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On p-Symmetric Rings

H. M. Imdadul Hoque*, Jituparna Goswami and Helen K. Saikia

ABSTRACT: This article embodies the notion of p-symmetric rings using the concept of non-zero potent
elements in a ring. It is proved that R is a p-symmetric ring if and only if p*~!Rp™~! is a symmetric ring and
p™ 1 is left semicentral. Moreover, p-symmetric rings in terms of upper triangular matrix rings and left min-
p-abel rings have been characterized. Furthermore, we introduce strongly p-symmetric rings and also provide
a characterization of strongly p-symmetric rings in terms of strongly left min-p-abel rings. In particular, it
is proved that R is a strongly left min-p-abel ring if and only if R is a strongly p-symmetric ring for each

p"~1 € MP,(R). Furthermore, it has been established that right p-reduced rings are p-symmetric rings.
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1. Introduction

Throughout this paper all rings are associative with identity. Let R be a ring. We denote the centre
of R, the set of all idempotents of R and the set of all nilpotent elements of R by Z(R), E(R) and N(R)
respectively. Moreover, the set of all n X n upper triangular matrix ring over R is denoted by M, (R).
An element p of R is said to be a potent if p™ = p for any n > 2. Let PT(R) denote the set of all potent
elements of R. It is obvious that all idempotents are potents but the converse is not true. For example,

in the ring R = M(R), P =

-1 1
0 1
Also, an element p € PT(R) is called left minimal potent of R if Rp is a minimal left ideal of R. We
denote the set of all left minimal potent elements of R by M P;(R). A ring is usually called reduced if it
has no nilpotent elements other than zero. An element « is called left semicentral (resp., central) in R if
axa = za (resp., ax = za) for each € R. Following Lambek [5], a ring R is called symmetric if abc = 0
implies acb = 0 for all a,b,c € R. Later on, Anderson and Comillo [1], used the term ZCj3 for symmetric
ring. The investigation of symmetric ring is also covered by G. Marks [6]. Ouyang et al. [10], generalized
the concept of symmetric rings by introducing weak symmetric rings. According to [10], a ring R is said
to be weak symmetric if abc € N(R) implies acb € N(R) for all a,b,c € R. Another generalization of
symmetric rings has been introduced by Kafkas et al. [3] as central symmetric rings. They defined a
ring R to be central symmetric if abc = 0 implies bac € Z(R) for any a,b,c € R. Wei [11] introduced
generalized weakly symmetric rings which further expands the idea of symmetric rings. According to
Meng and Wei [7], a ring R is called (strongly) e-symmetric if abc = 0 implies (aceb = 0) acbe = 0, for
any a,b,c € R; e is an idempotent element of R. They have also studied some important properties of
it (refer to [8]). Furthermore, Meng et al. [9] recently studied the notion of weak e-symmetric rings.
Recently, Hoque and Saikia [2] studied the notion of t?-symmetric ring using the concept of non-zero
tripotent element ¢ in a ring R. Also, they introduced a strong condition on this notion and called it

is a potent element in R as P3 = P for but not an idempotent.
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strongly ¢2-symmetric ring. They discussed some basic properties of (strongly) t?-symmetric rings.

Wei [12], studied the concept of left minimal element and left minimal idempotent of a ring R. Ex-
tending this concept the left minimal potent element of R is defined using potent element. A ring R
is called (strongly) left min-p-abel if either M P;(R) = ¢ or every element p € M P/(R) is (right) left
semicentral. Following [7], a ring R is said to be Abel if all idempotents of R are central. Analogously we
call aring R to be p-abel if all potent elements of R are central. Following [4], a ring R is left quasi-duo if
every maximal left ideal of R is an ideal. According to [12], a ring R is M ELT if every essential maximal
left ideal of R is an ideal.

In this paper, we extend and generalize the structure of e-symmetric rings defined by F. Meng et al.
[7] using the concept of non-zero potent elements of the ring by introducing the notions of p-symmetric
rings and strongly p-symmetric rings. We characterize p-symmetric rings in terms of upper triangular
matrix rings and left min-p-abel rings. We provide a characterization of strongly p-symmetric rings in
terms of strongly left min-p-abel rings. We also introduce the notion of p-reduced ring as a subclass of
reduced ring.

2. p-Symmetric Rings

In this section, we introduce the notion of p-symmetric rings. We discuss some basic properties of
p-symmetric rings and study the characterizations of such rings with the help of upper triangular matrix
rings. We also characterize p-symmetric rings in terms of left min-p-abel rings. We begin with the
following definition.

Definition 2.1 Let R be a ring and p € PT(R). Then, R is called a p-symmetric ring if and only if
abc = 0 implies acbp” ' =0, for all a,b,c € R and n > 2.

Example 2.1 Let us consider the ring R = My(Z3). We know that Zgz is a reduced ring. Since every
reduced ring is also a symmetric ring by [1, Theorem 1.3], so Zs is a symmetric ring.

Let us consider P = g 8 € R. Then, P> = P and so P € PT(R). Now, we consider the elements
A= (8 8), B= (8 8) and C' = (8 8) i R and a be any non-zero element in Zs.
2
(0 0\ . . 31 o _f(a 0\ fa a\ (0 a\ (2 O
Then ABC = (O 0) implies that ACBP°~" = ACBP* = (0 0> (O 0> (0 0) (O O)

= <8 8) This shows that R is a P-symmetric ring.
Remark 2.1 [t is obvious that every symmetric ring is p-symmetric for any p € PT(R), but the converse
need not be true which can be shown as below.

From Example 2.1., we can observe that the ring R = My(Z3) is P-symmetric but not a symmetric ring,

because
a 0\ [fa a\ (0 a 0 a 0 0
acs=(50) (5 6)© 6)=( 9)#( o)
Remark 2.2 Every e-symmetric ring [7] is also a p-symmetric ring, but every p-symmetric ring need

not be e-symmetric. From Example 2.1 , we can observe that R = Ms(Zg) is a P-symmetric ring. But

R is not a e-symmetric ring, as P = (3 8) ¢ E(R).

Proposition 2.1 Let R be a ring and p € PT(R). Then R is a p-symmetric ring if and only if
p" T Rp" Y is a symmetric ring and p" ' is left semicentral for n > 2.
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Proof: Let us assume that R is a p-symmetric ring. Let 2 € R and y = (1 — p" Hap"~! 4 p~ L
Then, we have p"~ly = p" (1 — p" Dapn~t + p"~Ip"~t = p~!. Similarly, it can be shown that
yp" Tt =y y? = y; plyp !t = p ! and (1 — y)yp" ! = 0. Since R is a p-symmetric ring , so
(IT=yp"typ" =0 = A—-yp" ' =0 = p" ' =yp" ' =y Thus, y = (1 —p" ap" " +
p"l = (1—p" Dap" ! =0 = ap" ! =p"~lap" L. Hence, p"! is left semicentral.

Secondly, let x,y,z € p" ' Rp"~! such that xyz = 0. Since p"~'Rp"~! is a subring of R and R is a
p-symmetric ring, so we have zzyp™~! = 0. This implies that zzy = 0, as yp"~! = y. Thus, p" ' Rp"~!
is a symmetric ring.

Conversely, let us suppose that p"~!Rp™~! is a symmetric ring and p"~! is left semicentral for n > 2. Let
a,b,c € R such that abc = 0. Then p"tap™~ !, p"~thp™ 1 p"~lep™~t € p" 1 Rp"~ L. Since p" ' Rp" ! is
a symmetric ring, we have (p"~tap™~1)(p" top" 1) (p"lep™ 1) = 0 implies (p"~tap™ 1) (pnlep™t)
(p"~tbp"~1) = 0. Therefore, p"~tap™ tbp"~tep"~! = 0 which implies p"~tap™ lep™~thp"~1 = 0. Since
p"~1 is left semicentral, so we have p"lap" lep" lop" ! =0 = ap" ep" p" ! =0 =
acp” tbp" ! =0 = achp” ! = 0. This shows that R is a p-symmetric ring.

O

Proposition 2.2 Let R be a ring with unity 1 and p € PT(R). Then R is a p-symmetric ring if and
only if abc = 0 implies bacp” ' =0 for all a,b,c € R and n > 2.

Proof: Let us assume that R is a p-symmetric ring. Then by Proposition 2.1, p”~! is left semicentral
in R. Let a,b,¢ € R such that abc = 0. This gives, la(bc) = 0. Since R is a p-symmetric ring, so we
have lbcap™ =t =0 = bcap™ ! = 0. Again by p-symmetricity of R, we have b(ap" 1)ep" ! =0 =
bacp” 1 =0, as p"~! is semicentral in R.

Conversely, let us suppose that abc = 0 implies bacp” ! = 0 for all a,b,c € R and n > 2. Let = € R.
Since p € PT(R), sop™ = pforn > 2and (p"~1)? = p"p"~2 = p"~1. So we get, zp" 1 (1—p"~1)p"~1 = 0.
This implies that
(1 —pr Hapr=lpn=lpn=l =0 = (1 —p" )Rp"~! = 0. Thus p"~! is left semicentral.

Also, let a,b,c € p" 'Rp"~! such that abc = 0. Since p" 'Rp"~! is a subring of R, so we have
bacp™ ! =0 = bac =0. So p" 'Rp"~! is a symmetric ring .
Hence by Proposition 2.1, we have R is a p-symmetric ring.

Similarly, we can establish the following results.

Proposition 2.3 Let R be a ring with unity 1 and p € PT(R). Then R is a p-symmetric ring if and
only if abc = 0 implies cabp™~! = 0 for all a,b,c € R and n > 2.

Proposition 2.4 Let R be a ring with unity 1 and p € PT(R). Then R is a p-symmetric ring if and
only if abc = 0 implies cbap™~! =0 for all a,b,c € R and n > 2.

Proposition 2.5 Let R be a ring and p € E(R). Then R is a symmetric ring if and only if R is both
p-symmetric and (1 — p)-symmetric ring.

Proof: The necessary part is obvious.
For the sufficient part, let us assume that R is both p-symmetric and (1 — p)-symmetric ring. Let
a,b,c € R such that abc = 0. Then we have, acb(1 — p)"~! =0, as R is a (1 — p)-symmetric ring. This
yields acb(1 — p"~1) = 0 as p is an idempotent. This implies achb = acbp™~'. Again R is a p-symmetric
ring, so we have acbp™~! = 0. It follows that acb = 0. Thus R is a symmetric ring.

O

Some characteristics of p-symmetric triangular matrix rings are presented in the following results.
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p 0 O
Proposition 2.6 Let R be a ring, p € PT(R) and P = [0 0 0| € PT(M3(R)). Then R is p-
0 00
symmetric if and only if M3(R) is P-symmetric.
aa b a az by c
Proof: Suppose that R is a p-symmetric ring. Let A = | 0 di g1 ], B= 10 dy g2| and
0 0 fi 0 0 f
as b3 C3
C =10 ds gs| are in M3(R) such that ABC = 0. This implies that ajasas = 0. Since R is
0 0 fs

a p-symmetric ring, so we have ajagap™ ! = 0. This gives ACBP"~! = 0. Therefore, M3(R) is a
P-symmetric ring.

Conversely, let M3(R) be a P-symmetric ring. Let a,b,c € R such that abc = 0. Then A =
a 0 0 b 0 0 c 00
0 0 0)],B=[0 0 OfJande=|0 0 0] arein M3(R) and ABC = 0. So by hypothesis, we
0 0 0 0 0 0 0 0 0

have ACBP"~! = 0. This implies that acbp”~! = 0 and hence R is a p-symmetric ring.
O

-1 r
0 O

P-symmetric ring if and only if R is a symmetric ring.

Proposition 2.7 Let R be a ring and P = ) € PT(My(R)) for each v € R. Then Ma(R) is a

Proof: Let us assume that Ms(R) is a P-symmetric ring . Let a,b, ¢ € R such that abc = 0. So we have,

(g 8) (8 8) (8 8) = (8 8) in Ms(R). Since M»(R) is P-symmetric, so we have
GG OE )G D) =60
R CRSEY

. <acb(0—1)" acb<—é)"‘17“> _ (g 8)

Therefore, we have acb(—1)"™ = 0 which implies acb = 0. Thus, R is a symmetric ring.

as b2
0 Co ’
C = (%3 lc)3> € M5(R) such that ABC' = 0. Then, we have ajasas = 0. Since R is symmetric, so we
3

have ajasas =0 .

n—1
n—1 _ aq b1 as bg a9 bQ -1 7r '
Now, ACBP™™ = (o c1> (0 c3) (0 c2> (0 0
. —_1\n _1\n—1
— (alaga%( 1) a1a3a2(0 1) T) = (8 8) =0, as ayagas = 0.

Hence, Ms(R) is a P-symmetric ring .

Conversely, let R be a symmetric ring. Let A = <%1 ?), B =
1

O

Proposition 2.8 Let R be a ring, p € PT(R) and P = (]5 g) € PT(Mx(R)) . Then My(R) is a

P-symmetric ring if and only if R is a p-symmetric ring.
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Proof: The proof is similar to the proof of Proposition 2.6.

We now characterize p-symmetric rings with the help of left min-p-abel rings.

Proposition 2.9 Let R be a ring and p"~' € MP,(R). Then R is a left min-p-abel ring if and only if
p" 1l = abp™ ! implies p"~t = bap™ ' for any a,b € R.

Proof: Let us assume that R is a left min-p-abel ring and p"~! € MP/(R). Then p"~! is left semi-
central. If p"~! = abp"~! for any a,b € R, then p"~! = ap" 1bp"~!. Therefore, we have p"~! =
ptipnTl = aptlhpnTlapt~lhpnTl. Thus, bp"lap"~t # 0. So, we have Rbp"~lap"~! = Rp"~!,
p" 1 = cbp™Lap™! for some ¢ € R. Therefore, p"Lbp" 1 = cbp™Lap™lhp™ 1 = chpLpn—! = cbp !
and pnfl — Cbpnflapnfl — pnflbpnflapnfl — bpnflapnfl — bapnfl'
Conversely, let p"~1 = abp™~! implies p"~! = bap™~! for any a,b € R and p"~! € MP;(R). Let h =

(1 —p»Yap™~! for any a € R. Let us assume that h # 0. Now, we have Rh = Rp"~!. Then p"~! = ch

for some ¢ € R, h = hp"~ ! = hch and p"~! = ch = chp®~!. By hypothesis, we have p"~! = hep"~ L.
Then, we get h = hp"~! = h2¢p"~1 = 0, which is a contradiction. Thus h = (1 —p"~ap™~! = 0 for any
a € R. Hence R is a left min-p-abel ring.

O

Proposition 2.10 Let R be a ring and p € PT(R). Then R is a left min-p-abel if and only if R is a
p-symmetric for any p"~t € MP/(R).

Proof: Let us assume that R is a left min-p-abel ring. Let, a, b, c € R such that abc = 0. If acbp™ ! # 0,
then Rp"~!' = Racbp”~! and p"~! = dacbp” ! for some d € R. Since R is a left min-p-abel ring,
so by Proposition 2.9 we have, p"~! = bdacp”~! = cbdap”~!. Then, we get p"~! = dacbp"~ ! =
dap"tebp" ! = dabdacp™lebpn ! = dabp™tdacp™lcbp® ™! = dabcbdap™tdacp™lcbp" Tl = 0, as
abc = 0, which is a contradiction. Therefore, we must have acbp® ! = 0. This shows that R is a
p-symmetric ring.

Conversely, let R is a p-symmetric ring and p"~! € M P;(R). Then by Proposition 2.1, we have p
is left semicentral in R. Thus, R is a left min-p-abel ring.

n—1

As a consequence of Proposition 2.10 and [[12], Theorem 1.2] we have the following corollary.

Corollary 2.1 Let R be a ring and p € PT(R). Then R is a left quasi-duo ring if and only if R is a
MELT ring and R is a p-symmetric ring for each p"~' € M P,(R).

Proposition 2.11 Let R be a ring and p € PT(R). Then R is an p-abel ring if and only if for any
a,b€ R, p"~! = ab implies p" ' = bap™~'.

L' = ab for any a,b € R. Let g = ba, then g% =

Proof: We assume that R is a p-abel ring and p"~
b(ab)a — bpnfla — bap"’l — gpnfl. NOW, (92)2 — gpnflgpnfl — 92pn71pn71 — gpnfl — 92, SO 92 c
E(R) C PT(R). Therefore, p"~! = ababp" ™! = aghp™ ™! = agp™ b = ag®b = g?ab = gp" ' = bap"~ .
Conversely, let p"~! = ab implies p"~! = bap™~! for any a,b € R. Now, let us assume that g =
(1—p" Hap"~t+p"~L. Then gp"~! = gand g € E(R) C PT(R). So by hypothesis, g = p"~lgg = p"~1,
it follows that (1 —p" 1)ap®~! = 0 for each a € R. Thus, R is a p-abel ring.
O
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3. Strongly p-Symmetric Rings

In this section, we introduce the notion of strongly p-symmetric rings and establish a characterization
of such rings in terms of strongly left min-p-abel rings. We begin with the following definition.

Definition 3.1 Let R be a ring and p € PT(R). Then R is called strongly p-symmetric if and only if
abc = 0 implies acp™ 'b =0, for all a,b,c € R and n > 2.

Example 3.1 Let us consider the ring R = My(Z3). We know that Zs is a reduced ring. Since every
reduced ring is also a symmetric ring by [1, Theorem 1.3], so Zg is a symmetric ring.
2 0

Let us consider P = 0 o) € R. Then, P> = P and so P € PT(R). Now, we consider the elements
A=(22),B= (2 NVaac=(" *) inRandab lement in Z
=g o) B=1y o) ™ =g o) ™R and a be any non-zero element in Zs.

2
(0 0) . s1p_ acpp— (@ O) (@ a)(2 0y (0 0
ThenABC(O 0) implies that ACP>~*B = ACP B(O 0) <O a> (0 0> <0 a>

= (8 8) This shows that R is a strongly P-symmetric ring.

Remark 3.1 [t is observed that p-symmetric rings need not be strongly p-symmetric rings, which can be
shown as below.
From Ezample 2.1., the ring R = Ms(Z3) is P-symmetric but not a strongly P-symmetric ring, because

aer-n=(5 5 (6 )6 o) (8- %) 60

Remark 3.2 In the above Definitions 2.1 and 3.1, it is observed that for p =1, R is a symmetric ring
if and only if R is a (strongly) p-symmetric ring.

Proposition 3.1 Let R be a ring such that p € PT(R). Then R is a strongly p-symmetric ring if and
only if p" " Rp"~! is a symmetric ring and p"~' € Z(R).

Proof: Let us assume that R is a strongly p-symmetric ring. For each a € R, let us consider x =
pnfl +pn71a(1 _pnfl). Then p"ilx — pnflpnfl +pn71pn71a(1 _pnfl) =z, as pnflpnfl — pnfll
Similarly, zp"~! = p"~1. Also, #(1 — x)p"~! = 0 and since R is strongly p-symmetric, so we have,
ap" (1 —2) =0 = ptl(1-2)=0 = p"» ! =p*» 1z = 2. This implies that p"la(l —
p" ) =0 = pla=ptlap"! for each a € R. Now let, y = p"~1 + (1 — p" 1)ap"~!. Then
yp" ! =y and p" "y = p" L. Also (1 —p" Hp"~ly = 0, since R is strongly p-symmetric, so we have,
(L=p" Nyp"'p" ' =0 = (1-p" "yp" ' =0 = (1-p" ')y =0. Therefore p" 'y =y =p" "
So we have (1 —p" Hap" ! =0 = ap" ! =p"lap"~! for each a € R. Thus we have p"~! € Z(R).

Again, let x,y,z € p" 'Rp"~! such that xyz = 0. Since p" 'Rp"~! is a subring of strongly p-
symmetric ring R , so we have xzp" 'y = 0. This implies that zzy = 0, as p" 'y = y. Thus, p" 'Rp"~!
is a symmetric ring.

Conversely, let us assume that p"~'Rp"~! is a symmetric ring and p"~! € Z(R). Also, let a,b,c € R
such that abc = 0.Since p" ! Rp"~! is a symmetric ring, we have

(p"~tap" ) (p" bp" ) (p" " ep" 1) = 0 implies

(pn—lapn—l)(pn—lcpn—l)(pn—lbpn—l) =0.

Therefore, p” Lap”1bp”~Lep” ! = 0 which implies p™*tap™Lep™1hp™~1 = 0.

As p"~1 € Z(R), it follows that p"~'a = ap"~ !, p"~'b = bp"~! and p"~lc = cp"~! for each a,b,c € R.
This implies that acp”~'b = 0. Thus R is a strongly p-symmetric ring.

We have the following corollary as a consequence of Propositions 2.1 and 3.1.
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Corollary 3.1 Let R be a ring and p € PT(R). Then R is a strongly p-symmetric ring if and only if R
is a p-symmetric ring and p"~* € Z(R).

Proposition 3.2 Let R be a ring and p € PT(R). Then R is a symmetric ring if and only if R is a
strongly p-symmetric and (1 — p)R(1 — p) is a symmetric ring.

Proof:
The necessary part is obvious.

For the sufficient part, let us assume that R is a strongly p-symmetric and (1 —p)R(1 —p) is a symmetric
ring. Since R is a strongly p-symmetric ring, so by Proposition 3.1 we have, p" 'Rp™~! is a symmetric
ring and p"~! € Z(R). This implies that p" " *Rp"~! =2 R/(1 — p" " H)R(1 —p™~ 1) and (1 —p" HR(1 —
p"~1) = R/p" 1 Rp"~1. This implies R/(1—p" ) R(1—p"~!) and R/p" ' Rp"~! are symmetric rings, as
p"1Rp"~!and (1—p" 1) R(1—p"~1) are symmetric rings. Thus, R/((1—p" ) R(1—p"~ 1) np"~tRp"~1))
is a symmetric ring. But ((1 —p" " 1)R(1 —p" 1) Np" 1 Rp"~1)) = 0. Hence R is a symmetric ring.

O

Lemma 3.1 Let R be a ring and p"~* € MPy(R). If p"~* is right semicentral then p"~! left semicentral.

Proof: We assume that a € R. If (1 —p" Yap™~! # 0, then Rp"~! = R(1 — p" Y)ap™~!. Let us write
p"~t=c(1 —p"1)ap" ! for some ¢ € R. Since p"~! is right semicentral, so we have p"~1 = p"~l¢(1 —
p" Hap"~t = p"~lepn (1 — pHap™~! = 0, which a contradiction. Hence (1 — p"~1)ap"~! = 0 for
each a € R. This shows that p”~! is left semicentral.

O

Proposition 3.3 Let R be a ring and p € PT(R). Then R is a strongly left min-p-abel ring if and only
if R is a strongly p-symmetric ring for any p"~! € MPy(R).

Proof: We assume that R is a strongly left min-p-abel ring. Then by Lemma 3.1, R is a left min-p-abel
ring. By Proposition 2.10, R is a p-symmetric ring for each p"~! € M P,(R). Again by Lemma 3.1, each
element of M P;(R) is central. Hence by Corollary 3.0.1, R is a strongly p-symmetric ring.
Conversely, let R be a strongly p-symmetric for each p"~! € MP;(R). Then by Proposition 3.1,
p"~t € Z(R) for each p"~! € MPy(R). This implies that R is a strongly left min-p-abel ring.
O

4. p-Reduced Rings

In this section, we define right (left) p-reduced rings and study their relationships with p-symmetric
rings and left min-p-abel rings. We begin with the following definition.

Definition 4.1 Let R be a ring and p € PT(R). Then,
(i) R is called right p-reduced if N(R)p"~! = 0.
(ii) R is called left p-reduced if p" 1 N(R) = 0.
Example 4.1 Let ' be any field. Let us consider the matriz ring R = Ms(F). Then N(R) =

0 F F o F F\° [0 0 0
0 0 Fl,as |0 0 F| =10 0 0] s nilpotent.
0 0 O 0 0 O 0 0 0
-1 0 0
Let P= | 0 0 0], then for any odd positive integer n, we have P* = P, so P € PT(R). Then
0 0 0
-1 0 0\"" /0 0 0
N[R)P*'=NR)[ 0O 0 0 =0 0 0] =0.
0 0 0 0 0 0

Thus, R is a right P-reduced ring. But R is not a left P-reduced ring as,

~
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-1 0 o\"" 0 F F 000
P INR)=| 0 0 0 NR)=|0 0 0)#(0 0 0f=0.
0 0 0 0 0 0 0 0 0
Remark 4.1 We can also construct a left p-reduced ring which is not a right p-reduced. In Ezample
0 0 O
4.1, if we consider P= [0 0 0 | € PT(R), then R is a left P-reduced ring, but R is not a right
0 0 -1

P-reduced ring.

Proposition 4.1 Let R be a ring and p € PT(R). Then R is right p-reduced if and only if p"~1 is left
semicentral in R and p" ' Rp™ ! is reduced.

n—l) n—1 _

Proof: Let us assume that R is a right p-reduced ring for any p € PT(R). Then, we have (1—p D
0. Now, for each z € R, (1 — p" 1ap"~! € N(R) and (1 —p" Hap"t € N(R)p" ! =0, as Ris a p-
reduced ring. So, we have (1 —p" Dap"~t =0 = ap"~! = p"~lop"~L. Thus, p"~! is left semicentral
in R. Again, we have N(p" 'Rp"~!) C N(R)p"~! = 0. This implies that p"~!Rp"~! is reduced ring.
Conversely, let p"~! be left semicentral in R and p" ! Rp™"~! be a reduced ring. Then N(R)p"~! =
p" IN(R)p" ! = N(p" !Rp"~!) = 0. This implies that R is a p-reduced ring.
O

Similarly, we can establish the following result.

Proposition 4.2 Let R be a ring and p € PT(R). Then R is left p-reduced if and only if p"~* is right
semicentral in R and p" ' Rp™ ! is reduced.
Proposition 4.3 Right p-reduced rings are p-symmetric rings.
Proof: Let R be a right p-reduced ring. Then by Theorem 4.1, we get p"~! is left semicentral in R
and p"~!Rp"~! is reduced. Since reduced rings are symmetric by [[1], Theorem 1.3], so we have p"~!
is left semicentral in R and p" 'Rp"~! is a symmetric ring . Thus, by Proposition 2.1 we have, R is a
p-symmetric ring.

O

Remark 4.2 Right p-reduced rings need not be strongly p-symmetric by Example 4.1 and Proposition
3.1.

Proposition 4.4 Let R be a ring and p € PT(R). Then R is a left min-p-abel ring if and only if R is
a right p-reduced ring for each p"~* € M Pi(R).

Proof: Let us assume that R is a left min-p-abel ring for each p"~! € M P;(R). If N(R)p"~! # 0, then
there exists a € N(R) such that ap”~! # 0 which implies there exists b € R such that p"~! = bap"~1,
as Rp"~! = Rap™!'. Now, by Proposition 2.9 we have, p"~! = abp”~!. This implies p"~! = bap™ !
ba’bp" ! = b2a?p"t = ... = b"a™p" ! = ... for each m > 1. Since a € N(R), so a™ = 0 for some m > 1.
Thus, we have p"~! = 0, which is a contradiction. Hence N(R)p"~! = 0 and so R is a right p-reduced ring.

The sufficient part follows directly from Proposition 4.1 .

Similarly, we can establish the following result.

Proposition 4.5 Let R be a ring and p € PT(R). Then R is a strongly left min-p-abel if and only if R
is a left p-reduced for each p"~1 € MP/(R).

Corollary 4.1 Let R be a ring and p,q € PT(R). If R is right p-reduced and Rp"~' = Rq"~! as left
R-modules, then R is a right g-reduced.
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Proof: Let us assume that R is right p-reduced ring. Then by Proposition 4.1 we have, p"~! is left
semicentral and N(R)p"~! = 0. Since Rp"~! = Rq"~ !, p"~1¢"~! = ¢"~1. Which gives N(R)¢q" ™! = 0.
Thus R is a g-reduced ring. O
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