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Quotient space Henstock-Kurzweil integration on time scales

Vikuozonuo Sekhose and Hemen Bharali∗

abstract: We introduce Henstock-Kurzweil integrability for functions whose values lies in the quotient space
on time scales. We define the Henstock-Kurzweil integral with respect to the ∆-derivative and ∇-derivative
namely the quotient Henstock-Kurzweil ∆-integral and quotient Henstock-Kurzweil ∇-integral respectively.
Result establishing the criterion of integrability is observed, and few properties of the integrals are formulated.
Relations between quotient Henstock-Kurzweil integral and quotient Riemann integral, and quotient Henstock-
Kurzweil integral and Banach Henstock-Kurzweil integral are also presented.

In addition, as a linear combination of the ∆- and ∇-integrals we introduce the quotient Henstock-Kurzweil
♢α-integral and conclude with a theorem depicting the relation between the three integrals.

Key Words: Banach space, quotient space, Henstock-Kurzweil integral, ∆-integral, ∇-integral, time
scales.
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1. Introduction and preliminaries

The objective of this paper is to introduce the Henstock-Kurzweil integration for functions whose
values lie in the quotient space in the context of time scale calculus.

In this section, we present a survey of the existing literature as preliminary, forming the foundation on
which we define the integral. We briefly explore the theory of time scale calculus followed by the theory
of classical quotient space.

S. Hilger, in 1988, as part of his Würzburg doctoral degree [9] (also view [10, 1990] and [11, 1997])
introduced the theory of time scale calculus (initially known as measure chain calculus), this version of
calculus unifies and extends discrete and continuous calculus; the theory proves immensely useful when
dealing with hybrid models [1, 2025]. S. Hilger, as theoretical framework, presented a system of three
axioms (view [10] and [11]) and stated that any set, say T, that satisfies these three axioms were to
be called time scales. He further concluded that any closed subset T of R forms a time scale [10].
Significant core concept of the theory are the formulation of the jump operators [10]- the forward jump
operator (σ) and the backward jump operator (ρ). σ is defined as σ(t) = inf{t̃ ∈ T : t̃ > t} given σ is
a mapping, σ : T → T. ρ is defined as ρ(t) = sup{t̃ ∈ T : t̃ < t} given ρ is a mapping, ρ : T → T. A
non-maximal element t ∈ T is said to be right-scattered, if σ(t) > t, and right-dense, if σ(t) = t. We call
a non-minimal element t ∈ T left-scattered, if ρ(t) > t, and left-dense, if ρ(t) = t. t ∈ T is said to be
dense if σ(t) = t = ρ(t), isolated if ρ(t) < t < σ(t).
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Using the notion of the forward jump operator, S. Hilger in [10] formulated the delta derivative (∆-
derivative). A decade later, C. D. Ahlbrandt et al. [2, 2000] introduced the alpha derivative (α-derivative)
consisting both the ∆-derivative and nabla derivative (∇-derivative, initially denoted by ρ-derivative [2])
as special cases. ∇-derivative was officially named the nabla derivative by F. M. Atici et al. [3, 2002].
Reader is referred to [10] and [1] for more details.

Various notions of integration of Banach valued functions (which we will refer to as Banach functions)
and real valued functions (which we will refer to as real functions) in their constructive sense are discussed
in literature for both continuous (ordinary) and time scale calculus including the Henstock-Kurzweil
integration.

The Henstock-Kurzweil integral, sometimes called the gauge integral and the generalized Riemann
integral, as it’s latter name suggest is a Riemann-type integral introduced independently by J. Kurzweil
[13, 1957] and R. Henstock [8, 1961]. Preserving the intuitive approach of the Riemann integral, the for-
mulation of the Henstock-Kurzweil integral is only slightly different from the formulation of the Riemann
integral- instead of taking size of partition to be lesser than a positive constant δ we consider δ to be a
positive valued function. This alteration has enormous advantage in application. Reader is referred to
[12] for better insight.

For real functions in time scale calculus (domain is T)- the Henstock-Kurzweil integral preserving the
intuitive approach of the Riemann integral was introduced by A. Peterson et al. [18, 2006]; for unbounded
time scale intervals this integral was generalized by S. Avsec et al. [4, 2006] in the same year. A study
exploring the relation between Henstock integral (as given in [12, Definition 4.12]) and Henstock delta
integral was concluded by J. M. Park et al. [16, 2013] (also view [17, 2013]). Using covering theory
approach, the Henstock-Kurzweil integral was defined by B. S. Thompson [26, 2008].

For Banach functions in continuous calculus (domain is R)- the Henstock-Kurzweil integral was first
introduced by S. S. Cao [5, 1992] (reader can also refer to [7, 1994], [24, 1999], [28, 2007] and [25, 2022]
for more insight).

For Banach functions in time scale calculus (domain in T )- the Henstock-Kurzweil integral was defined
by M. Cichoń [6, 2011].

As mentioned at the beginning, we motivate the development of the Henstock-Kurzweil integral for
quotient valued functions (which we will call quotient functions) on time scales, preserving the intuitive
approach of the Riemann integration. This formulation of the integral can be applied to continuous,
discrete and hybrid models. In a recent paper [21, 2025] the theory of Riemann integration for quotient
functions on time scales has been introduced.

We briefly explore classical quotient space theory (reader may refer [15, 1998]), before introducing
the integral.

Let A be a vector space over the scalar field R, and let B be a subspace of A. The quotient space,
denoted by A/B, is a vector space whose underlying set is the collection {a + B : a ∈ A}. Here
a + B = {a + b : b ∈ B}, a ∈ A are called the cosets of B. Since two cosets of B are either identical or
disjoint, the quotient space A/B is the set of all distinct cosets of B.
Operations of cosets are defined as-
Addition: “ + ” : A/B×A/B −→ A/B,

(a1 +B) + (a2 +B) = (a1 + a2) + B,

and scalar multiplication: “ · ” : R×A/B −→ A/B,

r · (a+ B) = (r · a) + B,

here a1, a2, a ∈ V and r ∈ R.
Let A be a normed vector space, depending on whether B is a closed subspace of A or not, we obtain

norm and semi-norm respectively. If A is a normed vector space and B is a subspace of A, then

∥a+B∥A/B = dist(a,B) = dist(a+B, 0 + B) = inf
b∈B

∥a− b∥A = inf
b∈B

∥a+ b∥A,

here ∥ · ∥A/B is a semi-norm and ∥ · ∥A is the norm of normed vector space A. The semi-norm (∥ · ∥A/B) is
nothing more than a pseudonorm. However, if we consider that B is a closed subspace of A then ∥ · ∥A/B
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forms a norm, which we will call the quotient norm. The distance between two cosets (a1 + B) and
(a2 +B) is defined as

dist(a1 +B, a2 +B) = ∥(a1 +B)− (a2 +B)∥A/B = ∥(a1 − a2) + B∥A/B

= inf
b∈B

∥(a1 − a2)− b∥A = inf
b∈B

∥(a1 − a2) + b∥A.

Note that dist(a1, a2 +B) = dist(a1 +B, a2 +B).
The quotient space on which we define the integral is constructed as- X/B, where X is a Banach space

and B is a closed subspace of X, hence our constructed quotient space X/B is itself a Banach space.
Below we present the definition of Henstock-Kurzweil integral for Banach functions (X) on time scales

as defined by M. Cichoń [6, Definition 2.5], followed by our definition of the Henstock-Kurzweil integral
for quotient functions (X/B) on time scales.
Given T is a time scale, intervals on T will be defined as-

[d, e]T = {t ∈ T : d ≤ t ≤ e}; [d, e)T = {t ∈ T : d ≤ t < e};

(d, e]T = {t ∈ T : d < t ≤ e}; (d, e)T = {t ∈ T : d < t < e}.
Let P([d, e]T) denote the collection of all possible partitions of [d, e]T. Let J = {d = t0 < t1 < . . . <

tj = e} ∈ P([d, e]T). ∆-subintervals are taken to be of the form [tk−1, tk)T, 1 ≤ k ≤ j. ∆-tag is chosen

arbitrarily as ϑk ∈ [tk−1, tk)T. We will call the point-interval collection J =
{(

ϑk, [tk−1, tk)T

)}j

k=1
as

∆-tagged partition.
The construction of the ∆-gauge and β∆-fine partition are from [18, pp. 164]. Consider a positive

function β∆ : [d, e]T → R defined on [d, e]T. We write β∆(t) =
(
βL(t), βR(t)

)
, here β∆ will be called the

∆-gauge for [d, e]T provided βL(t) > 0 on (d, e]T, βR(t) > 0 on [d, e)T, βL(d) ≥ 0, βR(e) ≥ 0 and βR(t) ≥

σ(t)− t for all t ∈ [d, e)T. For any ∆-gauge, say β∆, a ∆-tagged partition J =
{(

ϑk, [tk−1, tk)T
)}j

k=1
is

a β∆-fine ∆-tagged partition provided

ϑk − βL(ϑk) ≤ tk−1 < tk ≤ ϑk + βR(ϑk)

for all k = 1, 2, . . . , j. When T = R, then βL = βR.

Definition 1.1 [6] Let q : [d, e]T → X, then q is said to be Banach Henstock-Kurzweil ∆-integrable on
[d, e]T if there exists an I ∈ X such that for any ε > 0 there exists ∆-gauge, β∆, on [d, e]T; hence for
every β∆-fine ∆-tagged partition J, we have∥∥∥∥∥

j∑
k=1

(tk − tk−1) · q(ϑk)− I

∥∥∥∥∥
X

< ε.

Here I = HK
∫ e

d
q(t)∆t, where HK

∫ e

d
q(t)∆t is called the Banach Henstock-Kurzweil ∆-integral.

The set of all Banach Henstock-Kurzweil ∆-integrable functions on [d, e]T will be denoted by
HK∆ {[d, e]T;X}.

Let K = {d = t0 < t1 < . . . < tj = e} ∈ P([d, e]T). ∇-subintervals are taken to be of the form
(tk−1, tk]T, 1 ≤ k ≤ j. ∇-tag is chosen arbitrarily as ξk ∈ (tk−1, tk]T. We will call the point-interval

collection K =
{(

ξk, (tk−1, tk]T

)}j

k=1
as ∇-tagged partition.

The construction of the ∇-gauge and γ∇-fine partition are from [18, pp. 164]. Consider a positive
function γ∇ : [d, e]T → R defined on [d, e]T. We write γ∇(t) =

(
γL(t), γR(t)

)
, here γ∇ will be called the

∇-gauge for [d, e]T provided γL(t) > 0 on (d, e]T, γR(t) > 0 on [d, e)T, γL(d) ≥ 0, γR(e) ≥ 0 and γR(t) ≥

t− ρ(t) for all t ∈ (d, e]T. For any ∇-gauge, say γ∇, a ∇-tagged partition K =
{(

ξk, (tk−1, tk]T
)}j

k=1
is

a γ∇-fine ∇-tagged partition provided

ξk − γL(ξk) ≤ tk−1 < tk ≤ ξk + γR(ξk)

for all k = 1, 2, . . . , j. When T = R, then γL = γR.



4 V. Sekhose and H. Bharali

Definition 1.2 Let q : [d, e]T → X, then q is said to be Banach Henstock-Kurzweil ∇-integrable on [d, e]T
if there exists an I ∈ X such that for any ε > 0 there exists ∇-gauge, γ∇, on [d, e]T; hence for every
γ∇-fine ∇-tagged partition K, we have∥∥∥∥∥

j∑
k=1

(tk − tk−1) · q(ξk)− I

∥∥∥∥∥
X

< ε.

Here I = HK
∫ e

d
q(t)∇t, where HK

∫ e

d
q(t)∇t is called the Banach Henstock-Kurzweil ∇-integral.

We proceed to define the Henstock-Kurzweil ∆-integral and Henstock-Kurzweil∇-integral for quotient
functions on time scales, which we will call the quotient Henstock-Kurzweil ∆-integral and quotient
Henstock-Kurzweil ∇-integral.

2. Henstock-Kurzweil integration for quotient functions

Let P([d, e]T) denote the collection of all possible partitions of [d, e]T.

2.1. Quotient Henstock-Kurzweil ∆-integral

Considering J to be a β∆-fine ∆-tagged partition, the formulation of the quotient Henstock-Kurzweil
∆-sum, HKQ(q +B; J), given q +B be a quotient function is as follows-

HKQ(q +B; J) :=

j∑
k=1

(tk − tk−1) · (q(ϑk) + B).

Definition 2.1 Let q + B : [d, e]T → X/B, then q + B is said to be quotient Henstock-Kurzweil ∆-
integrable on [d, e]T if there exists an I +B ∈ X/B such that for any ε > 0 there exists ∆-gauge, β∆, on
[d, e]T; hence for every β∆-fine ∆-tagged partition J , we have∥∥HKQ(q +B; J)− (I +B)

∥∥
X/B

< ε,

∥∥∥∥∥
j∑

k=1

(tk − tk−1) · (q(ϑk) + B)− (I +B)

∥∥∥∥∥
X/B

=

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · q(ϑk)− I

)
+B

∥∥∥∥∥
X/B

= inf
b∈B

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · q(ϑk)− I

)
+ b

∥∥∥∥∥
X

,

= inf
b∈B

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · q(ϑk)− I

)
− b

∥∥∥∥∥
X

.

Here I +B = HKQ

∫ e

d
q(t)∆t, which we will call the quotient Henstock-Kurzweil ∆-integral.

The set of all quotient Henstock-Kurzweil ∆-integrable functions on [d, e]T will be denoted by
HK∆

Q {[d, e]T;X/B}.

Example 2.1 1. When T = R, the quotient Henstock-Kurzweil ∆-integral coincides with the usual
quotient Henstock-Kurzweil integral (domain in R).

2. When T = rZ, here r ∈ R and d, e ∈ rZ. If q +B ∈ HK∆
Q {[d, e]T;X/B}, then

HKQ

∫ e

d

q(t)∆t = r ·
e
r−1∑
z= d

r

(
q(rz) + B

)
.

If r = 1, T = Z and

HKQ

∫ e

d

q(t)∆t =

e−1∑
z=d

(
q(z) + B

)
.
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2.2. Quotient Henstock-Kurzweil ∇-integral

Considering K to be a γ∇-fine ∇-tagged partition, the formulation of the quotient Henstock-Kurzweil
∇-sum, HKQ(q +B;K), given q +B be a quotient function is as follows-

HKQ(q +B;K) :=

j∑
k=1

(tk − tk−1) · (q(ξk) + B).

Definition 2.2 Let q + B : [d, e]T → X/B, then q + B is said to be quotient Henstock-Kurzweil ∇-
integrable on [d, e]T if there exists an I + B ∈ X/B such that for any ε > 0 there exists ∇-gauge, γ∇, on
[d, e]T; hence for every γ∇-fine ∇-tagged partition K, we have∥∥HKQ(q +B;K)− (I +B)

∥∥
X/B

< ε,

∥∥∥∥∥
j∑

k=1

(tk − tk−1) · (q(ξk) + B)− (I +B)

∥∥∥∥∥
X/B

=

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · q(ξk)− I

)
+B

∥∥∥∥∥
X/B

= inf
b∈B

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · q(ξk)− I

)
+ b

∥∥∥∥∥
X

,

= inf
b∈B

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · q(ξk)− I

)
− b

∥∥∥∥∥
X

.

Here I +B = HKQ

∫ e

d
q(t)∇t, which we will call the quotient Henstock-Kurzweil ∇-integral.

The set of all quotient Henstock-Kurzweil ∇-integrable functions on [d, e]T will be denoted by
HK∇

Q {[d, e]T;X/B}.

Example 2.2 1. When T = R, the quotient Henstock-Kurzweil ∇-integral coincides with the usual
quotient Henstock-Kurzweil integral (domain in R).

2. When T = rZ, here r ∈ R and d, e ∈ rZ. If q +B ∈ HK∇
Q {[d, e]T;X/B}, then

HKQ

∫ e

d

q(t)∇t = α ·
e
r∑

z= d
r+1

(
q(rz) + B

)
.

If r = 1, T = Z and

HKQ

∫ e

d

q(t)∇t =

e∑
z=d+1

(
q(z) + B

)
.

3. Properties of quotient Henstock-Kurzweil integral

In this section, we discuss and formulate some properties of the quotient Henstock-Kurzweil integral
(we limit our results to the ∆-integral (Definition 2.1) since the ∇-integral results can be obtained very
similarly using Definition 2.2).

Theorem 3.1 If q + B ∈ HK∆
Q {[d, e]T;X/B}, then the value of the integral I + B is unique and well-

defined.

Proof: Suppose q + B ∈ HK∆
Q {[d, e]T;X/B} has two integral values, say I1 + B and I2 + B; and let

ε > 0. There exists ∆-gauge, β∆
1 , on [d, e]T such that for any β∆

1 -fine ∆-tagged partition J1, we have∥∥HKQ(q +B; J1)− (I1 +B)
∥∥
X/B

<
ε

2
,
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and there exists ∆-gauge, β∆
2 , on [d, e]T such that for any β∆

2 -fine ∆-tagged partition J2, we have∥∥HKQ(q +B; J2)− (I2 +B)
∥∥
X/B

<
ε

2
.

Now let ∆-gauge β∆(t) = β∆
1 (t)∩ β∆

2 (t) on [d, e]T such that for any β∆-fine ∆-tagged partition J, we
obtain ∥∥HKQ(q +B; J)− (I1 +B)

∥∥
X/B

<
ε

2
and

∥∥HKQ(q +B; J)− (I2 +B)
∥∥
X/B

<
ε

2
.

It follows from triangle inequality that∥∥(I1 +B)− (I2 +B)
∥∥
X/B

≤
∥∥(I1 +B)−HKQ(q +B; J)

∥∥
X/B

+
∥∥HKQ(q +B; J)

− (I2 +B)
∥∥
X/B

<
ε

2
+

ε

2
= ε.

Since ε > 0 is arbitrary, hence we conclude that the integral is unique.
The value of the integral I + B of quotient function q + B is well-defined by the fact that addition and
scalar multiplication of elements of quotient space are well defined (view [15, pp. 50]). 2

Without knowing the actual value of the integral, we can prove the integrability of a function via the
criterion of integrability stated as-

Theorem 3.2 A quotient function q + B : [d, e]T → X/B is quotient Henstock-Kurzweil ∆-integrable
on [d, e]T if and only if for any ε > 0 there exists a ∆-gauge, β∆, such that for all β∆-fine ∆-tagged
partitions J1 and J2 of [d, e]T, we have∥∥HKQ(q +B; J1)−HKQ(q +B; J2)

∥∥
X/B

< ε.

Proof: (⇒) If q+B ∈ HK∆
Q {[d, e]T;X/B}, for all ε > 0 there exists ∆-gauge, β∆, hence for any β∆-fine

∆-tagged partitions J1 and J2, we obtain∥∥∥∥HKQ(q +B; J1)−HKQ

∫ e

d

q(t)∆t

∥∥∥∥
X/B

<
ε

2
and

∥∥∥∥HKQ(q +B; J2)−HKQ

∫ e

d

q(t)∆t

∥∥∥∥
X/B

<
ε

2

Thus, we have

∥∥HKQ(q +B; J1)−HKQ(q +B; J2)
∥∥
X/B

≤
∥∥∥∥HKQ(q +B; J1)−HKQ

∫ e

d

q(t)∆t

∥∥∥∥
X/B

+

∥∥∥∥HKQ

∫ e

d

q(t)∆t−HKQ(q +B; J2)

∥∥∥∥
X/B

<
ε

2
+

ε

2
= ε.

(⇐) For each n ∈ N, choose a ∆-gauge, β∆
n , so that for any two β∆

n -fine ∆-tagged partitions J1 and J2
of [d, e]T, we have ∥∥HKQ(q +B; J1)−HKQ(q +B; J2)

∥∥
X/B

<
1

n
.

Replacing β∆
n by

⋂n
m=1 β

∆
m, we may assume that β∆

n+1 ⊂ β∆
n . For each n, fix a β∆

n -fine ∆-tagged partition
Jn. Note that for m > n, since β∆

m ⊂ β∆
n , Jm is a β∆

n -fine ∆-tagged partition of [d, e]T. Thus,∥∥HKQ(q +B; Jn)−HKQ(q +B; Jm)
∥∥
X/B

<
1

n
,
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which implies that the sequence
{
HKQ(q +B; Jn)

}∞
n=1

is a Cauchy sequence in X/B (Banach space), and

hence converges. Let I be the limit of this sequence, hence∥∥HKQ(q +B; Jn)− I
∥∥
X/B

<
1

n
.

To show that I = HKQ

∫ e

d
q(t)∆t.

Fix ε > 0 and choose N > 2
ε . Let J be a β∆

N -fine ∆-tagged partition of [d, e]T.
Then, ∥∥HKQ(q +B; J)− I

∥∥
X/B

≤
∥∥HKQ(q +B; J)−HKQ(q +B; JN )

∥∥
X/B

+
∥∥HKQ(q +B; JN )− I

∥∥
X/B

<
1

N
+

1

N
< ε.

Therefore, q + B ∈ HK∆
Q {[d, e]T;X/B}. 2

Below we formulate a theorem establishing the relation between quotient Henstock-Kurzweil ∆-
integral and quotient Riemann ∆-integral (defined in [21, Definition 1.1.1]).

Considering J =
{(

ϑk, [tk−1, tk)T

)}j

k=1
to be a ∆-tagged partition. Mesh of partition J is defined as:

mesh(J )=max1≤k≤j [tk − tk−1] > 0. For some δ > 0, Jδ will represent a partition of [d, e]T with mesh δ
satisfying the property: for each k = 1, . . . , j we have either tk − tk−1 ≤ δ or tk − tk−1 > δ ∧ ρ(tk) = tk−1

(here ∧ stand for ‘and’). Hereafter, Jδ will mean a ∆-tagged partition with mesh δ.

Definition 3.1 [21] Let q + B : [d, e]T → X/B, then q + B is said to be quotient Riemann ∆-integrable
on [d, e]T if there exists an I + B ∈ X/B such that for any ε > 0 there exists a δ > 0 hence for every
∆-tagged partition Jδ, we have∥∥∥∥∥

j∑
k=1

(tk − tk−1) · (q(ϑk) + B)− (I +B)

∥∥∥∥∥
X/B

< ε.

Here I +B = RQ

∫ e

d
q(t)∆t which is called the quotient Riemann ∆-integral.

As mentioned in Section 1, for the formulation of the quotient Riemann integral instead of taking
a positive valued function β∆ (the ∆-gauge) as defined in Definition 2.1 we instead consider a positive
constant δ for the integral.

Theorem 3.3 If q+B : [d, e]T → X/B is quotient Riemann ∆-integrable on [d, e]T with RQ

∫ e

d
q(t)∆t =

I +B, then q +B is quotient Henstock-Kurzweil ∆-integrable on [d, e]T with HKQ

∫ e

d
q(t)∆t = I +B.

Proof: Let ε > 0. Since q + B is quotient Riemann ∆-integrable, hence there exists δ > 0 such that
given Jδ is any ∆-tagged partition of [d, e]T, we have∥∥∥∥∥

j∑
k=1

(tk − tk−1) · (q(ϑk) + B)− (I +B)

∥∥∥∥∥
X/B

< ε

Now, we choose our ∆-gauge to be β∆(t) = δ. Hence Jδ is a β∆-fine ∆-tagged partition and∥∥∥∥∥
j∑

k=1

(tk − tk−1) · (q(ϑk) + B)− (I +B)

∥∥∥∥∥
X/B

< ε.

Since ε > 0 is arbitrary, we conclude that I +B is quotient Henstock-Kurzweil ∆-integrable and I +B =
HKQ

∫ e

d
q(t)∆t. 2
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Theorem 3.4 1. Let q + B : [t̃, σ(t̃)]T → X/B ∈ HK∆
Q

{
[t̃, σ(t̃)]T;X/B

}
, then

HKQ

∫ σ(t̃)

t̃
q(t)∆t = (σ(t̃)− t̃) ·

(
q(t̃) + B

)
.

2. Let q +B : [t̃, σ(t̃)]T → X/B ∈ HK∇
Q

{
[t̃, σ(t̃)]T;X/B

}
, then

HKQ

∫ σ(t̃)

t̃
q(t)∇t = (σ(t̃)− t̃) ·

(
q(σ(t̃)) + B

)
.

3. Let q +B : [ρ(t̃), t̃]T → X/B ∈ HK∆
Q

{
[ρ(t̃), t̃]T;X/B

}
, then

HKQ

∫ t̃

ρ(t̃)
q(t)∆t =

(
t̃− ρ(t̃)

)
·
(
q(ρ(t̃)) + B

)
.

4. Let q +B : [ρ(t̃), t̃]T → X/B ∈ HK∆
Q

{
[ρ(t̃), t̃]T;X/B

}
, then

HKQ

∫ t̃

ρ(t̃)
q(t)∆t =

(
t̃− ρ(t̃)

)
·
(
q(t̃) + B

)
.

Basics properties of quotient Henstock-Kurzweil ∆-integrable functions are stated below-

1. Linearity: Let q + B, p + B ∈ HK∆
Q {[d, e]T;X/B} and r1, r2 ∈ R, then

[
r1 · q ⊕ r2 · p

]
∈

HK∆
Q {[d, e]T;X/B} and

HKQ

∫ e

d

[
r1 · q ⊕ r2 · p

]
(t)∆t = r1 ·HKQ

∫ e

d

q(t)∆t ⊕ r2 ·HKQ

∫ e

d

p(t)∆t.

2. Subinterval: Let q+B ∈ HK∆
Q {[d, e]T;X/B}, then q+B is quotient Henstock-Kurzweil ∆-integrable

on every subinterval of [d, e]T.

3. ∆-Additivity: Let q + B ∈ HK∆
Q {[d, c]T;X/B} and q + B ∈ HK∆

Q {[c, e]T;X/B}, then q + B ∈
HK∆

Q {[d, e]T;X/B} and

HKQ

∫ e

d

q(t)∆t = HKQ

∫ c

d

q(t)∆t⊕HKQ

∫ e

c

q(t)∆t.

Following Property 3, if c is right-scattered, then HKQ

∫ e

d
q(t)∆t does depend on the value (q(c) +

B) · (σ(c)− c).

4. ∇-Additivity: Let q + B ∈ HK∇
Q {[d, c]T;X/B} and q + B ∈ HK∇

Q {[c, e]T;X/B}, then q + B ∈
HK∇

Q {[d, e]T;X/B} and

HKQ

∫ e

d

q(t)∇t = HKQ

∫ c

d

q(t)∇t⊕HKQ

∫ e

c

q(t)∇t.

Following Property 4, if c is left-scattered, then HKQ

∫ e

d
q(t)∇t does depend on the value (q(c) +

B) · (c− ρ(c)).

We formulate a theorem which depicts the relation between Banach Hensock-Kurzweil ∆-integral and
quotient Hensock-Kurzweil ∆-integral.

Theorem 3.5 Let q : [d, e]T → X be Banach Henstock-Kurzweil ∆-integral. If g := q+B : [d, e]T → X/B,
then g is also quotient Henstock-Kurzweil ∆-integrable.
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Proof: Given q ∈ HK∆ {[d, e]T;X}, we will show that g ∈ HK∆
Q {[d, e]T;X/B}.

∥∥HKQ(q +B; J)− (I +B)
)∥∥

X/B
=

∥∥∥∥∥
j∑

k=1

(tk − tk−1) · (q(ϑk) + B)− (I +B)

∥∥∥∥∥
X/B

=

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · q(ϑk)

)
+B− (I +B)

∥∥∥∥∥
X/B

=

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · q(ϑk)− I

)
+B

∥∥∥∥∥
X/B

≤

∥∥∥∥∥
j∑

k=1

(tk − tk−1) · q(ϑk)− I

∥∥∥∥∥
X

< ε.

Since ε > 0 is arbitrary, hence we conclude. 2

4. ♢α-integration for quotient functions

The formulation of the ∆-derivative and ∇-derivative led to the discussion and introduction of a com-
bined dynamic derivative- the ♢α-derivative, defined as a linear combination of the ∆- and ∇-derivatives.
This derivative offers a more improved and balanced approximation reducing computational spuriosity
proving to be more reliable derivative (view [23, 2006] and [22, 2005]). The definition of the ♢α-derivative
as presented in [23] is defined as a linear combination of the standard ∆- and ∇-derivatives, hence the
question arise- “How well-defined was this new derivative?”, this question beautifully phrased in [27,
2007] as- “The question remains, however, as to whether the ♢α derivative is a well-defined dynamic
derivative upon which a calculus on time scale can be built.”. This question was answered in a paper by
J. W. Roger Jr et al. [20, 2007], where they re-defined the ♢α-derivative independently of the standard
∆- and ∇- derivatives and also proved the equivalence of the two definitions.

Various notions of ♢α-integration in their constructive sense are defined in literature- the Riemann
♢α-integral was defined by A. B. Malinowska et al. [14, 2009], the Riemann-Stieltjes ♢α-integral was
defined by D. Zhao [29, 2015], the Lebesgue-Stieltjes ♢α-integral was defined by G. Qin et al. [19, 2021],
and the quotient Riemann ♢α-integral defined in [21].

We proceed to define the Henstock-Kurzweil ♢α-integral for quotient functions on time scales, which
we will call the quotient Henstock-Kurzweil ♢α-integral.

4.1. Quotient Henstock-Kurzweil ♢α-integral

Considering L = {d = t0 < t1 < . . . < tj = e} ∈ P([d, e]T). ∆-subintervals and ∆-tags are denoted by
ϑk ∈ [tk−1, tk)T, 1 ≤ k ≤ j. ∇-subintervals and ∇-tags are denoted by ξk ∈ (tk−1, tk]T, 1 ≤ k ≤ j.

We introduce η♢α -gauge which will allocate β∆-gauge for the ∆-subintervals of [d, e]T and γ∇-gauge
for the ∇-subintervals of [d, e]T. η♢α -fine ♢α-tagged partition will simply mean that L is β∆-fine ∆-
tagged partition and γ∇-fine ∇-tagged partition. The formulation of the quotient Henstock-Kurzweil
♢α-sum, HK♢

Q(q +B;L), given q +B be a quotient function is as follows-

HK♢
Q(q +B;L) :=

j∑
k=1

(tk − tk−1) · [α · (q(ϑk) + B) + (1− α) · (q(ξk) + B)] ,

here α ∈ [0, 1].

Definition 4.1 Let q + B : [d, e]T → X/B, then q + B is said to be quotient Henstock-Kurzweil ♢α-
integrable on [d, e]T if there exists an I♢ + B ∈ X/B such that for any ε > 0 there exists η♢α-gauge on
[d, e]T; hence for every η♢α-fine ♢α-tagged partition L, we have∥∥∥HK♢

Q(q +B;L)− (I♢ +B)
∥∥∥
X/B

< ε,
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j∑

k=1

(tk − tk−1) · [α · (q(ϑk) + B) + (1− α) · (q(ξk) + B)]− (I♢ +B)

∥∥∥∥∥
X/B

=

∥∥∥∥∥
j∑

k=1

(tk − tk−1) · [α · q(ϑk) + B + (1− α) · q(ξk) + B]− (I♢ +B)

∥∥∥∥∥
X/B

=

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · [α · q(ϑk) + (1− α) · q(ξk)] + B

)
− (I♢ +B)

∥∥∥∥∥
X/B

=

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · [α · q(ϑk) + (1− α) · q(ξk)]− I♢

)
+B

∥∥∥∥∥
X/B

= inf
b∈B

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · [α · q(ϑk) + (1− α) · q(ξk)]− I♢

)
+ b

∥∥∥∥∥
X

,

= inf
b∈B

∥∥∥∥∥
(

j∑
k=1

(tk − tk−1) · [α · q(ϑk) + (1− α) · q(ξk)]− I♢

)
− b

∥∥∥∥∥
X

.

Here I♢ +B = HK♢
Q

∫ e

d
q(t)♢αt, which we will call the quotient Henstock-Kurzweil ♢α-integral.

The set of all quotient Henstock-Kurzweil ♢α-integrable functions on [d, e]T will be denoted by
HK♢

Q {[d, e]T;X/B}.
Depending on the value of α we observe that the quotient Henstock-Kurzweil ∆-integral and quotient

Henstock-Kurzweil ∇-integral are indeed special cases of the quotient Henstock-Kurzweil ♢α-integral.
If q + B is given to be quotient Henstock-Kurzweil ♢α-integrable, then taking α = 1 will mean that

q+B is quotient Henstock-Kurzweil ∆-integrable (Definition 4.1 equivalent to Definition 2.1) and taking
α = 0 will mean that q + B is quotient Henstock-Kurzweil ∇-integrable (Definition 4.1 equivalent to
Definition 2.2). α ∈ (0, 1) will mean that q + B is both quotient Henstock-Kurzweil ∆-integrable and
quotient Henstock-Kurzweil ∇-integrable given q + B is quotient Henstock-Kurzweil ♢α-integrable, the
inverse of this statement is proved below-

Theorem 4.1 If q+B : [d, e]T → X/B is quotient Henstock-Kurzweil ∆-integrable and quotient Henstock-
Kurzweil ∇-integrable, then q +B is quotient Henstock-Kurzweil ♢α-integrable and

HK♢
Q

∫ e

d

q(t)♢αt = α ·HKQ

∫ e

d

q(t)∆t+ (1− α) ·HKQ

∫ e

d

q(t)∇t.

Proof: Suppose q + B is quotient Henstock-Kurzweil ∆-integrable and quotient Henstock-Kurzweil ∇-
integrable on [d, e]T, then given ε > 0 there exists β∆ > 0 and γ∇ > 0 such that∥∥HKQ(q +B;L)−HKQ

∫ e

d
q(t)∆t

∥∥
X/B

< ε
2 and

∥∥HKQ(q +B;L)−HKQ

∫ e

d
q(t)∇t

∥∥
X/B

< ε
2 .

Letting η♢α -fine = min{β∆-fine, γ∇-fine} > 0 hence taking L to be a η♢α -fine ∆-tagged partition we
formulate ∥∥∥∥HK♢

Q(q +B;L)−
{
α ·HKQ

∫ e

d

q(t)∆t+ (1− α) ·HKQ

∫ e

d

q(t)∇t
}∥∥∥∥

X/B

=

∥∥∥∥α[ j∑
k=1

(tk − tk−1) · (q(ϑk) + B)−HKQ

∫ e

d

q(t)∆t

]
+ (1− α)

[ j∑
k=1

(tk − tk−1)·

(q(ξk) + B)−HKQ

∫ e

d

q(t)∇t

]∥∥∥∥
X/B
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applying triangle inequality and homogeneity of the quotient norm we obtain,

≤
∥∥∥∥α[ j∑

k=1

(tk − tk−1) · (q(ϑk) + B)−HKQ

∫ e

d

q(t)∆t

]∥∥∥∥+ ∥∥∥∥(1− α)

[ j∑
k=1

(tk − tk−1) · (q(ξk) + B)−HKQ

∫ e

d

q(t)∇t

]∥∥∥∥
X/B

=
∣∣α∣∣∥∥∥∥ j∑

k=1

(tk − tk−1) · (q(ϑk) + B)−HKQ

∫ e

d

q(t)∆t

∥∥∥∥
X/B

+
∣∣(1− α)

∣∣∥∥∥∥ j∑
k=1

(tk − tk−1) · (q(ξk) + B)−HKQ

∫ e

d

q(t)∇t

∥∥∥∥
X/B

< ε.

Since ε > 0 arbitrary, hence we conclude. 2

The ♢α-integral possesses similar properties as the ∆- and ∇-integrals, hence we limit the theory to
the definition (definition of the quotient Henstock-Kurzweil ♢α-integral (Definition 4.1)) and theorem
(Theorem 4.1) establishing the relation between the three integrals only.

5. Conclusion

This paper explores the theory of Henstock-Kurzweil integration for quotient valued functions on time
scales and discuss a few fascinating results.
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