53 || 100.0000 || 52.4975 | 65.0000
26 || 27 || 53 || 57.5811 || 53.0370 | 54 || 102.0000 || 53.4976 | 66.0000
27 || 27 || 54 || 585899 || 54.0370 | 55 || 104.0000 || 54.4976 | 67.5000
27 || 28 [[ 55 || 59.7682 || 55.0357 || 56 || 106.0000 || 55.4977 | 68.5000
28 || 28 [ 56 || 60.7767 || 56.0357 || 57 || 108.0000 || 56.4977 | 70.0000
28 29 [ 57 || 61.9553 || 57.0345 || 58 || 110.0000 || 57.4977 | 71.0000
29 || 29 || 58 [ 62.9635 || 58.0345 || 59 || 112.0000 || 58.4978 || 72.5000
29 || 30 |[ 59 || 64.1425 || 59.0333 || 60 || 114.0000 || 59.4978 | 73.5000
30 || 30 |[ 60 || 65.1505 || 60.0333 || 61 || 116.0000 || 60.4979 | 75.0000
30 || 31 || 61 || 66.3298 || 61.0323 || 62 || 118.0000 || 61.4979 | 76.0000
31 || 31 || 62 || 67.3376 || 62.0323 || 63 || 120.0000 || 62.4979 | 77.5000
31 || 32 ][ 63 || 685172 || 63.0312 || 64 || 122.0000 || 63.4930 | 78.5000
32 | 32 ][ 64 || 69.5248 || 64.0312 || 65 || 124.0000 || 64.4930 | 80.0000
32 || 33 ][ 65 || 70.7047 || 65.0303 || 66 || 126.0000 || 65.4930 | 81.0000
33 337][ 66 || 71.7121 || 66.0303 || 67 || 128.0000 || 66.4981 | 82.5000
3334 || 67 || 72.8922 || 67.0294 || 68 || 130.0000 || 67.4981 | 83.5000
34 || 34 || 68 || 73.8995 || 68.0294 || 69 || 132.0000 || 68.4981 | 85.0000
34 35 || 69 || 75.0799 || 69.0286 || 70 || 134.0000 || 69.4981 | 86.0000
35 |[ 35 || 70 || 76.0869 | 70.0286 | 71 | 136.0000 | 70.4982 | 87.5000
35 || 36 || 71 || 77.2675 || 71.0278 || 72 || 138.0000 || 71.4982 | 88.5000
36 || 36 || 72 || 782744 || 72.0278 || 73 || 140.0000 || 72.4982 | 90.0000
36 || 37 || 73 || 79.4553 || 73.0270 || 74 || 142.0000 || 73.4983 | 91.0000
37 || 37 || 74 [ 80.4620 || 74.0270 | 75 || 144.0000 || 74.4983 | 92.5000
37 | 38 || 75 || 81.6431 || 75.0263 || 76 || 146.0000 || 75.4983 | 93.5000
38 38 ][ 76 || 82.6496 || 76.0263 || 77 || 148.0000 || 76.4983 | 95.0000
38 (39 || 77 [ 838309 || 77.0256 | 78 || 150.0000 || 77.4983 | 96.0000
39 || 39 || 78 [ 84.8373 || 78.0256 || 79 || 152.0000 || 78.4984 | 97.5000
39 || 40 |[ 79 [ 86.0188 || 79.0250 | 80 || 154.0000 || 79.4984 | 98.5000
40 |[ 40 [ 80 || 87.0251 || 80.0250 | 81 || 156.0000 || 80.4984 || 100.0000
40 || 41 || 81 || 88.2068 || 81.0244 || 82 || 158.0000 || 81.4984 || 101.0000
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m || g [[ea | Eq(l) Eq(2) || EqB) || Eq(4) Eq(5) Eq(6)

A1 [[ 41 |[ 82 || 89.2120 || 82.0244 || 83 | 160.0000 || 82.4984 | 102.5000
41 [ 42 [ 83 || 90.3948 || 83.0238 || 84 || 162.0000 || 83.4985 | 103.5000
42 [ 42 [ 84 || 91.4008 || 84.0238 || 85 || 164.0000 || 84.4985 | 105.0000
42 437 85 || 92.5828 || 85.0233 || 86 || 166.0000 || 85.4985 | 106.0000
43743786 || 93.5887 || 86.0233 || 87 || 168.0000 || 86.4985 | 107.5000
437 |[ 44 | 87 || 94.7709 || 87.0227 || 88 || 170.0000 || 87.4985 | 108.5000
44 |44 | 88 || 95.7767 || 88.0227 || 89 || 172.0000 || 88.4986 | 110.0000
44 [ 45 | 89 || 96.9590 || 89.0222 | 90 || 174.0000 || 89.4986 | 111.0000
45 [ 45 [ 90 || 97.9647 || 90.0222 || 91 || 176.0000 | 90.4986 | 112.5000
45 |[ 46 | 91 || 99.1472 |[ 91.0217 || 92 || 178.0000 | 91.4986 | 113.5000
46 || 46 [ 92 || 100.1528 || 92.0217 || 93 || 180.0000 || 92.4986 | 115.0000
46 |[ 47 |[ 93 || 101.3354 || 93.0213 | 94 | 182.0000 || 93.4936 | 116.0000
47 [ 47 | 94 || 102.3409 || 94.0213 || 95 || 184.0000 || 94.4986 | 117.5000
47 [ 48[ 95 || 103.5236 || 95.0208 || 96 || 186.0000 | 95.4987 | 118.5000
48[ 48 [ 96 || 104.5290 || 96.0208 || 97 || 188.0000 || 96.4987 | 120.0000
48749 [ 97 || 105.7119 || 97.0204 || 98 || 190.0000 | 97.4987 | 121.0000
49 [ 49 [ 98 || 106.7172 || 98.0204 | 99 || 192.0000 || 98.4987 | 122.5000
49 50 [ 99 || 107.9002 || 99.0200 || 100 || 194.0000 | 99.4987 | 123.5000

From the above table it is easily seen that (2) is better than (1), (3), (4), (5) and (6) for large values
of mé&g.

To show that equation number (2) is the best among mentioned inequalities we used linear regression
model as follows:

Regression Lines for Eq(1)-Eqi6) vs Actual ax

® Actual

35 1 — Eall) (R*=0.9995)

— Eql2) (R*=0.9999)

—— Eqi3) (R*=1.0000)

—— Eq(4) (R*=1.0000)
Eqi5) (R*=1.0000)

— Eql6) (R*=0.9996)

Predicted g Values

4 6 8 10 12 14 16 18 20
Actual ay Values

Conclusion

In this work, we have computed the coefficients of the characteristic polynomial of the Laplacian
matrix for the Cartesian product graph K,,[JK,;. Furthermore, we have derived an upper bound for
the largest Laplacian eigenvalue of the graph K,,[1K,, and calculated its graph energy based on the
eigenvalues of the corresponding adjacency matrix.

As discussed earlier, Equations (1) and (2) yield more accurate or tighter results compared to the
other considered expressions. This conclusion is supported by the data presented in the accompanying
tables and graphical illustrations.
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Table2:Error Metrics for Different Equations

Equation | RMSE | MAE R?
Eq(1) 0.619 | 0.5099 | 0.984
Eq(2) 0.2235 | 0.1975 | 0.9979

(3) 1.0 1.0 0.9583

Eq(4) 9.3808 8.0 -2.6667

(5)
(6)

0.4836 | 0.4835 | 0.9903
3.1343 | 2.8824 | 0.5907

Absclute Error of a, Pr for Each Eq

16|~ £q(1) absolute Ervor
+ Eql2) Absalute Errar
—&— Eql3) Absolute Error
141 —s— Eql4) Absolute Error
—e~ Eq(3) Absalute Ervor
—a— Eqi6) Absolute Error

Absolute Error
L3 [ 3

2
Actual ay Values

Boxplot of Absolute Errors for Each Equation

Absolute Eror

aaaaaaa
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Histograen of Errors: Eatl) Histograen of Errors: Eai2) Hastogram of Ervors: Eq(3)

sl
of HH—

W oBou

Aovete Eree

To check how well the six equations, work in predicting our data, we used three common error-
checking methods: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient
of Determination (R?). These tools help us measure how close the predicted values are to the actual
values. The lower the RMSE and MAE, the better the prediction. A higher R? (closer to 1) means the
model explains the data well. Out of all the equations, Equation (2) gave the best results. It had a
very low RMSE of 0.2235, MAE of 0.1975, and an almost perfect R? of 0.9979. This means Equation
(2) predicts the data extremely well and makes only very small errors. Equation (1) also performed well,
with an RMSE of 0.619, MAE of 0.5099, and R? of 0.984. While not as accurate as Equation (2), it still
provides good predictions and fits the data closely. These results make it clear that Equations (1) and
(2) are far better than the others, and among them, Equation (2) is the most accurate and reliable.
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