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Spectral Properties of the Cartesian Product of Km□Kg Graph

Abhishek. M, Prashanth. B∗ and K. N Prakasha

abstract: This paper investigates the Laplacian spectral properties of the Cartesian product of graph
Km□Kg , focusing on the trace, energy, and characteristic polynomial coefficients of Laplacian matrix of the
graph. We derive general formulas for the trace of Laplacian matrix powers and provide recursive relations
for the Laplacian coefficients of characteristic polynomial using trace identities for Km□Kg graph, also found
upper bounds of eigenvalue of Laplacian matrix of Km□Kg .
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1. Introduction.

For all terminology and concepts related to Graph theory, readers are referred to [7]. Here we consider
simple and non-loop graphs including the restricted number of nodes and edges.

The Cartesian product of two simple graphs H and K is the graph G = H□K with V (G) =
V (H)□V (K) in which vertices (a, b) and (c, d) are adjacent in K if and only if either a = c and b, d
are adjacent in K, or b = d and a, c are adjacent in H.

Let G = (V,E) be a connected graph, L = D − A is the Kirchhoff matrix (Laplacian matrix) of
G, where D and A are the diagonal degree matrix and the adjacency matrix of G respectively. It is
recognized that L is positive semi-definite, symmetric and |L| = 0.

Let α1 ≥ α2 ≥ · · · ≥ α(n−1) ≥ αn = 0 are the eigenvalues of L. The Kirchhoff eigenvalues of a graph
are important in the graph theory since they have a near relation to frequent graph invariants. Several
new inequalities are obtained for the modules, the real part, and imaginary part of a linear arrangement
of the ordered eigenvalues of a square matrix.

The spectrum of a graph G involves of its eigenvalues, with the leading eigenvalue α1 mentioned
to as the spectral radius or index of G. In spectral graph theory, spectral inequalities involve one or
more spectral invariants, typically eigenvalues play a crucial role in describing a graph’s structure. These
inequalities have diverse applications and are derived using various methods, including the Rayleigh prin-
ciple, eigenvalue interlacing, spectral moments, eigenvector analysis, and relationships between spectral
and structural invariant. A specific type of spectral inequality is a bound on a spectral invariant, which
may apply to entire graphs or a particular class of graphs. In both cases, extremal graphs for a given
invariant are those that achieve the bound, if it exists. For instance, it is established that α1 ≥ 0, with
equality occurring only when G is absolutely disconnected. (Lower or greater)

In this article we gave a new greater bound for the Kirchhoff eigen values of a Cross product of graph.

Theorem 1.1 The greatest Laplacian eigenvalue of Km□Kg is g +m.

Proof: Let L(Km) and L(Kg) be the Laplacian matrices of Km and Kg, respectively.
The Laplacian eigenvalues of Km are:

{0,m,m, . . . ,m} (m− 1 times m)
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and of Kg are:

{0, g, g, . . . , g} (g − 1 times g)

Since the Laplacian of the Cartesian product satisfies:

spec(L(Km□Kg)) = {λi + µj : λi ∈ spec(L(Km)), µj ∈ spec(L(Kg))},

the maximum eigenvalue occurs at:

α1 = max{λi + µj} = m+ g.

2

Proposition 1.1 The trace of the Laplacian matrix of Km□Kg is given by

tr(L) = (g − 1)g + (m− 1)m+ (m− 1)(g − 1)(m+ g).

Proof: The Laplacian eigenvalues of Km are 0 (once) and m (multiplicity m−1), and of Kg are 0 (once)
and g (multiplicity g− 1). The eigenvalues of Km□Kg are given by λi +µj for eigenvalues λi of Km and
µj of Kg.

The trace sums over all combinations of eigenvalues:
tr(L) = (g − 1)g + (m− 1)m+ (m− 1)(g − 1)(m+ g).

2

Proposition 1.2 The trace of the kth power of the Laplacian matrix of Km□Kg is

tr(Lk) = (g − 1)gk + (m− 1)mk + (m− 1)(g − 1)(m+ g)k.

Proof: The eigenvalues of L(Km□Kg) consist of all sums λi+µj for eigenvalues λi ∈ 0,m and µj ∈ 0, g.

The terms are categorized by multiplicity:

• 0 + 0 = 0 with multiplicity 1

• 0 + g = g with multiplicity g − 1

• m+ 0 = m with multiplicity m− 1

• m+ g = m+ g with multiplicity (m− 1)(g − 1)

Then,

tr(Lk) = 1 · 0k + (g − 1)gk + (m− 1)mk + (m− 1)(g − 1)(m+ g)k

= (g − 1)gk + (m− 1)mk + (m− 1)(g − 1)(m+ g)k.

2

Example:

For k = 1, 2, 3 and 4 from the above expression we have the following.

tr(L) = (g − 1)g + (m− 1)m+ (m− 1)(g − 1)(m+ g).

tr(L2) = (g − 1)g2 + (m− 1)m2 + (m− 1)(g − 1)(m+ g)2.

tr(L3) = (g − 1)g3 + (m− 1)m3 + (m− 1)(g − 1)(m+ g)3.

tr(L4) = (g − 1)g4 + (m− 1)m4 + (m− 1)(g − 1)(m+ g)4.
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2. Laplacian coefficients of Characteristic polynomial of Km□Kg graph.

In studying the chemical characteristics of molecules, coefficients of a characteristic polynomial are
helpful. The characteristic polynomial of a graph can be evaluated using a variety of techniques ( [1], [2],
[10], [13], [14] ). In [14], it is asserted that the Faddeev-Le Verrier- Frame approach [16,18] is the most
effective technique for calculating the characteristic polynomial. Balasubramanian ( [11], [12]) frequently
used the computerized version technique.

The coefficients of the characteristic polynomial

pg(α) = αn + q1α
n−1 + q2α

n−2 + · · ·+ qn

of a graph G encode important structural information about the graph.
For instance, the number of edges in G is given by −q2, and the number of triangles is given by − q3

2 .
These relationships are derived from the combinatorial interpretation of the characteristic polynomial, as
described in [15]. The following theorem from that work explicitly connects the polynomial’s coefficients
to the graph’s topology.

Theorem 2.1 [3] The Laplacian characteristic polynomial of a graph G is

ψ(G, x) = xn + q1x
n−1 + · · ·+ qn−1x+ qn,

where qi(i = 1, 2, 3...n) are the Laplacian coefficients, Ei (1 ≤ i ≤ n) denotes the set of elementary sub
graphs of G with i vertices, and r(∧) and s(∧) are the rank and co-rank of Ei, respectively. We then have

(−1)iqi =
∑
∧∈Ei

(−1)r(∧)2s(∧).

Using the trace of the Laplacian matrix, Ivailo M. Mladenov et al. proposed an elegant method to
determine the coefficients of the characteristic polynomial. In addition, Samuel Jurkiewicz et al. studied
the computation of Laplacian coefficients using structural properties of the graph, as discussed in [3].

In this work, we introduce an alternative technique for identifying the Laplacian coefficients of the
characteristic polynomial for the Cartesian product Km□Kg. This approach is grounded in the use of the
trace of the Laplacian matrix, combined with the classical Faddeev–LeVerrier algorithm and the theorem
provided in [15].

Proposition 2.1 Let the characteristic polynomial of the Laplacian matrix of Km□Kg be

ϕ(x) = det(xI − L) = xn + q1x
n−1 + q2x

n−2 + q3x
n−3 + q4x

n−4 + · · ·

then
q1 = − [(g − 1)g + (m− 1)m+ (m− 1)(g − 1)(m+ g)] .

q2 = 1
2 ·mg

(
g3m+ 2g2m2 − 4g2m− g2 + gm3 − 4gm2

+2gm+ 3g −m2 + 3m− 2

)
.

q3 = −1

6
· gm

g
5m2 + 3g4m3 − 6g4m2 − 3g4m+ 3g3m4 − 12g3m3 + 3g3m2 + 15g3m+ 2g3

+ g2m5 − 6g2m4 + 3g2m3 + 22g2m2 − 18g2m− 8g2

− 3gm4 + 15gm3 − 18gm2 + 6g + 2m3 − 8m2 + 6m


.

q4 = 1
24 ·mg



g7m3 + 4g6m4 − 8g6m3 − 6g6m2 + 6g5m5 − 24g5m4 + 42g5m2 + 11g5m

+ 4g4m6 − 24g4m5 + 12g4m4 + 94g4m3 − 64g4m2 − 66g4m− 6g4 + g3m7

− 8g3m6 + 94g3m4 − 134g3m3 − 62g3m2 + 103g3m+ 30g3 − 6g2m6 + 42g2m5

− 64g2m4 − 62g2m3 + 138g2m2 − 24g2m− 24g2 + 11gm5 − 66gm4 + 103gm3

− 24gm2 − 24gm− 6m4 + 30m3 − 24m2


.
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Proof: q1 = −tr(L)

= − [(g − 1)g + (m− 1)m+ (m− 1)(g − 1)(m+ g)],

q2 = −1
2 tr{B1L} where B1 = L+ q1I

= −1
2 tr(L

2 + q1L)

from the above examples:

= 1
2 ·mg

(
− g4m− 2g3m2 + 3g3m− g2m3 + 4g2m2 − 8g2m

+ 3g2 + 3gm2 − 8gm+ 6g − 2m+ 2

)
,

q3 = −1
3 tr{B2L} where B2 = B1L+ q2I

= −1
3 tr{(L+ q1I)L

2 + q2L}

= −1
3 tr{L

3 + q1L
2 + q2L}

from the the above examples:

q3 = − 1
6 · gm

g
5m2 + 3g4m3 − 6g4m2 − 3g4m+ 3g3m4 − 12g3m3 + 3g3m2 + 15g3m+ 2g3

+ g2m5 − 6g2m4 + 3g2m3 + 22g2m2 − 18g2m− 8g2

− 3gm4 + 15gm3 − 18gm2 + 6g + 2m3 − 8m2 + 6m


q4 = −1

4 tr{B3L} where B3 = B2L+ q3I

= −1
4 tr{(B2L+ q3I)L}

= −1
4 tr{L

4 + q1L
3 + q2L

2 + q3L}

from the above examples:

q4 =
1

24
·mg



g7m3 + 4g6m4 − 8g6m3 − 6g6m2 + 6g5m5 − 24g5m4 + 42g5m2 + 11g5m

+ 4g4m6 − 24g4m5 + 12g4m4 + 94g4m3 − 64g4m2 − 66g4m− 6g4 + g3m7

− 8g3m6 + 94g3m4 − 134g3m3 − 62g3m2 + 103g3m+ 30g3 − 6g2m6 + 42g2m5

− 64g2m4 − 62g2m3 + 138g2m2 − 24g2m− 24g2 + 11gm5 − 66gm4 + 103gm3

− 24gm2 − 24gm− 6m4 + 30m3 − 24m2


.

2

From the above Proposition we came to know that the following result:

q1 = −s1

q2 =
1

2
(s21 − s2)

q3 =
1

3
(−s31 + 3s1s2 − 2s3)

q4 =
1

4
(s41 − 6s21s2 + 3s22 + 8s1s3 − 6s4) · · ·
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where
sk = mk(m− 1) + gk(g − 1) + (m+ g)k(m− 1)(g − 1), for k = 1, 2, 3, 4 · · ·

Theorem 2.2 The Laplacian characteristic equation of the graph Km□Kg is
ψ(y, t) = yn + t1y

n−1 + ...+ tn−1y + tn with t0 = 1 then,

tℏ =
−1

ℏ

ℏ−1∑
j=0

tjtr(L
ℏ−j).

where, tℏ are the coefficients of the characteristic polynomial and ℏ ̸= 0.

Proof:
Here t1 = −tr(L).

t2 = −1
2 tr(t1L)

= −1
2 tr((L+ t1)L)

= −1
2 {tr(L2) + t1tr(L)}

= −1
2 {t0tr(L2) + t1tr(L)}.

Similarly for an integer k,

tk = −1
k

∑k−1
j=0 tj tr(L

k−j).

we have,
tk+1 = −1

k+1 tr(tkL)

= −1
k+1 tr((tk−1L+ tk)L)

= −1
k+1 tr((Ltk−2 + tk−1)L

2 + tkL)

= −1
k+1 (tr(L

3tk−2) + tk−1tr(L
2) + tktr(L))

= −1
k+1 (tr(L

4tk−3) + tr(L3)tk−1 + tr(L2)tk + tr(L))

. . .

tk+1 = −1
k+1{t0tr(L

k+1) + t1tr(L
k) + t2tr(L

k−1) + ...+ tktr(L)}

i.e., tk+1 = −1
k+1

∑k
j=0 tj tr(L

k+1−j).

Hence by induction,

tℏ = −1
ℏ
∑ℏ−1

j=0 tjtr(L
ℏ−j) where ℏ ̸= 0.

2

Theorem 2.3 Let G = Km□Kg, the k
th Laplacian coefficient of a graph G is given by

tk =
−1

k

k−1∑
j=0

tj
[
(m− 1)(g − 1)(m+ g)k−j + (m− 1)mk−j + (g − 1)gk−j

]
.
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Proof: We substitute the trace formula from the previous Theorem 2.2 & Proposition 1.2 into Newton’s
identities to obtain the recursive form of tk. 2

The energy E(G) of a graph G is defined to be the sum of the absolute values of its eigen values. Hence
if A(G) is the adjacency matrix of G and ρ1, ρ2, ρ3 . . . ρn are eigenvalues of A(G), then E(G) =

∑n
n=1 |ρi|.

Theorem 2.4 The energy of the Cartesian product of graph Km□Kg is given by:

E(Km□Kg) = (m+ g − 2) + |m− 2|(g − 1) + |g − 2|(m− 1) + 2(m− 1)(g − 1).

Proof:

The adjacency spectrum of a complete graph Kn is:

Spec(Kn) = {n− 1, (−1)(n−1)}

That is:

• One eigenvalue n− 1

• n− 1 eigenvalues of −1

Now consider the Cartesian product Km□Kg. The spectrum is the sum of eigenvalues of Km and Kg:

Spec(Km□Kg) = {λi + µj |λi ∈ Spec(Km), µj ∈ Spec(Kg)}

So the eigenvalues of Km□Kg are:

(m− 1) + (g − 1) = m+ g − 2 (1 time)

(m− 1) + (−1) = m− 2 (g - 1 times)

(−1) + (g − 1) = g − 2 (m - 1 times)

(−1) + (−1) = −2 ((m - 1)(g - 1) times)

The energy of a graph is the sum of the absolute values of its eigenvalues:

E(Km□Kg) = |m+ g − 2| · 1 + |m− 2| · (g − 1) + |g − 2| · (m− 1) + | − 2| · (m− 1)(g − 1)

= (m+ g − 2) + |m− 2|(g − 1) + |g − 2|(m− 1) + 2(m− 1)(g − 1)

. 2

3. Upper bounds for α1 of the graph Km□Kg.

:

Bounds on eigenvalues of a graph provide valuable insights into the graph’s structure and properties.
These bounds can be used to estimate the connectivity, degree distribution, and other characteristics of
the graph. Various theorems and techniques exist to derive these bounds, depending on the type of graph
and the specific eigenvalue being considered.

We specifically found some upper bounds of α1:

Proposition 3.1 Let G = Km□Kg, then the largest Laplacian eigenvalue α1 of G satisfies:

α1 ≤ 5
m(m+g−2)

[
(g−1)

√
2π
5 g

√
2π
5 +(m−1)

√
2π
5 m

√
2π
5 +(m−1)

√
2π
5 (g−1)

√
2π
5 (m+g)

√
2π
5

5

] 1√
2π
5

+m (1)
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Proof:
We have by the power mean inequality,

[
(g−1)g+(m−1)m+(m−1)(g−1)(m+g)

5

]
≤

[
(g−1)

√
2π
5 g

√
2π
5 +(m−1)

√
2π
5 m

√
2π
5 +(m−1)

√
2π
5 (g−1)

√
2π
5 (m+g)

√
2π
5

5

] 1√
2π
5

tr{L}
5

≤

[
(g−1)

√
2π
5 g

√
2π
5 +(m−1)

√
2π
5 m

√
2π
5 +(m−1)

√
2π
5 (g−1)

√
2π
5 (m+g)

√
2π
5

5

] 1√
2π
5

mg(m+g−2)
5

≤

[
(g−1)

√
2π
5 g

√
2π
5 +(m−1)

√
2π
5 m

√
2π
5 +(m−1)

√
2π
5 (g−1)

√
2π
5 (m+g)

√
2π
5

5

] 1√
2π
5

g ≤ 5
m(m+g−2)

[
(g−1)

√
2π
5 g

√
2π
5 +(m−1)

√
2π
5 m

√
2π
5 +(m−1)

√
2π
5 (g−1)

√
2π
5 (m+g)

√
2π
5

5

] 1√
2π
5

From Theorem 1.1,

α1 ≤ 5

m(m+ g − 2)

[
(g − 1)

√
2π
5 g

√
2π
5 + (m− 1)

√
2π
5 m

√
2π
5 + (m− 1)

√
2π
5 (g − 1)

√
2π
5 (m+ g)

√
2π
5

5

] 1√
2π
5

+m

2

The following theorem establishes an upper bound that improves upon inequality (1).

Theorem 3.1 Let α1 be the maximum Laplacian eigenvalue of Km□Kg. Then

α1 ≤ h+
1

g
, where h = m+ g. (2)

Proof: By Theorem 1.1, we know that the largest Laplacian eigenvalue of Km□Kg is:

α1(Km□Kg) = h = m+ g.

Since g > 1, define:

u(g) = g +m+
1

g
> g +m = h.

As g → ∞, we observe:

lim
g→∞

u(g) = g +m = h.

Therefore,

α1 ≤ h+
1

g
.

2

For a vertex v, we denote its degree by dv, the set of its adjacent vertices by Nv, and the mean degree
of the neighbors of v by mv [15].

Known Upper Bounds for α1 of the graph G

Among the known upper bounds for the largest Laplacian eigenvalue α1 of a graph, the following are
noteworthy:

• Anderson and Morley’s bound [19]:

α1 ≤ max{du + dv | uv ∈ E} (3)
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• Li and Zhang’s bound [9]:

α1 ≤ 2 +
√
(d1 + d2 − 2)(d1 + d3 − 2) (4)

• Another Li and Zhang’s bound [9]:

α1 ≤ 2 +
√
(r − 2)(s− 2) (5)

where r = dx + dy for all xy ∈ E, and s = max{du + dv | uv ∈ E \ {xy}}.

• Merris’s bound [17]:

α1 ≤ max {dv +mv | v ∈ V } (6)

Upper bounds of α1 of Laplacian matrix of Km□Kg as follows:

Table1:Upper bounds of α1

m g α1 Eq(1) Eq(2) Eq(3) Eq(4) Eq(5) Eq(6)
2 2 4 4.1285 4.5000 5 4.0000 4.4495 5.0000
2 3 5 5.2310 5.3333 6 6.0000 5.4641 6.0000
3 3 6 6.2590 6.3333 7 8.0000 6.4721 7.5000
3 4 7 7.3780 7.2500 8 10.0000 7.4772 8.5000
4 4 8 8.4123 8.2500 9 12.0000 8.4807 10.0000
4 5 9 9.5444 9.2000 10 14.0000 9.4833 11.0000
5 5 10 10.5760 10.2000 11 16.0000 10.4853 12.5000
5 6 11 11.7172 11.1667 12 18.0000 11.4868 13.5000
6 6 12 12.7456 12.1667 13 20.0000 12.4881 15.0000
6 7 13 13.8934 13.1429 14 22.0000 13.4891 16.0000
7 7 14 14.9190 14.1429 15 24.0000 14.4900 17.5000
7 8 15 16.0718 15.1250 16 26.0000 15.4907 18.5000
8 8 16 17.0951 16.1250 17 28.0000 16.4914 20.0000
8 9 17 18.2518 17.1111 18 30.0000 17.4919 21.0000
9 9 18 19.2731 18.1111 19 32.0000 18.4924 22.5000
9 10 19 20.4329 19.1000 20 34.0000 19.4929 23.5000
10 10 20 21.4525 20.1000 21 36.0000 20.4932 25.0000
10 11 21 22.6149 21.0909 22 38.0000 21.4936 26.0000
11 11 22 23.6331 22.0909 23 40.0000 22.4939 27.5000
11 12 23 24.7977 23.0833 24 42.0000 23.4942 28.5000
12 12 24 25.8147 24.0833 25 44.0000 24.4944 30.0000
12 13 25 26.9810 25.0769 26 46.0000 25.4947 31.0000
13 13 26 27.9970 26.0769 27 48.0000 26.4949 32.5000
13 14 27 29.1649 27.0714 28 50.0000 27.4951 33.5000
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m g α1 Eq(1) Eq(2) Eq(3) Eq(4) Eq(5) Eq(6)
14 14 28 29.8623 28.0714 29 52.0000 28.4953 35.0000
14 15 29 30.1800 29.0667 30 54.0000 29.4955 36.0000
15 15 30 31.3492 30.0667 31 56.0000 30.4956 37.5000
15 16 31 32.3635 31.0625 32 58.0000 31.4958 38.5000
16 16 32 33.5339 32.0625 33 60.0000 32.4959 40.0000
16 17 33 35.7190 33.0588 34 62.0000 33.4960 41.0000
17 17 34 36.7318 34.0588 35 64.0000 34.4962 42.5000
17 18 35 37.9043 35.0556 36 66.0000 35.4963 43.5000
18 18 36 38.9165 36.0556 37 68.0000 36.4964 45.0000
18 19 37 40.0899 37.0526 38 70.0000 37.4965 46.0000
19 19 38 41.1016 38.0526 39 72.0000 38.4966 47.5000
19 20 39 42.2757 39.0500 40 74.0000 39.4967 48.5000
20 20 40 43.2869 40.0500 41 76.0000 40.4968 50.0000
20 21 41 44.4617 41.0476 42 78.0000 41.4968 51.0000
21 21 42 45.4725 42.0476 43 80.0000 42.4969 52.5000
21 22 43 46.6479 43.0455 44 82.0000 43.4970 53.5000
22 22 44 47.6583 44.0455 45 84.0000 44.4971 55.0000
22 23 45 48.8342 45.0435 46 86.0000 45.4971 56.0000
23 23 46 49.8443 46.0435 47 88.0000 46.4972 57.5000
23 24 47 51.0208 47.0417 48 90.0000 47.4973 58.5000
24 24 48 52.0304 48.0417 49 92.0000 48.4973 60.0000
24 25 49 53.2074 49.0400 50 94.0000 49.4974 61.0000
25 25 50 54.2168 50.0400 51 96.0000 50.4974 62.5000
25 26 51 55.3942 51.0385 52 98.0000 51.4975 63.5000
26 26 52 56.4033 52.0385 53 100.0000 52.4975 65.0000
26 27 53 57.5811 53.0370 54 102.0000 53.4976 66.0000
27 27 54 58.5899 54.0370 55 104.0000 54.4976 67.5000
27 28 55 59.7682 55.0357 56 106.0000 55.4977 68.5000
28 28 56 60.7767 56.0357 57 108.0000 56.4977 70.0000
28 29 57 61.9553 57.0345 58 110.0000 57.4977 71.0000
29 29 58 62.9635 58.0345 59 112.0000 58.4978 72.5000
29 30 59 64.1425 59.0333 60 114.0000 59.4978 73.5000
30 30 60 65.1505 60.0333 61 116.0000 60.4979 75.0000
30 31 61 66.3298 61.0323 62 118.0000 61.4979 76.0000
31 31 62 67.3376 62.0323 63 120.0000 62.4979 77.5000
31 32 63 68.5172 63.0312 64 122.0000 63.4980 78.5000
32 32 64 69.5248 64.0312 65 124.0000 64.4980 80.0000
32 33 65 70.7047 65.0303 66 126.0000 65.4980 81.0000
33 33 66 71.7121 66.0303 67 128.0000 66.4981 82.5000
33 34 67 72.8922 67.0294 68 130.0000 67.4981 83.5000
34 34 68 73.8995 68.0294 69 132.0000 68.4981 85.0000
34 35 69 75.0799 69.0286 70 134.0000 69.4981 86.0000
35 35 70 76.0869 70.0286 71 136.0000 70.4982 87.5000
35 36 71 77.2675 71.0278 72 138.0000 71.4982 88.5000
36 36 72 78.2744 72.0278 73 140.0000 72.4982 90.0000
36 37 73 79.4553 73.0270 74 142.0000 73.4983 91.0000
37 37 74 80.4620 74.0270 75 144.0000 74.4983 92.5000
37 38 75 81.6431 75.0263 76 146.0000 75.4983 93.5000
38 38 76 82.6496 76.0263 77 148.0000 76.4983 95.0000
38 39 77 83.8309 77.0256 78 150.0000 77.4983 96.0000
39 39 78 84.8373 78.0256 79 152.0000 78.4984 97.5000
39 40 79 86.0188 79.0250 80 154.0000 79.4984 98.5000
40 40 80 87.0251 80.0250 81 156.0000 80.4984 100.0000
40 41 81 88.2068 81.0244 82 158.0000 81.4984 101.0000
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m g α1 Eq(1) Eq(2) Eq(3) Eq(4) Eq(5) Eq(6)
41 41 82 89.2129 82.0244 83 160.0000 82.4984 102.5000
41 42 83 90.3948 83.0238 84 162.0000 83.4985 103.5000
42 42 84 91.4008 84.0238 85 164.0000 84.4985 105.0000
42 43 85 92.5828 85.0233 86 166.0000 85.4985 106.0000
43 43 86 93.5887 86.0233 87 168.0000 86.4985 107.5000
43 44 87 94.7709 87.0227 88 170.0000 87.4985 108.5000
44 44 88 95.7767 88.0227 89 172.0000 88.4986 110.0000
44 45 89 96.9590 89.0222 90 174.0000 89.4986 111.0000
45 45 90 97.9647 90.0222 91 176.0000 90.4986 112.5000
45 46 91 99.1472 91.0217 92 178.0000 91.4986 113.5000
46 46 92 100.1528 92.0217 93 180.0000 92.4986 115.0000
46 47 93 101.3354 93.0213 94 182.0000 93.4986 116.0000
47 47 94 102.3409 94.0213 95 184.0000 94.4986 117.5000
47 48 95 103.5236 95.0208 96 186.0000 95.4987 118.5000
48 48 96 104.5290 96.0208 97 188.0000 96.4987 120.0000
48 49 97 105.7119 97.0204 98 190.0000 97.4987 121.0000
49 49 98 106.7172 98.0204 99 192.0000 98.4987 122.5000
49 50 99 107.9002 99.0200 100 194.0000 99.4987 123.5000

From the above table it is easily seen that (2) is better than (1), (3), (4), (5) and (6) for large values
of m&g.

To show that equation number (2) is the best among mentioned inequalities we used linear regression
model as follows:

Conclusion

In this work, we have computed the coefficients of the characteristic polynomial of the Laplacian
matrix for the Cartesian product graph Km□Kg. Furthermore, we have derived an upper bound for
the largest Laplacian eigenvalue of the graph Km□Kg, and calculated its graph energy based on the
eigenvalues of the corresponding adjacency matrix.

As discussed earlier, Equations (1) and (2) yield more accurate or tighter results compared to the
other considered expressions. This conclusion is supported by the data presented in the accompanying
tables and graphical illustrations.
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Table2:Error Metrics for Different Equations

Equation RMSE MAE R2

Eq(1) 0.619 0.5099 0.984
Eq(2) 0.2235 0.1975 0.9979
Eq(3) 1.0 1.0 0.9583
Eq(4) 9.3808 8.0 -2.6667
Eq(5) 0.4836 0.4835 0.9903
Eq(6) 3.1343 2.8824 0.5907
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To check how well the six equations, work in predicting our data, we used three common error-
checking methods: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient
of Determination (R2). These tools help us measure how close the predicted values are to the actual
values. The lower the RMSE and MAE, the better the prediction. A higher R2 (closer to 1) means the
model explains the data well. Out of all the equations, Equation (2) gave the best results. It had a
very low RMSE of 0.2235, MAE of 0.1975, and an almost perfect R² of 0.9979. This means Equation
(2) predicts the data extremely well and makes only very small errors. Equation (1) also performed well,
with an RMSE of 0.619, MAE of 0.5099, and R² of 0.984. While not as accurate as Equation (2), it still
provides good predictions and fits the data closely. These results make it clear that Equations (1) and
(2) are far better than the others, and among them, Equation (2) is the most accurate and reliable.
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