

On p -Symmetric Rings

H. M. Imdadul Hoque*, Jituparna Goswami and Helen K. Saikia

ABSTRACT: This article embodies the notion of p -symmetric rings using the concept of non-zero potent elements in a ring. It is proved that R is a p -symmetric ring if and only if $p^{n-1}Rp^{n-1}$ is a symmetric ring and p^{n-1} is left semicentral. Moreover, p -symmetric rings in terms of upper triangular matrix rings and left min- p -abel rings have been characterized. Furthermore, we introduce strongly p -symmetric rings and also provide a characterization of strongly p -symmetric rings in terms of strongly left min- p -abel rings. In particular, it is proved that R is a strongly left min- p -abel ring if and only if R is a strongly p -symmetric ring for each $p^{n-1} \in MP_l(R)$. Furthermore, it has been established that right p -reduced rings are p -symmetric rings.

Key Words: p -symmetric rings, strongly p -symmetric rings, left min- p -abel rings, p -reduced rings, potent elements.

Contents

1	Introduction	1
2	p-Symmetric Rings	2
3	Strongly p-Symmetric Rings	6
4	p-Reduced Rings	7

1. Introduction

Throughout this paper all rings are associative with identity. Let R be a ring. We denote the centre of R , the set of all idempotents of R and the set of all nilpotent elements of R by $Z(R)$, $E(R)$ and $N(R)$ respectively. Moreover, the set of all $n \times n$ upper triangular matrix ring over R is denoted by $M_n(R)$. An element p of R is said to be a potent if $p^n = p$ for any $n \geq 2$. Let $PT(R)$ denote the set of all potent elements of R . It is obvious that all idempotents are potents but the converse is not true. For example, in the ring $R = M_2(\mathbb{R})$, $P = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$ is a potent element in R as $P^3 = P$ for but not an idempotent. Also, an element $p \in PT(R)$ is called left minimal potent of R if Rp is a minimal left ideal of R . We denote the set of all left minimal potent elements of R by $MP_l(R)$. A ring is usually called reduced if it has no nilpotent elements other than zero. An element a is called left semicentral (resp., central) in R if $axa = xa$ (resp., $ax = xa$) for each $x \in R$. Following Lambek [5], a ring R is called symmetric if $abc = 0$ implies $acb = 0$ for all $a, b, c \in R$. Later on, Anderson and Comillo [1], used the term ZC_3 for symmetric ring. The investigation of symmetric ring is also covered by G. Marks [6]. Ouyang et al. [10], generalized the concept of symmetric rings by introducing weak symmetric rings. According to [10], a ring R is said to be weak symmetric if $abc \in N(R)$ implies $acb \in N(R)$ for all $a, b, c \in R$. Another generalization of symmetric rings has been introduced by Kafkas et al. [3] as central symmetric rings. They defined a ring R to be central symmetric if $abc = 0$ implies $bac \in Z(R)$ for any $a, b, c \in R$. Wei [11] introduced generalized weakly symmetric rings which further expands the idea of symmetric rings. According to Meng and Wei [7], a ring R is called (strongly) e -symmetric if $abc = 0$ implies $(aceb = 0) acbe = 0$, for any $a, b, c \in R$; e is an idempotent element of R . They have also studied some important properties of it (refer to [8]). Furthermore, Meng et al. [9] recently studied the notion of weak e -symmetric rings. Recently, Hoque and Saikia [2] studied the notion of t^2 -symmetric ring using the concept of non-zero tripotent element t in a ring R . Also, they introduced a strong condition on this notion and called it

* Corresponding author.

2020 Mathematics Subject Classification: 16U80, 16B99.

Submitted July 01, 2025. Published December 29, 2025

strongly t^2 -symmetric ring. They discussed some basic properties of (strongly) t^2 -symmetric rings.

Wei [12], studied the concept of left minimal element and left minimal idempotent of a ring R . Extending this concept the left minimal potent element of R is defined using potent element. A ring R is called (strongly) left min- p -abel if either $MP_l(R) = \phi$ or every element $p \in MP_l(R)$ is (right) left semicentral. Following [7], a ring R is said to be Abel if all idempotents of R are central. Analogously we call a ring R to be p -abel if all potent elements of R are central. Following [4], a ring R is left quasi-duo if every maximal left ideal of R is an ideal. According to [12], a ring R is *MELT* if every essential maximal left ideal of R is an ideal.

In this paper, we extend and generalize the structure of e -symmetric rings defined by F. Meng et al. [7] using the concept of non-zero potent elements of the ring by introducing the notions of p -symmetric rings and strongly p -symmetric rings. We characterize p -symmetric rings in terms of upper triangular matrix rings and left min- p -abel rings. We provide a characterization of strongly p -symmetric rings in terms of strongly left min- p -abel rings. We also introduce the notion of p -reduced ring as a subclass of reduced ring.

2. p -Symmetric Rings

In this section, we introduce the notion of p -symmetric rings. We discuss some basic properties of p -symmetric rings and study the characterizations of such rings with the help of upper triangular matrix rings. We also characterize p -symmetric rings in terms of left min- p -abel rings. We begin with the following definition.

Definition 2.1 Let R be a ring and $p \in PT(R)$. Then, R is called a p -symmetric ring if and only if $abc = 0$ implies $acbp^{n-1} = 0$, for all $a, b, c \in R$ and $n \geq 2$.

Example 2.1 Let us consider the ring $R = M_2(\mathbf{Z}_3)$. We know that \mathbf{Z}_3 is a reduced ring. Since every reduced ring is also a symmetric ring by [1, Theorem I.3], so \mathbf{Z}_3 is a symmetric ring.

Let us consider $P = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \in R$. Then, $P^3 = P$ and so $P \in PT(R)$. Now, we consider the elements

$A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ and $C = \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix}$ in R and a be any non-zero element in \mathbf{Z}_3 .

Then $ABC = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ implies that $ACBP^{3-1} = ACBP^2 = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. This shows that R is a P -symmetric ring.

Remark 2.1 It is obvious that every symmetric ring is p -symmetric for any $p \in PT(R)$, but the converse need not be true which can be shown as below.

From Example 2.1., we can observe that the ring $R = M_2(\mathbf{Z}_3)$ is P -symmetric but not a symmetric ring, because

$$ACB = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & a^3 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Remark 2.2 Every e -symmetric ring [7] is also a p -symmetric ring, but every p -symmetric ring need not be e -symmetric. From Example 2.1, we can observe that $R = M_2(\mathbf{Z}_3)$ is a P -symmetric ring. But R is not a e -symmetric ring, as $P = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \notin E(R)$.

Proposition 2.1 Let R be a ring and $p \in PT(R)$. Then R is a p -symmetric ring if and only if $p^{n-1}Rp^{n-1}$ is a symmetric ring and p^{n-1} is left semicentral for $n \geq 2$.

Proof: Let us assume that R is a p -symmetric ring. Let $x \in R$ and $y = (1 - p^{n-1})xp^{n-1} + p^{n-1}$. Then, we have $p^{n-1}y = p^{n-1}(1 - p^{n-1})xp^{n-1} + p^{n-1}p^{n-1} = p^{n-1}$. Similarly, it can be shown that $yp^{n-1} = y$; $y^2 = y$; $p^{n-1}yp^{n-1} = p^{n-1}$ and $(1 - y)yp^{n-1} = 0$. Since R is a p -symmetric ring, so $(1 - y)p^{n-1}yp^{n-1} = 0 \implies (1 - y)p^{n-1} = 0 \implies p^{n-1} = yp^{n-1} = y$. Thus, $y = (1 - p^{n-1})xp^{n-1} + p^{n-1} \implies (1 - p^{n-1})xp^{n-1} = 0 \implies xp^{n-1} = p^{n-1}xp^{n-1}$. Hence, p^{n-1} is left semicentral.

Secondly, let $x, y, z \in p^{n-1}Rp^{n-1}$ such that $xyz = 0$. Since $p^{n-1}Rp^{n-1}$ is a subring of R and R is a p -symmetric ring, so we have $xzyp^{n-1} = 0$. This implies that $xzy = 0$, as $yp^{n-1} = y$. Thus, $p^{n-1}Rp^{n-1}$ is a symmetric ring.

Conversely, let us suppose that $p^{n-1}Rp^{n-1}$ is a symmetric ring and p^{n-1} is left semicentral for $n \geq 2$. Let $a, b, c \in R$ such that $abc = 0$. Then $p^{n-1}ap^{n-1}, p^{n-1}bp^{n-1}, p^{n-1}cp^{n-1} \in p^{n-1}Rp^{n-1}$. Since $p^{n-1}Rp^{n-1}$ is a symmetric ring, we have $(p^{n-1}ap^{n-1})(p^{n-1}bp^{n-1})(p^{n-1}cp^{n-1}) = 0$ implies $(p^{n-1}ap^{n-1})(p^{n-1}cp^{n-1})(p^{n-1}bp^{n-1}) = 0$. Therefore, $p^{n-1}ap^{n-1}bp^{n-1}cp^{n-1} = 0$ which implies $p^{n-1}ap^{n-1}cp^{n-1}bp^{n-1} = 0$. Since p^{n-1} is left semicentral, so we have $p^{n-1}ap^{n-1}cp^{n-1}bp^{n-1} = 0 \implies ap^{n-1}cp^{n-1}bp^{n-1} = 0 \implies acp^{n-1}bp^{n-1} = 0 \implies acbp^{n-1} = 0$. This shows that R is a p -symmetric ring. \square

Proposition 2.2 *Let R be a ring with unity 1 and $p \in PT(R)$. Then R is a p -symmetric ring if and only if $abc = 0$ implies $bacp^{n-1} = 0$ for all $a, b, c \in R$ and $n \geq 2$.*

Proof: Let us assume that R is a p -symmetric ring. Then by Proposition 2.1, p^{n-1} is left semicentral in R . Let $a, b, c \in R$ such that $abc = 0$. This gives, $1a(bc) = 0$. Since R is a p -symmetric ring, so we have $1bcap^{n-1} = 0 \implies bcap^{n-1} = 0$. Again by p -symmetry of R , we have $b(ap^{n-1})cp^{n-1} = 0 \implies bacp^{n-1} = 0$, as p^{n-1} is semicentral in R .

Conversely, let us suppose that $abc = 0$ implies $bacp^{n-1} = 0$ for all $a, b, c \in R$ and $n \geq 2$. Let $x \in R$. Since $p \in PT(R)$, so $p^n = p$ for $n \geq 2$ and $(p^{n-1})^2 = p^n p^{n-2} = p^{n-1}$. So we get, $xp^{n-1}(1 - p^{n-1})p^{n-1} = 0$. This implies that

$$(1 - p^{n-1})xp^{n-1}p^{n-1}p^{n-1} = 0 \implies (1 - p^{n-1})Rp^{n-1} = 0. \text{ Thus } p^{n-1} \text{ is left semicentral.}$$

Also, let $a, b, c \in p^{n-1}Rp^{n-1}$ such that $abc = 0$. Since $p^{n-1}Rp^{n-1}$ is a subring of R , so we have $bacp^{n-1} = 0 \implies bac = 0$. So $p^{n-1}Rp^{n-1}$ is a symmetric ring.

Hence by Proposition 2.1, we have R is a p -symmetric ring. \square

Similarly, we can establish the following results.

Proposition 2.3 *Let R be a ring with unity 1 and $p \in PT(R)$. Then R is a p -symmetric ring if and only if $abc = 0$ implies $cabp^{n-1} = 0$ for all $a, b, c \in R$ and $n \geq 2$.*

Proposition 2.4 *Let R be a ring with unity 1 and $p \in PT(R)$. Then R is a p -symmetric ring if and only if $abc = 0$ implies $cbap^{n-1} = 0$ for all $a, b, c \in R$ and $n \geq 2$.*

Proposition 2.5 *Let R be a ring and $p \in E(R)$. Then R is a symmetric ring if and only if R is both p -symmetric and $(1 - p)$ -symmetric ring.*

Proof: The necessary part is obvious.

For the sufficient part, let us assume that R is both p -symmetric and $(1 - p)$ -symmetric ring. Let $a, b, c \in R$ such that $abc = 0$. Then we have, $acb(1 - p)^{n-1} = 0$, as R is a $(1 - p)$ -symmetric ring. This yields $acb(1 - p^{n-1}) = 0$ as p is an idempotent. This implies $acb = acbp^{n-1}$. Again R is a p -symmetric ring, so we have $acbp^{n-1} = 0$. It follows that $acb = 0$. Thus R is a symmetric ring. \square

Some characteristics of p -symmetric triangular matrix rings are presented in the following results.

Proposition 2.6 *Let R be a ring, $p \in PT(R)$ and $P = \begin{pmatrix} p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in PT(M_3(R))$. Then R is p -symmetric if and only if $M_3(R)$ is P -symmetric.*

Proof: Suppose that R is a p -symmetric ring. Let $A = \begin{pmatrix} a_1 & b_1 & c_1 \\ 0 & d_1 & g_1 \\ 0 & 0 & f_1 \end{pmatrix}$, $B = \begin{pmatrix} a_2 & b_2 & c_2 \\ 0 & d_2 & g_2 \\ 0 & 0 & f_2 \end{pmatrix}$ and $C = \begin{pmatrix} a_3 & b_3 & c_3 \\ 0 & d_3 & g_3 \\ 0 & 0 & f_3 \end{pmatrix}$ are in $M_3(R)$ such that $ABC = 0$. This implies that $a_1a_2a_3 = 0$. Since R is a p -symmetric ring, so we have $a_1a_3a_2p^{n-1} = 0$. This gives $ACBP^{n-1} = 0$. Therefore, $M_3(R)$ is a P -symmetric ring.

Conversely, let $M_3(R)$ be a P -symmetric ring. Let $a, b, c \in R$ such that $abc = 0$. Then $A = \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} b & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $C = \begin{pmatrix} c & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ are in $M_3(R)$ and $ABC = 0$. So by hypothesis, we have $ACBP^{n-1} = 0$. This implies that $acbp^{n-1} = 0$ and hence R is a p -symmetric ring. \square

Proposition 2.7 *Let R be a ring and $P = \begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix} \in PT(M_2(R))$ for each $r \in R$. Then $M_2(R)$ is a P -symmetric ring if and only if R is a symmetric ring.*

Proof: Let us assume that $M_2(R)$ is a P -symmetric ring. Let $a, b, c \in R$ such that $abc = 0$. So we have, $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ in $M_2(R)$. Since $M_2(R)$ is P -symmetric, so we have

$$\begin{aligned} & \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix}^{n-1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \Rightarrow \begin{pmatrix} acb & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} (-1)^n & (-1)^{n-1}r \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \Rightarrow \begin{pmatrix} acb(-1)^n & acb(-1)^{n-1}r \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \end{aligned}$$

Therefore, we have $acb(-1)^n = 0$ which implies $acb = 0$. Thus, R is a symmetric ring.

Conversely, let R be a symmetric ring. Let $A = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$, $B = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$, $C = \begin{pmatrix} a_3 & b_3 \\ 0 & c_3 \end{pmatrix} \in M_2(R)$ such that $ABC = 0$. Then, we have $a_1a_2a_3 = 0$. Since R is symmetric, so we have $a_1a_3a_2 = 0$.

$$\begin{aligned} \text{Now, } ACBP^{n-1} &= \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_3 & b_3 \\ 0 & c_3 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} \begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix}^{n-1} \\ &= \begin{pmatrix} a_1a_3a_2(-1)^n & a_1a_3a_2(-1)^{n-1}r \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0, \text{ as } a_1a_3a_2 = 0. \end{aligned}$$

Hence, $M_2(R)$ is a P -symmetric ring. \square

Proposition 2.8 *Let R be a ring, $p \in PT(R)$ and $P = \begin{pmatrix} p & p \\ 0 & 0 \end{pmatrix} \in PT(M_2(R))$. Then $M_2(R)$ is a P -symmetric ring if and only if R is a p -symmetric ring.*

Proof: The proof is similar to the proof of Proposition 2.6. \square

We now characterize p -symmetric rings with the help of left min- p -abel rings.

Proposition 2.9 *Let R be a ring and $p^{n-1} \in MP_l(R)$. Then R is a left min- p -abel ring if and only if $p^{n-1} = abp^{n-1}$ implies $p^{n-1} = bap^{n-1}$ for any $a, b \in R$.*

Proof: Let us assume that R is a left min- p -abel ring and $p^{n-1} \in MP_l(R)$. Then p^{n-1} is left semi-central. If $p^{n-1} = abp^{n-1}$ for any $a, b \in R$, then $p^{n-1} = ap^{n-1}bp^{n-1}$. Therefore, we have $p^{n-1} = p^{n-1}p^{n-1} = ap^{n-1}bp^{n-1}ap^{n-1}bp^{n-1}$. Thus, $bp^{n-1}ap^{n-1} \neq 0$. So, we have $Rbp^{n-1}ap^{n-1} = Rp^{n-1}$, $p^{n-1} = cbp^{n-1}ap^{n-1}$ for some $c \in R$. Therefore, $p^{n-1}bp^{n-1} = cbp^{n-1}ap^{n-1}bp^{n-1} = cbp^{n-1}p^{n-1} = cbp^{n-1}$ and $p^{n-1} = cbp^{n-1}ap^{n-1} = p^{n-1}bp^{n-1}ap^{n-1} = bp^{n-1}ap^{n-1} = bap^{n-1}$.

Conversely, let $p^{n-1} = abp^{n-1}$ implies $p^{n-1} = bap^{n-1}$ for any $a, b \in R$ and $p^{n-1} \in MP_l(R)$. Let $h = (1 - p^{n-1})ap^{n-1}$ for any $a \in R$. Let us assume that $h \neq 0$. Now, we have $Rh = Rp^{n-1}$. Then $p^{n-1} = ch$ for some $c \in R$, $h = hp^{n-1} = hch$ and $p^{n-1} = ch = chp^{n-1}$. By hypothesis, we have $p^{n-1} = hcp^{n-1}$. Then, we get $h = hp^{n-1} = h^2cp^{n-1} = 0$, which is a contradiction. Thus $h = (1 - p^{n-1})ap^{n-1} = 0$ for any $a \in R$. Hence R is a left min- p -abel ring. \square

Proposition 2.10 *Let R be a ring and $p \in PT(R)$. Then R is a left min- p -abel if and only if R is a p -symmetric for any $p^{n-1} \in MP_l(R)$.*

Proof: Let us assume that R is a left min- p -abel ring. Let, $a, b, c \in R$ such that $abc = 0$. If $acbp^{n-1} \neq 0$, then $Rp^{n-1} = Racbp^{n-1}$ and $p^{n-1} = dacbp^{n-1}$ for some $d \in R$. Since R is a left min- p -abel ring, so by Proposition 2.9 we have, $p^{n-1} = bdacp^{n-1} = cbdap^{n-1}$. Then, we get $p^{n-1} = dacbp^{n-1} = dap^{n-1}cbp^{n-1} = dabdacp^{n-1}cbp^{n-1} = dabp^{n-1}dacp^{n-1}cbp^{n-1} = dabcbdap^{n-1}dacp^{n-1}cbp^{n-1} = 0$, as $abc = 0$, which is a contradiction. Therefore, we must have $acbp^{n-1} = 0$. This shows that R is a p -symmetric ring.

Conversely, let R is a p -symmetric ring and $p^{n-1} \in MP_l(R)$. Then by Proposition 2.1, we have p^{n-1} is left semicentral in R . Thus, R is a left min- p -abel ring. \square

As a consequence of Proposition 2.10 and [12], Theorem 1.2] we have the following corollary.

Corollary 2.1 *Let R be a ring and $p \in PT(R)$. Then R is a left quasi-duo ring if and only if R is a MELT ring and R is a p -symmetric ring for each $p^{n-1} \in MP_l(R)$.*

Proposition 2.11 *Let R be a ring and $p \in PT(R)$. Then R is an p -abel ring if and only if for any $a, b \in R$, $p^{n-1} = ab$ implies $p^{n-1} = bap^{n-1}$.*

Proof: We assume that R is a p -abel ring and $p^{n-1} = ab$ for any $a, b \in R$. Let $g = ba$, then $g^2 = b(ab)a = bp^{n-1}a = bap^{n-1} = gp^{n-1}$. Now, $(g^2)^2 = gp^{n-1}gp^{n-1} = g^2p^{n-1}p^{n-1} = gp^{n-1} = g^2$, so $g^2 \in E(R) \subseteq PT(R)$. Therefore, $p^{n-1} = ababp^{n-1} = agbp^{n-1} = agp^{n-1}b = ag^2b = g^2ab = gp^{n-1} = bap^{n-1}$.

Conversely, let $p^{n-1} = ab$ implies $p^{n-1} = bap^{n-1}$ for any $a, b \in R$. Now, let us assume that $g = (1 - p^{n-1})ap^{n-1} + p^{n-1}$. Then $gp^{n-1} = g$ and $g \in E(R) \subseteq PT(R)$. So by hypothesis, $g = p^{n-1}gg = p^{n-1}$, it follows that $(1 - p^{n-1})ap^{n-1} = 0$ for each $a \in R$. Thus, R is a p -abel ring. \square

3. Strongly p -Symmetric Rings

In this section, we introduce the notion of strongly p -symmetric rings and establish a characterization of such rings in terms of strongly left min- p -abel rings. We begin with the following definition.

Definition 3.1 Let R be a ring and $p \in PT(R)$. Then R is called strongly p -symmetric if and only if $abc = 0$ implies $acp^{n-1}b = 0$, for all $a, b, c \in R$ and $n \geq 2$.

Example 3.1 Let us consider the ring $R = M_2(\mathbf{Z}_3)$. We know that \mathbf{Z}_3 is a reduced ring. Since every reduced ring is also a symmetric ring by [1, Theorem I.3], so \mathbf{Z}_3 is a symmetric ring.

Let us consider $P = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \in R$. Then, $P^3 = P$ and so $P \in PT(R)$. Now, we consider the elements

$A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$ and $C = \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$ in R and a be any non-zero element in \mathbf{Z}_3 .

Then $ABC = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ implies that $ACP^{3-1}B = ACP^2B = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & a \\ 0 & a \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}^2 \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$
 $= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. This shows that R is a strongly P -symmetric ring.

Remark 3.1 It is observed that p -symmetric rings need not be strongly p -symmetric rings, which can be shown as below.

From Example 2.1., the ring $R = M_2(\mathbf{Z}_3)$ is P -symmetric but not a strongly P -symmetric ring, because $ACP^{3-1}B = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}^2 \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4a^3 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Remark 3.2 In the above Definitions 2.1 and 3.1, it is observed that for $p = 1$, R is a symmetric ring if and only if R is a (strongly) p -symmetric ring.

Proposition 3.1 Let R be a ring such that $p \in PT(R)$. Then R is a strongly p -symmetric ring if and only if $p^{n-1}Rp^{n-1}$ is a symmetric ring and $p^{n-1} \in Z(R)$.

Proof: Let us assume that R is a strongly p -symmetric ring. For each $a \in R$, let us consider $x = p^{n-1} + p^{n-1}a(1 - p^{n-1})$. Then $p^{n-1}x = p^{n-1}p^{n-1} + p^{n-1}p^{n-1}a(1 - p^{n-1}) = x$, as $p^{n-1}p^{n-1} = p^{n-1}$. Similarly, $xp^{n-1} = p^{n-1}$. Also, $x(1 - x)p^{n-1} = 0$ and since R is strongly p -symmetric, so we have, $xp^{n-1}p^{n-1}(1 - x) = 0 \implies p^{n-1}(1 - x) = 0 \implies p^{n-1} = p^{n-1}x = x$. This implies that $p^{n-1}a(1 - p^{n-1}) = 0 \implies p^{n-1}a = p^{n-1}ap^{n-1}$ for each $a \in R$. Now let, $y = p^{n-1} + (1 - p^{n-1})ap^{n-1}$. Then $yp^{n-1} = y$ and $p^{n-1}y = p^{n-1}$. Also $(1 - p^{n-1})p^{n-1}y = 0$, since R is strongly p -symmetric, so we have, $(1 - p^{n-1})yp^{n-1}p^{n-1} = 0 \implies (1 - p^{n-1})yp^{n-1} = 0 \implies (1 - p^{n-1})y = 0$. Therefore $p^{n-1}y = y = p^{n-1}$. So we have $(1 - p^{n-1})ap^{n-1} = 0 \implies ap^{n-1} = p^{n-1}ap^{n-1}$ for each $a \in R$. Thus we have $p^{n-1} \in Z(R)$.

Again, let $x, y, z \in p^{n-1}Rp^{n-1}$ such that $xyz = 0$. Since $p^{n-1}Rp^{n-1}$ is a subring of strongly p -symmetric ring R , so we have $xzp^{n-1}y = 0$. This implies that $xzy = 0$, as $p^{n-1}y = y$. Thus, $p^{n-1}Rp^{n-1}$ is a symmetric ring.

Conversely, let us assume that $p^{n-1}Rp^{n-1}$ is a symmetric ring and $p^{n-1} \in Z(R)$. Also, let $a, b, c \in R$ such that $abc = 0$. Since $p^{n-1}Rp^{n-1}$ is a symmetric ring, we have

$$(p^{n-1}ap^{n-1})(p^{n-1}bp^{n-1})(p^{n-1}cp^{n-1}) = 0 \text{ implies}$$

$$(p^{n-1}ap^{n-1})(p^{n-1}cp^{n-1})(p^{n-1}bp^{n-1}) = 0.$$

Therefore, $p^{n-1}ap^{n-1}bp^{n-1}cp^{n-1} = 0$ which implies $p^{n-1}ap^{n-1}cp^{n-1}bp^{n-1} = 0$.

As $p^{n-1} \in Z(R)$, it follows that $p^{n-1}a = ap^{n-1}$, $p^{n-1}b = bp^{n-1}$ and $p^{n-1}c = cp^{n-1}$ for each $a, b, c \in R$. This implies that $acp^{n-1}b = 0$. Thus R is a strongly p -symmetric ring.

□

We have the following corollary as a consequence of Propositions 2.1 and 3.1.

Corollary 3.1 Let R be a ring and $p \in PT(R)$. Then R is a strongly p -symmetric ring if and only if R is a p -symmetric ring and $p^{n-1} \in Z(R)$.

Proposition 3.2 Let R be a ring and $p \in PT(R)$. Then R is a symmetric ring if and only if R is a strongly p -symmetric and $(1-p)R(1-p)$ is a symmetric ring.

Proof:

The necessary part is obvious.

For the sufficient part, let us assume that R is a strongly p -symmetric and $(1-p)R(1-p)$ is a symmetric ring. Since R is a strongly p -symmetric ring, so by Proposition 3.1 we have, $p^{n-1}Rp^{n-1}$ is a symmetric ring and $p^{n-1} \in Z(R)$. This implies that $p^{n-1}Rp^{n-1} \cong R/(1-p^{n-1})R(1-p^{n-1})$ and $(1-p^{n-1})R(1-p^{n-1}) \cong R/p^{n-1}Rp^{n-1}$. This implies $R/(1-p^{n-1})R(1-p^{n-1})$ and $R/p^{n-1}Rp^{n-1}$ are symmetric rings, as $p^{n-1}Rp^{n-1}$ and $(1-p^{n-1})R(1-p^{n-1})$ are symmetric rings. Thus, $R/((1-p^{n-1})R(1-p^{n-1}) \cap p^{n-1}Rp^{n-1})$ is a symmetric ring. But $((1-p^{n-1})R(1-p^{n-1}) \cap p^{n-1}Rp^{n-1}) = 0$. Hence R is a symmetric ring. \square

Lemma 3.1 Let R be a ring and $p^{n-1} \in MP_l(R)$. If p^{n-1} is right semicentral then p^{n-1} left semicentral.

Proof: We assume that $a \in R$. If $(1-p^{n-1})ap^{n-1} \neq 0$, then $Rp^{n-1} = R(1-p^{n-1})ap^{n-1}$. Let us write $p^{n-1} = c(1-p^{n-1})ap^{n-1}$ for some $c \in R$. Since p^{n-1} is right semicentral, so we have $p^{n-1} = p^{n-1}c(1-p^{n-1})ap^{n-1} = p^{n-1}cp^{n-1}(1-p^{n-1})ap^{n-1} = 0$, which a contradiction. Hence $(1-p^{n-1})ap^{n-1} = 0$ for each $a \in R$. This shows that p^{n-1} is left semicentral. \square

Proposition 3.3 Let R be a ring and $p \in PT(R)$. Then R is a strongly left min- p -abel ring if and only if R is a strongly p -symmetric ring for any $p^{n-1} \in MP_l(R)$.

Proof: We assume that R is a strongly left min- p -abel ring. Then by Lemma 3.1, R is a left min- p -abel ring. By Proposition 2.10, R is a p -symmetric ring for each $p^{n-1} \in MP_l(R)$. Again by Lemma 3.1, each element of $MP_l(R)$ is central. Hence by Corollary 3.0.1, R is a strongly p -symmetric ring.

Conversely, let R be a strongly p -symmetric for each $p^{n-1} \in MP_l(R)$. Then by Proposition 3.1, $p^{n-1} \in Z(R)$ for each $p^{n-1} \in MP_l(R)$. This implies that R is a strongly left min- p -abel ring. \square

4. p -Reduced Rings

In this section, we define right (left) p -reduced rings and study their relationships with p -symmetric rings and left min- p -abel rings. We begin with the following definition.

Definition 4.1 Let R be a ring and $p \in PT(R)$. Then,

- (i) R is called right p -reduced if $N(R)p^{n-1} = 0$.
- (ii) R is called left p -reduced if $p^{n-1}N(R) = 0$.

Example 4.1 Let F be any field. Let us consider the matrix ring $R = M_3(F)$. Then $N(R) = \begin{pmatrix} 0 & F & F \\ 0 & 0 & F \\ 0 & 0 & 0 \end{pmatrix}$, as $\begin{pmatrix} 0 & F & F \\ 0 & 0 & F \\ 0 & 0 & 0 \end{pmatrix}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ is nilpotent.

Let $P = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, then for any odd positive integer n , we have $P^n = P$, so $P \in PT(R)$. Then

$$N(R)P^{n-1} = N(R) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{n-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0.$$

Thus, R is a right P -reduced ring. But R is not a left P -reduced ring as,

$$P^{n-1}N(R) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{n-1} N(R) = \begin{pmatrix} 0 & F & F \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0.$$

Remark 4.1 We can also construct a left p -reduced ring which is not a right p -reduced. In Example 4.1, if we consider $P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in PT(R)$, then R is a left P -reduced ring, but R is not a right P -reduced ring.

Proposition 4.1 Let R be a ring and $p \in PT(R)$. Then R is right p -reduced if and only if p^{n-1} is left semicentral in R and $p^{n-1}Rp^{n-1}$ is reduced.

Proof: Let us assume that R is a right p -reduced ring for any $p \in PT(R)$. Then, we have $(1-p^{n-1})p^{n-1} = 0$. Now, for each $x \in R$, $(1-p^{n-1})xp^{n-1} \in N(R)$ and $(1-p^{n-1})xp^{n-1} \in N(R)p^{n-1} = 0$, as R is a p -reduced ring. So, we have $(1-p^{n-1})xp^{n-1} = 0 \implies xp^{n-1} = p^{n-1}xp^{n-1}$. Thus, p^{n-1} is left semicentral in R . Again, we have $N(p^{n-1}Rp^{n-1}) \subseteq N(R)p^{n-1} = 0$. This implies that $p^{n-1}Rp^{n-1}$ is reduced ring.

Conversely, let p^{n-1} be left semicentral in R and $p^{n-1}Rp^{n-1}$ be a reduced ring. Then $N(R)p^{n-1} = p^{n-1}N(R)p^{n-1} = N(p^{n-1}Rp^{n-1}) = 0$. This implies that R is a p -reduced ring. \square

Similarly, we can establish the following result.

Proposition 4.2 Let R be a ring and $p \in PT(R)$. Then R is left p -reduced if and only if p^{n-1} is right semicentral in R and $p^{n-1}Rp^{n-1}$ is reduced.

Proposition 4.3 Right p -reduced rings are p -symmetric rings.

Proof: Let R be a right p -reduced ring. Then by Theorem 4.1, we get p^{n-1} is left semicentral in R and $p^{n-1}Rp^{n-1}$ is reduced. Since reduced rings are symmetric by [1, Theorem I.3], so we have p^{n-1} is left semicentral in R and $p^{n-1}Rp^{n-1}$ is a symmetric ring. Thus, by Proposition 2.1 we have, R is a p -symmetric ring. \square

Remark 4.2 Right p -reduced rings need not be strongly p -symmetric by Example 4.1 and Proposition 3.1.

Proposition 4.4 Let R be a ring and $p \in PT(R)$. Then R is a left min- p -abel ring if and only if R is a right p -reduced ring for each $p^{n-1} \in MP_l(R)$.

Proof: Let us assume that R is a left min- p -abel ring for each $p^{n-1} \in MP_l(R)$. If $N(R)p^{n-1} \neq 0$, then there exists $a \in N(R)$ such that $ap^{n-1} \neq 0$ which implies there exists $b \in R$ such that $p^{n-1} = bap^{n-1}$, as $Rp^{n-1} = Rap^{n-1}$. Now, by Proposition 2.9 we have, $p^{n-1} = abp^{n-1}$. This implies $p^{n-1} = bap^{n-1} = ba^2bp^{n-1} = b^2a^2p^{n-1} = \dots = b^m a^m p^{n-1} = \dots$ for each $m \geq 1$. Since $a \in N(R)$, so $a^m = 0$ for some $m \geq 1$. Thus, we have $p^{n-1} = 0$, which is a contradiction. Hence $N(R)p^{n-1} = 0$ and so R is a right p -reduced ring.

The sufficient part follows directly from Proposition 4.1. \square

Similarly, we can establish the following result.

Proposition 4.5 Let R be a ring and $p \in PT(R)$. Then R is a strongly left min- p -abel if and only if R is a left p -reduced for each $p^{n-1} \in MP_l(R)$.

Corollary 4.1 Let R be a ring and $p, q \in PT(R)$. If R is right p -reduced and $Rp^{n-1} \cong Rq^{n-1}$ as left R -modules, then R is a right q -reduced.

Proof: Let us assume that R is right p -reduced ring. Then by Proposition 4.1 we have, p^{n-1} is left semicentral and $N(R)p^{n-1} = 0$. Since $Rp^{n-1} \cong Rq^{n-1}$, $p^{n-1}q^{n-1} = q^{n-1}$. Which gives $N(R)q^{n-1} = 0$. Thus R is a q -reduced ring. \square

Acknowledgments

The authors would like to thank the referee for carefully reading the manuscript and providing some insightful suggestions to improve the article.

References

1. Anderson, D. D. and Camillo, V.; Semigroups and rings whose zero products commute, *Comm. Algebra* 27 (1999), no. 6, 2847–2852.
2. Hoque, H. M. I and Saikia, H. K.; A study on t^2 -symmetric rings, *Adv. Math., Sci. J.*, 12 (2023), no. 6, 577–584.
3. Kafkas, G. Ungor, B., Halicioglu, S. and Harmanci, A.; Generalized symmetric rings, *Algebra Discrete Math.* 12 (2011) 78–84.
4. Lam, T. Y. and Dugas, A. S.: Quasi-duo rings and stable range descent, *J. Pure and Appl. Alg.* 195, 243–259 (2005).
5. Lambek, J.; On the representation of modules by sheaves of factor modules, *Canad. Math. Bull.* 14 (1971), 359–368. <http://dx.doi.org/10.4153/CMB-1971-065-1>
6. Marks, G.; Reversible and symmetric rings, *J. Pure Appl. Algebra* **174** (2002), no. 3, 311–318. [https://doi.org/10.1016/S0022-4049\(02\)00070-1](https://doi.org/10.1016/S0022-4049(02)00070-1)
7. Meng, F. and Wei, J.; e -Symmetric rings. *Commun Contemp Math* 2018; 20: 1750039.
8. Meng, F. and Wei, J.; Some properties of e -symmetric rings, *Turk. J. Math.* (2018) 42: 2389 – 2399. doi:10.3906/math-1709-10
9. Meng, F., Wei, J. and Chen, R.; Weak e -symmetric rings, *Communications in Algebra*, 2023, vol. 51, no. 7, 3042–3050.
10. Ouyang, L and Chen, H.; On weak symmetric rings, *Comm. Algebra* 38 (2010) 697–713
11. Wei, J. C.; Generalized weakly symmetric rings, *J. Pure Appl. Algebra* 218 (2014) 1594–1603.
12. Wei, J. C. (2008). Certain rings whose simple singular modules are nil-injective. *Turk. J. Math.* 32:1–16.

*H. M. Imdadul Hoque,
Department of Mathematics,
Bongaigaon University,
India.
E-mail address: imdadul298@gmail.com*

and

*Jituparna Goswami,
Department of Mathematics,
Gauhati University,
India.
E-mail address: jituparnagoswami18@gmail.com*

and

*Helen K. Saikia,
Department of Mathematics,
Gauhati University,
India.
E-mail address: hsaikia@yahoo.com*