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A Study on the Stability and Solvability of Pantograph-Type Equations with (k,)-Caputo
Proportional Fractional Derivative Operator

Mehdi SELMANTI * Chahrazed HARRAT and Youcef BOUIZEM

ABSTRACT: This study investigates a class of pantograph-type equations involving the (k,1)-Caputo pro-
portional fractional derivative, subject to nonlocal fractional integral boundary conditions. The existence and
uniqueness of solutions are established through the application of Banach’s and Krasnoselskii’s fixed point
theorems. Furthermore, various forms of Ulam stability are analyzed. To illustrate the theoretical results and
demonstrate their applicability, a numerical example is provided.
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1. Introduction

Differential equations are fundamental tools in modeling and analyzing natural phenomena, offering
a rigorous mathematical framework for understanding dynamic processes and complex system behavior,
see [8,9,10,17]. Over the past decades, they have enabled the prediction of various phenomena such as
planetary motion and temperature fluctuations through diverse formulations. Readers may also refer to
[13] for further details.

Among these, pantograph-type equations are particularly suited for systems with non-uniform time
delays. Their applications span power transmission, automatic control, economic modeling, neuroscience,
and heat transfer. By incorporating dependencies on past states over non-constant delays, they allow for
more accurate representations of system dynamics. Within the domain of fractional calculus, considerable
attention has been given to pantograph-type equations involving fractional derivatives, with particular
focus on establishing the existence and uniqueness of solutions, typically using fixed point theorems
such as those of Banach, Schauder, and Krasnoselskii. Stability analysis, especially in the context of
Ulam-Hyers and Ulam-Hyers-Rassias frameworks, has also been extensively explored, see [2,3,12].

Several recent studies have addressed the existence, uniqueness, and Ulam-type stability of solutions
to various fractional differential equations. For instance, [2] examined nonlinear fractional pantograph
equations with proportional Caputo derivatives and mixed nonlocal conditions. Likewise, [11] and [1]
considered i-Hilfer-type and neutral Caputo-Hadamard pantograph equations, respectively. In another
contribution, [7] investigated boundary value problems involving nonlinear fractional differential equa-
tions with the ¢-Caputo derivative. In [16], the authors study existence and uniqueness results for a class
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of k-generalized v-Hilfer fractional differential equations with periodic conditions. For further details,
see [14].

In [18], the existence, uniqueness, and Ulam—Hyers stability of solutions to the following Caputo —
Hadamard - type pantograph fractional differential equation are investigated:

u(l) = (u;, uy € R, (1.1)

GDYu(t) = o (t,u(t),u(Xt)), te[l,T],0<a<1,0<A<],
Uuq
where & D® denote the Caputo-Hadamard type fractional derivative of order a and ¢ : [I,T] x R x R —
R, 6 : C([1,T],R) — R are given continuous functions.
Motivated by the aforementioned studies, the present work focuses on a class of pantograph-type equa-
tions with integral nonlocal boundary conditions. Our aim is to establish the existence and uniqueness
of solutions, along with Ulam—Hyers stability for the following equation:

{ Sl [ CDAYu@) = A (oo (@)] = v ven), wel=labl,

U(b) - 2211 a; a,k:I@’p;wU(Ci)a ngﬁm;wU(a) =A g(a7 U(a’))'

where 0 < £ < 1,0 < % <1, withk >0,0 < p <1, and p € (0,1]. Here, nga,p;w(.) denotes
the (k,v)-Caputo proportional fractional derivative of order «, and ,xI%*#¥(-) represents the (k,1))-
Riemann—Liouville proportional fractional integral operator of order ¢;. The parameters A, 0; € R, and
¢ €Tl fori=1,2,...,m, with m € N. The functions f : [a,b] x Rx R = R and ¢ : [a,b] x R = R are
continuous.

The proposed equation is characterized by its inclusiveness and generality, as it encompasses many
well-known boundary value problems under suitable conditions.

By choosing

g(x,v(x)) =1,

the problem (1.1) reduces to the following (k,1)-Caputo proportional fractional Langevin—pantograph-
type equation:

Cupeet | € DRe(z) = A| = f(a,v(@),v(en)), @ €L
v(b)=>" 0 a k1P 0((), ﬁkDﬁ’p;wU(Q) =\

Problem (1.1) represents a unified framework that captures a broad spectrum of cases involving
different types of fractional derivatives. The diversity of problems covered by this formulation depends
essentially on the specific choices of the function ¢ and the parameters p and k

Under particular selections, the general problem reduces to several notable special cases, such as:

e If )(z) = x, Problem (1.1) reduces to a k-Caputo proportional fractional equation of pantograph
type;

o If p =1, it takes the standard (k,)-Caputo form;
o If £ =1, it corresponds to the 1-Caputo variant of the same equation.

This work introduces a fractional equation involving (k,)-Caputo proportional derivatives with in-
tegral boundary conditions and presents a unified framework for various classes of fractional differential
equations. It also establishes key results on existence, uniqueness, and Ulam—Hyers stability.

We outline the structure of this paper as follows: In Section 2, we present some essential definitions
and lemmas. In Section 3, we study the existence and uniqueness of solutions for the proposed equation.
Section 4 is devoted to the study of Ulam-Hyers stability and generalized Ulam-Hyers stability. In Section
5, an illustrative example is provided. Finally, Section 6 presents a summary of the main findings of this
study.
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2. Preliminaries

Let II = [a,b] be a finite interval. For all z € II, let G = C(II,R) denote the Banach space of
continuous functions v : I — R, equipped with the norm

ol = max (@)

Let ¢ : IT — R be a strictly increasing and continuous function such that ¢’(x) # 0 for all « € II.
Moreover, define the space of functions that are n-times differentiable with (n — 1)-th derivative
absolutely continuous by

AC™[a,b] = {U I R | 0D € ACa, b}} .
Definition 2.1 [6] Assume that u € C with Re(u) > 0, and let k > 0. Then, the k-gamma function T'j
1s defined by
o0 .k
T (u) :/ s¥TleTh ds. (2.1)
0

Proposition 2.1 [6] The k-gamma function satisfies the following properties:
(1) Ti(u+k) = ul'k(u)
(ii) Ty(k) =1

(iii) Th(u) = k% ~1T(L).

Definition 2.2 [5] Let v € L'(ILR), a € C with Re(a) > 0, and p € (0,1]. Then, the left-sided
(k,¥)-RIL proportional fractional integral operator of order « is defined by

Bl

. 1 v e
a,p;t - P & /
a,kI v(m) = p%]{irk(a) /a k\Ilw (33’5)?# (5)U(6) d57

where T (+) is defined by (2.1), and

(S (@,6) = 5 OO gi(a) —p(e) .

RS

Lemma 2.1 [5] Let a, i € C with Re(a) > 0, Re(u) > 0, p € (0,1], and w > —1. Then, we obtain

apip [ oy k=1 }:41%(#) g i1
akl [k\Ilw (z,a) STTr (it o) 2y (z,a).

Lemma 2.2 [5] Let a1,z € C with Re(ay),Re(az) > 0, and p € (0,1]. Then,
a’klahp§w<a7k10¢21p§¢'v($)) — a)klaﬁaa,p;wv(x) — a’klahpﬂﬁ(mklal7P?¢'/U(x))_

Definition 2.3 [5] Let o € C with Re(a) > 0, 0 < p < 1, and let v,y € C*(IL, R) with ¢’ (x) # 0 for

all z € Il, wheren = |——| 4+ 1 andn € N. en, the left-side ,¥)-Caputo proportional fractiona
ll II, wh Re,ga) d N. Th he left-sided (k,)-C [ f )

derivative operator of order « is defined by
2,6]]))’1”’”1’11(:0) — mkjnkfa,p;w ( an,p;wU(x)) .

Lemma 2.3 [5] Let a, p € C with Re(a)) > 0, Re(p) > 0, £ > 0, p € (0,1], and ReT(“) > —1. Then, we
obtain

. w_ =T p—a
Cupert [ 1w )] = £ e ),
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Lemma 2.4 [5] Let a, pp € C with Re(a) > 0, Re(u) > 0, Re(u) > nk, p € (0,1], and n = {Reéu)J s
Then,

ikDa,p;w( (Lkptaﬂﬂﬁv(x)) — mkl"’a’p“"v(x).

Lemma 2.5 [5] Let a € C with Re(a) > 0, k > 0, RET@ €(n—1,n],neN and p € (0,1]. Then,

n
oI ( nga,p;wU(x)) = v(x) — Z ( KDY (a).

In particular, for n =1, we have
I (D (@) = v(a) — (@) DOV u(a).

Lemma 2.6 [4] (Banach’s fized point theorem) Let X be a non-empty closed subset of a Banach space
W. Then, every contraction mapping T : X — X admits a unique fized point.

Lemma 2.7 [19] (Krasnoselskii’s fized point theorem) Let W be a Banach space. Let X be a non-empty,
closed, bounded, and convex subset of W, and let J1, Jo be operators such that

1. Jiv1 + Jovg € X whenever vy,vs € X.
2. J1 1s continuous and compact.
3. Ja is a contraction.

Then, there exists vs € X such that
vz = J1v3 + Jovs.

3. Existence and Uniqueness Results

In this section, we prove the existence and uniqueness of the solution to equation (1.1) within the
given domain.
We now present the following notations, which are crucial for the subsequent results.

<1+I3+¢i

WO =) F N (016~ () s
p ¥ Lpla+B8+k) i3 p— F Ti(a+B+¢i+k)

P IO ) I mw,a)(( (b) —w(a) "

pQTka(a+6+k) |7 P FTh(a+ B+ k) 53
_ d}(a)) (x+[;+¢i .
+Z| a+i+¢1, (a+5+¢z+k)>
() — @) 2U0b.a) () —p(@)F N ((G) — (a)
B = il " 555 .
iy T ( piT w k) +;' s 1Fk(5+¢1+k)> .

To lay the groundwork for the main result, we first establish the following lemma.
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Lemma 3.1 Let h(z) € C(IL,R) be a given function. The solution of the fractional differential equation

{ Gt [ O, D8 rvue) A glo,u(e))] = i), x€TL 5

v(b) = X 0i 0k IPPV0(G), D u(a) = A g(a, v(a)).

1s given by

. . 2O (. a) | & o
v(@) = apl*TPPYR(z) + A 0k 177V g (2, 0(2)) + —y Zai afIFPORPYR(G)
i=1
m
R e TORS /\(Zai akI7HOPY g(C0(G)) — a,kfﬁ’p”bg(bvv(b))) :
i=1

Proof: Let v € C(II,R) be a solution of the fractional differential equation (3.5). By applying the
fractional integral operator , %% (-) to both sides of equation (3.5), and invoking Lemma 2.5 with
n = 1, we obtain:

CDPP V() = A gz, v(@) = 0p I Ph(z) + 1 L8 (z,a), (3.6)

where
cp = (DO [T DPP0(a) — A g(a, v(a))] .

Taking into account the initial condition gk]D)o‘z’p‘wU(a) = Ag(a,v(a)), we deduce that ¢; = 0.
Applying once again the operator , 11”7 (-) to both sides of equation (3.6), we obtain:

v(z) = mkl"‘*'ﬁ’p;wh(x) +A a,k_[ﬁvﬁ%wg(x,v(x)) + ¢ 2\112,(3:, a). (3.7)
where
¢ = DY u(a),
Evaluating (3.7) at « = b yields:

v(b) = a1 I TPPYR(D) + X o1 177 g(b,v(b) + 21 LT (b, a). (3.8)

Furthermore, we have:

Z L Z i ap[OTATPPYR () + )\Zm a ke I7T90PY g(G0(G))
=1 1 i—
' = (3.9)
o Cm a)
+a Z A
i=1 pkrk(¢l+k)
Since it is known that v(b) = >_7", 0y ok 1%P%0((;), it follows that:
1| & . B o
a=x Z;O'i apIOTPTOPER(C) — oy TP R(b)
:n_ (3.10)
A(Z Oi a)kjﬂ-i-%pn/fg(g)v(gi)) - a,klﬁ’p;wg(b7v<b))>‘| .
i=1

Hence,
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Ry (x,a)

U(m) — a,kl‘”ﬂ’”;wh(m) SN mkj&p;wg(%v(x)) + —y

m
Z o a’k1a+/3+¢i7p;wh(@)
i=1

— a1V R(b) 4 A(Zai akIPHOPY (¢ u(G)) — aykI’B’p”"g(b,v(b)))] )
i=1

Motivated by Lemma 3.1, we define the operator J : G — G as follows:

P 0
(Tv) (@) = apITPPYf (2, 0(x),v(02)) + X arl?PVg(z,v(x)) + M
’ lz(’i IO (GG, 0(06) = s ™ (0 000),v(eb)
i=1

+ A(Zaz a,kIﬁerji’p;wg(Cia'U(Ci)) - a,k-[ﬁ’p;wg(bav(b)))] .

i=1
We make the following assumptions:
(H1) The functions f:TI x R x R — R and ¢ : IT x R — R are continuous.
(Hz2) There exists a constant £; > 0 such that
|f (2, w1, v1) = f@,u2,02)| < L1 (Jur — ugf + |vr —va),
for all x € IT and u;,v; € R, 1 =1,2.
(Hs3) There exists a constant £9 > 0 such that
lg(z,u) — g(z,v)] < Lafu —vl,
for all x € IT and u,v € R.
(H4) There exists a positive function J; € C'(II,R) such that

|f (2, u,v)| <Is(x), forallz €Il and (u,v) € R%

(Hs) There exists a positive function 9, € C(II, R) such that

lg(z,u)] <V4(z), forall (z,u) eIl xR.

Theorem 3.1 Suppose that the assumptions (Hi1), (Hz2), and (Hs) hold. If
2£1A1 + £2A2 < 1,

then the fractional differential equation (1.1) admits a unique solution on II.

Proof: First, let w = sup .y |f(2,0,0)| < 0o and ¢ = sup,cpq |g(x,0)| < co. We prove that 7B, C B,,

where
wAl + §A2

1-— (221A1 + SQAQ).

B ={vegG:|v]|<r} and r>
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For all v € B,, we have

|f(z,v(@), v(ex))| = | f(z,v(x),v(ex)) — f(2,0,0) + f(,0,0)]
< |f(z,v(z),v(0x)) — f(x,0,0)| +[f(z,0,0)]
<28 |v(z)|+w
<284 ||v|| + @
<2847r 4+ w.

Similarly,

l9(z, v(z))] = |g(z,v(x)) — g(z,0) + g(z,0)|
<|g(z,v(z)) — g(x,0)| + [g(z, 0)]
< Lolv(x)| +¢
< Loflvll +¢
< Lor +.

Therefore, we obtain

(T)(@)| < ap PPN f (2, 0(2), v(0)) [ + A apd ™7 gz, (@)

P\I/O , m .
krjr(‘Ta) Z|O‘Z| a’k1a+5+¢iapv'¢"f(Ci,v(gi)’v(ggi))|
i=1

+ LTV f (b, 0(b), 0(eb)) |

+ |A<Z 3] 07079 (Giv0(G))] + a,kfﬁ"wlg(b’v(b))l)]

=1

($(b) — P(a)“F" RO

< (221T+w) Mrk(&—kﬂ—kk) T
) atfto;
x<<ﬁ§b) i(a) Zl y MM ¢) —¥(a)) >
p o Tila +B+k P Tt Br ot h)
8 P 0
N (8 ) | LD )T M(b,a)
prk(ﬁﬂc) 7|

y (w(b) £ 3o 6) = ¥l(a)) 7 )

pkrkﬁw = e rk<ﬁ+¢z+k>
S (221T+W)A1 + (2/27” +§)A2.

Which implies that

thus,

Now, let u,v € G. Then
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[(Tu)(@) = (T0)(@)] < apI TPV f (2, u(x), u(ox)) — f (2,0(z), v(0z) |

+ A ap PV g(x, u(2)) — gz, ()] + =

X [Z il 0 I FPHORPPLF (G ulG) uleG) — f (G (i) v(e6) |
i=1
+ aged TPV (b, u(b), u(ob)) — f (b, 0(b), v(eb))|

m

I (Z (02] a P29 (G, u(Ce)) — 9 v(C)

i=1

+ a,klﬁ’p”ﬂg(ba u(b)) - g(b7 U@)))]

ooy [0 = v@)F )
< (221“ H) [pw Th(at 1 k) + [T

X(w(b) (@) S C(ORI)

atpB+o;
k

] a+ﬁ+¢1

Fk(a+ﬁ+k pat (a+6+¢>z+k)>

(¥ (b) —w<a>>% L)
pgfk(ﬂ-i-k) -

B+,

><((() Z‘ ol Ml —¢(a)) F

T, B+k — Fk(ﬁ‘f'(bz'i‘k‘))
<28 ||u — v||Aq +£2HU—’UHA27
§ (221A1 +£2A2) Hu 7’1}”

+ [Al(L2flu = vl]) [

Which implies that
1(Tu)(@) = (Tv)(@)]| < (28141 + L289) [Ju — v]],

for all u,v € G.

Since 2£1A1 + £5A5 < 1, the operator J is a contraction.

Therefore, by applying Theorem 3.1, we conclude that 7 has a unique fixed point, which corresponds
to the unique solution of equation (1.1). This completes the proof. O

Theorem 3.2 Suppose that conditions (H1), (Ha), and (Hs) hold. Then, there exists at least one solution
to the fractional differential equation (1.1) on the interval II.

Proof: Based on the conditions (H4) and (Hs), we select p > || 9f]|A1 + ||94]|A2, where
By ={ue§:|lul <p},
and

[9¢]l = sup (), [[Uq]l = sup Iy(z).
xzell zell

Now, we define two operators J; and Js as follows:

(J10)(@) = o p IV f(z,0(2), v(0x))

RGNS atB+6i,00 a-+B,pitp
+ T Zai a,k:I R f(CZaU(<1)7U(QC7,)) - a,kl e f(b7’U(b)7U(Qb)) .

i=1
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and

(J20)(@) = Aapl”P¥g(z, v(2))

)\p\IJO ; m |
+ w <; Oi a k[ﬁﬂ% P (G v(G)) — a,kfﬁ’p’wg(b,v(b))> )

We will now demonstrate that the conditions of Theorem 3.2 are satisfied. To this end, we proceed
to verify the hypotheses through a detailed three-step process.

step 1. Let u,w € By,. Then,

P90 (2, a
|(J1u)(z) + (Jow)(z)| = ’ a,kI‘HB’p;wf (z,u(z), u(ox)) + %

m

x (Zai T £ (G (G, u(eG,))

=1

R I (5 (b, u(gb») X s IP g (e ()

P;0
W(kaﬂ”%w (G w(G)) - ,kfﬁ"’;wg(b’w(b”)‘
P
< a kIR f (2, u(2), u(ox)) | + W

x (Z 04] a0 £ (G (G, u(oG) |
=1

ok IO £ (b, u(b), u(eb)) |) I an P g w(a))]

RETAHCE a)(

|fr| Z |UZ| a, klﬁ+¢1 i w‘g(é‘“ (CZ))| + a,klﬁﬁpﬂ”g(b? w(b))|)7

=1

— (@) pUY(ba (e
< ||19f|| (i(ﬁb) Y(a)) + k w( )( (i(ﬁb) P(a))
FTi(atB+E) Tl \p Th(a+8+k)
)= ()T
+Z| i a+5+¢1fk(a+ﬂ+¢z+k))
(W) —d(@)F | F¥y(ba)
T[N ’
+ 191l Il TG4k T

B+,

X(( (b) — () £ 3 o LG — ) >

PET(B+k) S p I Fk(5+¢z+k)
< 95141 + [[0g]| As.

This implies that
[(J1u)(z) + (F2w)(@)]| < ¢

Therefore,

(J1u)(@) + (F2w)(x) € By
Step 2. Since the operator 7 is a contraction, it follows that
[(F2w)(z) — (F20)(@)|| < L2D2 [Ju — .

Therefore, J5 is also a contraction mapping.
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Step 3. Now, we prove that the operator J; is compact. Let x1,x9 € II with 1 < x2, and set

= sup |f (2, 0(x), v(ex)) |

(z,u,v)€IIX B, x By,
Then, it holds that
f

(rv)les) = (o)lanl € Zog s

g1 pg -1 /
. (22,0) — 2V, (x1,0) ) ' (0) d§

1 oatB 0 ’ _ oy 7 A
+/ Z\I/wzr 1(1'2,5)1/)/(5) d5'+ | k di(ﬂ?Q Cl) "I]?| w(Il a)‘ f

2

The right-hand side asymptotically approaches zero as (z2 — 1) — 0, independently of v € B,,.
Hence, by the Arzela—Ascoli theorem, the operator J; is compact on B,,.

Applying Krasnoselskii’s fixed point theorem, we conclude that problem (1.1) admits at least one
solution on G.

4. Stability

The definitions below establish the concepts of Ulam-Hyers and generalized Ulam-Hyers stability for
problem (1.1). For a given € > 0, consider the inequality:

gkﬂ)“’p;w[ ac,kDB’p;wﬁs(x) = Ag(z,k(x)] = f(z, k(x),K5(0x)) | <€, zell (4.1)

Definition 4.1 [15] The proposed problem (1.1) is said to be Ulam-Hyers (U-H) stable if there exists
a constant Q > 0 such that, for every € > 0 and for every function k € G' = CY(IL,R) satisfying
inequality (4.1), there exists a solution v € C*(IL,R) of problem (1.1) such that

|k(z) —v(x)] < Qe, zell (4.2)

Definition 4.2 [15] The proposed problem (1.1) is said to be generalized Ulam-Hyers stable if there

exists a continuous function Qy € C([0,00),[0,00)) with Q(0) = 0, such that for each € > 0 and for each

function k € CY(II,R) satisfying inequality (4.1), there exists a solution v € C1(II,R) of problem (1.1)
such that

|k(x) —v(x)] < Qp(e), x eIl (4.3)

From the previous definitions, it follows that Definition 4.1 implies Definition 4.2.

Remark 4.1 A function x € CY(IL,R) is a solution of inequality (4.1) if and only if there evists a
function D € CH(II,R) such that:

(i) |D(x)| <€, el
(ii) G [C,DP7%n () — Ag(a,w(2))] = F(a, 5(@), wlox)) + D(e), = €TL
In view of part (i) of Remark 4.1, it follows that

ﬁkﬂ)a’p?w [ ikDﬁ’p”pﬁ(m) - A g(x, m(x))] = f(z,k(x), k(ox)) + D(x), x €Il (4.4)

By applying Lemma 3.1, the solution of problem (4.4) is given by
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k(z) = a,kl‘”'ﬂ"’”/’f (x,k(x), k(o)) + a,klo‘"’ﬁ’p;w’l)(as) + A a,kI'B"’;wg(:E, k(z))

PO m
M D 05 ap IO TR F(GR(G), K(0G))

i=1

n 4.5
— kIO (b, k(b), K(0b)) + D 03 s ITETOPVD(G) = 4k IHHPD () 45)

i=1

+ A < Z g; a7klﬁ+¢i7p;wg(gia K(Cz)) - a7klﬁ7p;wg(b7 H(b)>)] .

i=1

Firstly, we present an important lemma that will be instrumental in the proofs of Ulam-Hyers stability
and generalized Ulam-Hyers stability.

Lemma 4.1 Let k € CY(II,R) be a function that satisfies the inequality (4.1). Then, x also satisfies the
following inequality:
k(x) — (Tk)(2)] < Are, e € (0,1], (4.6)

where Ay is the constant defined in (3.3).

Proof:
From Remark 4.1 and equation (4.5), we obtain

[k(2) = (Tr)(2)] = ‘ a kI FPPVD(x)

PUY (2,a) [ &
=\ E ' ) a+B+i,pitp N a+B,p5
+ T |:i_1 g; a,kI P D(Cz) a,kI P D(b):|

< a7k1a+67p;w|p(x)|
PUY (b,a) | & , ‘
A | ol an DG + aw*ﬁ’ﬂvﬂmb)]
=1
atB 0
SE[ (W) — (@) [P (b.a)

p“F Ti(a+ B +k) 7]
atBte;

(LOE S v )
pr Iyla+B+k) =5 p = Tpla+B+¢i+k)
<A16.

a

Now, we present the results concerning the Ulam-Hyers stability and the generalized Ulam-Hyers
stability of the proposed problem.

Theorem 4.1 Assume that the conditions (H1), (H2) and (Hs) are satisfied. If 2£1 A1 + £oAo < 1,
then problem (1.1) is both Ulam-Hyers stable and generalized Ulam-Hyers stable on the interval I1.

Proof: Let k € C*(I,R) be a solution of the inequality (4.1), and let v be the unique solution of the
problem (1.1). By applying the triangle inequality, namely |u — v| < |u| + |v|, and using Lemma 4.1, we
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obtain
k(x) —v(z)| = [k(@) = axITPPVf (2, 0(2),v(0n)) = X 0P g(a,v(z))
AiGIOR Bt o 8,030
- T Z:Ui akd (G v(Ge),v(06)) = ak LT f (b, u(b), v(0b))
A X os aad (G 0(6) - ,kfﬁwb,v(b)))H
=1
= [k(z) — (TK)(z) + (TK)(x) — (Tv)(2)]
k() —

<
<

(Tr) (@) +[(Tr)(x) = (Tv)(@)|
Alﬁ + (2£1A1 + 22A2)|I€($) - ’U(.’E)|
This implies that
. < Ale
@) =v(@)l < T Ha A T 5ng)

Consequently, we obtain
|k(z) — v(x)] < Qe,

where
Ay

1— (221A1 + £2A2) '
Hence, the problem (1.1) is Ulam-Hyers stable. Furthermore, by defining

Q:

which satisfies Q;(0) = 0, we conclude that the problem (1.1) is also generalized Ulam-Hyers stable. This
completes the proof.
O

5. Example

We counsider the following nonlinear (k, ¢)-Caputo proportional fractional Pantograph-type differential
equation subject to nonlocal boundary conditions:

¢ %7%?9324’26 C %,%;w2+z,u ) — i Sln(‘r)|v(x)| _ |U( )| + |U(3)|
20 020 @~ 55 (s T o@D = v T+ @)+ o))
v(1) = oI55 oy (3), zell=0,1].

(5.1)

For this example, we choose the parameters as follows: a =0, b=1, a =3, 8 = %, k=2, n=1,
p:%,w(l’):l’2+$,)\:%,Q:%7m:1701:%,¢1:%and§1:7
Numerical computations yield:
T ~0.3222, A ~1.9530, A;=~3.6474, A, =~0.0544<1.
The nonlinear functions involved in the problem are defined as follows:

B sin(z) |v] 1 |v]| + |w]
9@ v) = SR 1 1) <1+|v|>’ flesvw) = o T <1+|v|+|w|)'

For all z € IT and v;, w; € R, ¢ = 1,2, we have

|f(z,v1,w1) — f(z,02,w2)| < 5= (Jur — va| + |w1 — wal),

€
20
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therefore, the Lipschitz condition (Hz) is satisfied.
Similarly, for all € IT and v,w € R, we have

1
|g(.’13,1}> - g(l‘,U))‘ < % |U - U)l,
hence, the condition (Hg) is satisfied.
Moreover, since
281A1 + £5A5 = 0.36655 < 1,

by invoking Theorem 3.1, it follows that problem (5.1) admits a unique solution.
In addition, we observe that

95(2) = —
T) = ——,
! Vaz+1

|f(z,v,w)] <Is(x), where

which ensures that condition (#,4) is satisfied.
Moreover, we find that

1

lg(z,v)| < V4(x), where Iy4(x)= o

so condition (Hs) holds.

Finally, since
L£oAs ~ 0.001813 < 1,

all the assumptions of Theorem 3.2 are satisfied. Hence, by applying Theorem 3.2, equation (5.1) admits
at least one solution on II.

Finally, after straightforward calculations, we find that Q = 5.758. Since all the assumptions of
Theorem 4.1 are met, it follows that the problem (5.1) is both Ulam-Hyers stable and generalized Ulam-
Hyers stable.

6. Conclusion

This paper addresses the existence, uniqueness, and Ulam-type stability of solutions for a class
of pantograph-type equations involving the (k,)-Caputo fractional derivative under nonlocal integral
boundary conditions. The analysis is based on Banach and Krasnoselskii fixed point theorems. A nu-
merical example illustrates the theoretical results. As a direction for future work, we aim to perform an
in-depth numerical study of the considered equation.
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