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On p-Symmetric Rings
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abstract: This article embodies the notion of p-symmetric rings using the concept of non-zero potent
elements in a ring. It is proved that R is a p-symmetric ring if and only if pn−1Rpn−1 is a symmetric ring and
pn−1 is left semicentral. Moreover, p-symmetric rings in terms of upper triangular matrix rings and left min-
p-abel rings have been characterized. Furthermore, we introduce strongly p-symmetric rings and also provide
a characterization of strongly p-symmetric rings in terms of strongly left min-p-abel rings. In particular, it
is proved that R is a strongly left min-p-abel ring if and only if R is a strongly p-symmetric ring for each
pn−1 ∈ MPl(R). Furthermore, it has been established that right p-reduced rings are p-symmetric rings.
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1. Introduction

Throughout this paper all rings are associative with identity. Let R be a ring. We denote the centre
of R, the set of all idempotents of R and the set of all nilpotent elements of R by Z(R), E(R) and N(R)
respectively. Moreover, the set of all n × n upper triangular matrix ring over R is denoted by Mn(R).
An element p of R is said to be a potent if pn = p for any n ≥ 2. Let PT (R) denote the set of all potent
elements of R. It is obvious that all idempotents are potents but the converse is not true. For example,

in the ring R = M2(R), P =

(
−1 1
0 1

)
is a potent element in R as P 3 = P for but not an idempotent.

Also, an element p ∈ PT (R) is called left minimal potent of R if Rp is a minimal left ideal of R. We
denote the set of all left minimal potent elements of R by MPl(R). A ring is usually called reduced if it
has no nilpotent elements other than zero. An element a is called left semicentral (resp., central) in R if
axa = xa (resp., ax = xa) for each x ∈ R. Following Lambek [5], a ring R is called symmetric if abc = 0
implies acb = 0 for all a, b, c ∈ R. Later on, Anderson and Comillo [1], used the term ZC3 for symmetric
ring. The investigation of symmetric ring is also covered by G. Marks [6]. Ouyang et al. [10], generalized
the concept of symmetric rings by introducing weak symmetric rings. According to [10], a ring R is said
to be weak symmetric if abc ∈ N(R) implies acb ∈ N(R) for all a, b, c ∈ R. Another generalization of
symmetric rings has been introduced by Kafkas et al. [3] as central symmetric rings. They defined a
ring R to be central symmetric if abc = 0 implies bac ∈ Z(R) for any a, b, c ∈ R. Wei [11] introduced
generalized weakly symmetric rings which further expands the idea of symmetric rings. According to
Meng and Wei [7], a ring R is called (strongly) e-symmetric if abc = 0 implies (aceb = 0) acbe = 0, for
any a, b, c ∈ R; e is an idempotent element of R. They have also studied some important properties of
it (refer to [8]). Furthermore, Meng et al. [9] recently studied the notion of weak e-symmetric rings.
Recently, Hoque and Saikia [2] studied the notion of t2-symmetric ring using the concept of non-zero
tripotent element t in a ring R. Also, they introduced a strong condition on this notion and called it
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strongly t2-symmetric ring. They discussed some basic properties of (strongly) t2-symmetric rings.

Wei [12], studied the concept of left minimal element and left minimal idempotent of a ring R. Ex-
tending this concept the left minimal potent element of R is defined using potent element. A ring R
is called (strongly) left min-p-abel if either MPl(R) = ϕ or every element p ∈ MPl(R) is (right) left
semicentral. Following [7], a ring R is said to be Abel if all idempotents of R are central. Analogously we
call a ring R to be p-abel if all potent elements of R are central. Following [4], a ring R is left quasi-duo if
every maximal left ideal of R is an ideal. According to [12], a ring R is MELT if every essential maximal
left ideal of R is an ideal.

In this paper, we extend and generalize the structure of e-symmetric rings defined by F. Meng et al.
[7] using the concept of non-zero potent elements of the ring by introducing the notions of p-symmetric
rings and strongly p-symmetric rings. We characterize p-symmetric rings in terms of upper triangular
matrix rings and left min-p-abel rings. We provide a characterization of strongly p-symmetric rings in
terms of strongly left min-p-abel rings. We also introduce the notion of p-reduced ring as a subclass of
reduced ring.

2. p-Symmetric Rings

In this section, we introduce the notion of p-symmetric rings. We discuss some basic properties of
p-symmetric rings and study the characterizations of such rings with the help of upper triangular matrix
rings. We also characterize p-symmetric rings in terms of left min-p-abel rings. We begin with the
following definition.

Definition 2.1 Let R be a ring and p ∈ PT (R). Then, R is called a p-symmetric ring if and only if
abc = 0 implies acbpn−1 = 0, for all a, b, c ∈ R and n ≥ 2.

Example 2.1 Let us consider the ring R = M2(Z3). We know that Z3 is a reduced ring. Since every
reduced ring is also a symmetric ring by [1, Theorem I.3], so Z3 is a symmetric ring.

Let us consider P =

(
2 0
0 0

)
∈ R. Then, P 3 = P and so P ∈ PT (R). Now, we consider the elements

A =

(
a 0
0 0

)
, B =

(
0 a
0 0

)
and C =

(
a a
0 0

)
in R and a be any non-zero element in Z3.

Then ABC =

(
0 0
0 0

)
implies that ACBP 3−1 = ACBP 2 =

(
a 0
0 0

)(
a a
0 0

)(
0 a
0 0

)(
2 0
0 0

)2

=

(
0 0
0 0

)
. This shows that R is a P -symmetric ring.

Remark 2.1 It is obvious that every symmetric ring is p-symmetric for any p ∈ PT (R), but the converse
need not be true which can be shown as below.
From Example 2.1., we can observe that the ring R = M2(Z3) is P -symmetric but not a symmetric ring,
because

ACB =

(
a 0
0 0

)(
a a
0 0

)(
0 a
0 0

)
=

(
0 a3

0 0

)
̸=

(
0 0
0 0

)
.

Remark 2.2 Every e-symmetric ring [7] is also a p-symmetric ring, but every p-symmetric ring need
not be e-symmetric. From Example 2.1 , we can observe that R = M2(Z3) is a P -symmetric ring. But

R is not a e-symmetric ring, as P =

(
2 0
0 0

)
/∈ E(R).

Proposition 2.1 Let R be a ring and p ∈ PT (R). Then R is a p-symmetric ring if and only if
pn−1Rpn−1 is a symmetric ring and pn−1 is left semicentral for n ≥ 2.
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Proof: Let us assume that R is a p-symmetric ring. Let x ∈ R and y = (1 − pn−1)xpn−1 + pn−1.
Then, we have pn−1y = pn−1(1 − pn−1)xpn−1 + pn−1pn−1 = pn−1. Similarly, it can be shown that
ypn−1 = y; y2 = y; pn−1ypn−1 = pn−1 and (1 − y)ypn−1 = 0. Since R is a p-symmetric ring , so
(1 − y)pn−1ypn−1 = 0 =⇒ (1 − y)pn−1 = 0 =⇒ pn−1 = ypn−1 = y. Thus, y = (1 − pn−1)xpn−1 +
pn−1 =⇒ (1− pn−1)xpn−1 = 0 =⇒ xpn−1 = pn−1xpn−1. Hence, pn−1 is left semicentral.

Secondly, let x, y, z ∈ pn−1Rpn−1 such that xyz = 0. Since pn−1Rpn−1 is a subring of R and R is a
p-symmetric ring, so we have xzypn−1 = 0. This implies that xzy = 0, as ypn−1 = y. Thus, pn−1Rpn−1

is a symmetric ring.

Conversely, let us suppose that pn−1Rpn−1 is a symmetric ring and pn−1 is left semicentral for n ≥ 2. Let
a, b, c ∈ R such that abc = 0. Then pn−1apn−1, pn−1bpn−1, pn−1cpn−1 ∈ pn−1Rpn−1. Since pn−1Rpn−1 is
a symmetric ring, we have (pn−1apn−1)(pn−1bpn−1)(pn−1cpn−1) = 0 implies (pn−1apn−1)(pn−1cpn−1)
(pn−1bpn−1) = 0. Therefore, pn−1apn−1bpn−1cpn−1 = 0 which implies pn−1apn−1cpn−1bpn−1 = 0. Since
pn−1 is left semicentral, so we have pn−1apn−1cpn−1bpn−1 = 0 =⇒ apn−1cpn−1bpn−1 = 0 =⇒
acpn−1bpn−1 = 0 =⇒ acbpn−1 = 0. This shows that R is a p-symmetric ring.

2

Proposition 2.2 Let R be a ring with unity 1 and p ∈ PT (R). Then R is a p-symmetric ring if and
only if abc = 0 implies bacpn−1 = 0 for all a, b, c ∈ R and n ≥ 2.

Proof: Let us assume that R is a p-symmetric ring. Then by Proposition 2.1, pn−1 is left semicentral
in R. Let a, b, c ∈ R such that abc = 0. This gives, 1a(bc) = 0. Since R is a p-symmetric ring, so we
have 1bcapn−1 = 0 =⇒ bcapn−1 = 0. Again by p-symmetricity of R, we have b(apn−1)cpn−1 = 0 =⇒
bacpn−1 = 0, as pn−1 is semicentral in R.

Conversely, let us suppose that abc = 0 implies bacpn−1 = 0 for all a, b, c ∈ R and n ≥ 2. Let x ∈ R.
Since p ∈ PT (R), so pn = p for n ≥ 2 and (pn−1)2 = pnpn−2 = pn−1. So we get, xpn−1(1−pn−1)pn−1 = 0.
This implies that
(1− pn−1)xpn−1pn−1pn−1 = 0 =⇒ (1− pn−1)Rpn−1 = 0. Thus pn−1 is left semicentral.
Also, let a, b, c ∈ pn−1Rpn−1 such that abc = 0. Since pn−1Rpn−1 is a subring of R, so we have
bacpn−1 = 0 =⇒ bac = 0. So pn−1Rpn−1 is a symmetric ring .
Hence by Proposition 2.1, we have R is a p-symmetric ring.

2

Similarly, we can establish the following results.

Proposition 2.3 Let R be a ring with unity 1 and p ∈ PT (R). Then R is a p-symmetric ring if and
only if abc = 0 implies cabpn−1 = 0 for all a, b, c ∈ R and n ≥ 2.

Proposition 2.4 Let R be a ring with unity 1 and p ∈ PT (R). Then R is a p-symmetric ring if and
only if abc = 0 implies cbapn−1 = 0 for all a, b, c ∈ R and n ≥ 2.

Proposition 2.5 Let R be a ring and p ∈ E(R). Then R is a symmetric ring if and only if R is both
p-symmetric and (1− p)-symmetric ring.

Proof: The necessary part is obvious.
For the sufficient part, let us assume that R is both p-symmetric and (1 − p)-symmetric ring. Let
a, b, c ∈ R such that abc = 0. Then we have, acb(1 − p)n−1 = 0, as R is a (1 − p)-symmetric ring. This
yields acb(1 − pn−1) = 0 as p is an idempotent. This implies acb = acbpn−1. Again R is a p-symmetric
ring, so we have acbpn−1 = 0. It follows that acb = 0. Thus R is a symmetric ring.

2

Some characteristics of p-symmetric triangular matrix rings are presented in the following results.
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Proposition 2.6 Let R be a ring, p ∈ PT (R) and P =

p 0 0
0 0 0
0 0 0

 ∈ PT (M3(R)). Then R is p-

symmetric if and only if M3(R) is P -symmetric.

Proof: Suppose that R is a p-symmetric ring. Let A =

a1 b1 c1
0 d1 g1
0 0 f1

, B =

a2 b2 c2
0 d2 g2
0 0 f2

 and

C =

a3 b3 c3
0 d3 g3
0 0 f3

 are in M3(R) such that ABC = 0. This implies that a1a2a3 = 0. Since R is

a p-symmetric ring, so we have a1a3a2p
n−1 = 0. This gives ACBPn−1 = 0. Therefore, M3(R) is a

P -symmetric ring.

Conversely, let M3(R) be a P -symmetric ring. Let a, b, c ∈ R such that abc = 0. Then A =a 0 0
0 0 0
0 0 0

, B =

b 0 0
0 0 0
0 0 0

 and c =

c 0 0
0 0 0
0 0 0

 are in M3(R) and ABC = 0. So by hypothesis, we

have ACBPn−1 = 0. This implies that acbpn−1 = 0 and hence R is a p-symmetric ring.
2

Proposition 2.7 Let R be a ring and P =

(
−1 r
0 0

)
∈ PT (M2(R)) for each r ∈ R. Then M2(R) is a

P -symmetric ring if and only if R is a symmetric ring.

Proof: Let us assume that M2(R) is a P -symmetric ring . Let a, b, c ∈ R such that abc = 0. So we have,(
a 0
0 0

)(
b 0
0 0

)(
c 0
0 0

)
=

(
0 0
0 0

)
in M2(R). Since M2(R) is P -symmetric, so we have

(
a 0
0 0

)(
c 0
0 0

)(
b 0
0 0

)(
−1 r
0 0

)n−1

=

(
0 0
0 0

)

=⇒
(
acb 0
0 0

)(
(−1)n (−1)n−1r

0 0

)
=

(
0 0
0 0

)

=⇒
(
acb(−1)n acb(−1)n−1r

0 0

)
=

(
0 0
0 0

)
.

Therefore, we have acb(−1)n = 0 which implies acb = 0. Thus, R is a symmetric ring.

Conversely, let R be a symmetric ring. Let A =

(
a1 b1
0 c1

)
, B =

(
a2 b2
0 c2

)
,

C =

(
a3 b3
0 c3

)
∈ M2(R) such that ABC = 0. Then, we have a1a2a3 = 0. Since R is symmetric, so we

have a1a3a2 = 0 .

Now, ACBPn−1 =

(
a1 b1
0 c1

)(
a3 b3
0 c3

)(
a2 b2
0 c2

)(
−1 r
0 0

)n−1

=

(
a1a3a2(−1)n a1a3a2(−1)n−1r

0 0

)
=

(
0 0
0 0

)
= 0, as a1a3a2 = 0.

Hence, M2(R) is a P -symmetric ring .
2

Proposition 2.8 Let R be a ring, p ∈ PT (R) and P =

(
p p
0 0

)
∈ PT (M2(R)) . Then M2(R) is a

P -symmetric ring if and only if R is a p-symmetric ring.
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Proof: The proof is similar to the proof of Proposition 2.6.

2

We now characterize p-symmetric rings with the help of left min-p-abel rings.

Proposition 2.9 Let R be a ring and pn−1 ∈ MPl(R). Then R is a left min-p-abel ring if and only if
pn−1 = abpn−1 implies pn−1 = bapn−1 for any a, b ∈ R.

Proof: Let us assume that R is a left min-p-abel ring and pn−1 ∈ MPl(R). Then pn−1 is left semi-
central. If pn−1 = abpn−1 for any a, b ∈ R, then pn−1 = apn−1bpn−1. Therefore, we have pn−1 =
pn−1pn−1 = apn−1bpn−1apn−1bpn−1. Thus, bpn−1apn−1 ̸= 0. So, we have Rbpn−1apn−1 = Rpn−1,
pn−1 = cbpn−1apn−1 for some c ∈ R. Therefore, pn−1bpn−1 = cbpn−1apn−1bpn−1 = cbpn−1pn−1 = cbpn−1

and pn−1 = cbpn−1apn−1 = pn−1bpn−1apn−1 = bpn−1apn−1 = bapn−1.

Conversely, let pn−1 = abpn−1 implies pn−1 = bapn−1 for any a, b ∈ R and pn−1 ∈ MPl(R). Let h =
(1− pn−1)apn−1 for any a ∈ R. Let us assume that h ̸= 0. Now, we have Rh = Rpn−1. Then pn−1 = ch
for some c ∈ R, h = hpn−1 = hch and pn−1 = ch = chpn−1. By hypothesis, we have pn−1 = hcpn−1.
Then, we get h = hpn−1 = h2cpn−1 = 0, which is a contradiction. Thus h = (1− pn−1)apn−1 = 0 for any
a ∈ R. Hence R is a left min-p-abel ring.

2

Proposition 2.10 Let R be a ring and p ∈ PT (R). Then R is a left min-p-abel if and only if R is a
p-symmetric for any pn−1 ∈ MPl(R).

Proof: Let us assume that R is a left min-p-abel ring. Let, a, b, c ∈ R such that abc = 0. If acbpn−1 ̸= 0,
then Rpn−1 = Racbpn−1 and pn−1 = dacbpn−1 for some d ∈ R. Since R is a left min-p-abel ring,
so by Proposition 2.9 we have, pn−1 = bdacpn−1 = cbdapn−1. Then, we get pn−1 = dacbpn−1 =
dapn−1cbpn−1 = dabdacpn−1cbpn−1 = dabpn−1dacpn−1cbpn−1 = dabcbdapn−1dacpn−1cbpn−1 = 0, as
abc = 0, which is a contradiction. Therefore, we must have acbpn−1 = 0. This shows that R is a
p-symmetric ring.

Conversely, let R is a p-symmetric ring and pn−1 ∈ MPl(R). Then by Proposition 2.1, we have pn−1

is left semicentral in R. Thus, R is a left min-p-abel ring.

2

As a consequence of Proposition 2.10 and [ [12], Theorem 1.2] we have the following corollary.

Corollary 2.1 Let R be a ring and p ∈ PT (R). Then R is a left quasi-duo ring if and only if R is a
MELT ring and R is a p-symmetric ring for each pn−1 ∈ MPl(R).

Proposition 2.11 Let R be a ring and p ∈ PT (R). Then R is an p-abel ring if and only if for any
a, b ∈ R, pn−1 = ab implies pn−1 = bapn−1.

Proof: We assume that R is a p-abel ring and pn−1 = ab for any a, b ∈ R. Let g = ba, then g2 =
b(ab)a = bpn−1a = bapn−1 = gpn−1. Now, (g2)2 = gpn−1gpn−1 = g2pn−1pn−1 = gpn−1 = g2, so g2 ∈
E(R) ⊆ PT (R). Therefore, pn−1 = ababpn−1 = agbpn−1 = agpn−1b = ag2b = g2ab = gpn−1 = bapn−1.

Conversely, let pn−1 = ab implies pn−1 = bapn−1 for any a, b ∈ R. Now, let us assume that g =
(1−pn−1)apn−1+pn−1. Then gpn−1 = g and g ∈ E(R) ⊆ PT (R). So by hypothesis, g = pn−1gg = pn−1,
it follows that (1− pn−1)apn−1 = 0 for each a ∈ R. Thus, R is a p-abel ring.

2
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3. Strongly p-Symmetric Rings

In this section, we introduce the notion of strongly p-symmetric rings and establish a characterization
of such rings in terms of strongly left min-p-abel rings. We begin with the following definition.

Definition 3.1 Let R be a ring and p ∈ PT (R). Then R is called strongly p-symmetric if and only if
abc = 0 implies acpn−1b = 0, for all a, b, c ∈ R and n ≥ 2.

Example 3.1 Let us consider the ring R = M2(Z3). We know that Z3 is a reduced ring. Since every
reduced ring is also a symmetric ring by [1, Theorem I.3], so Z3 is a symmetric ring.

Let us consider P =

(
2 0
0 0

)
∈ R. Then, P 3 = P and so P ∈ PT (R). Now, we consider the elements

A =

(
a 0
0 0

)
, B =

(
0 0
0 a

)
and C =

(
a a
0 a

)
in R and a be any non-zero element in Z3.

Then ABC =

(
0 0
0 0

)
implies that ACP 3−1B = ACP 2B =

(
a 0
0 0

)(
a a
0 a

)(
2 0
0 0

)2 (
0 0
0 a

)
=

(
0 0
0 0

)
. This shows that R is a strongly P -symmetric ring.

Remark 3.1 It is observed that p-symmetric rings need not be strongly p-symmetric rings, which can be
shown as below.
From Example 2.1., the ring R = M2(Z3) is P -symmetric but not a strongly P -symmetric ring, because

ACP 3−1B =

(
a 0
0 0

)(
a a
0 0

)(
2 0
0 0

)2 (
0 a
0 0

)
=

(
0 4a3

0 0

)
̸=

(
0 0
0 0

)
.

Remark 3.2 In the above Definitions 2.1 and 3.1, it is observed that for p = 1, R is a symmetric ring
if and only if R is a (strongly) p-symmetric ring.

Proposition 3.1 Let R be a ring such that p ∈ PT (R). Then R is a strongly p-symmetric ring if and
only if pn−1Rpn−1 is a symmetric ring and pn−1 ∈ Z(R).

Proof: Let us assume that R is a strongly p-symmetric ring. For each a ∈ R, let us consider x =
pn−1 + pn−1a(1 − pn−1). Then pn−1x = pn−1pn−1 + pn−1pn−1a(1 − pn−1) = x, as pn−1pn−1 = pn−1.
Similarly, xpn−1 = pn−1. Also, x(1 − x)pn−1 = 0 and since R is strongly p-symmetric, so we have,
xpn−1pn−1(1 − x) = 0 =⇒ pn−1(1 − x) = 0 =⇒ pn−1 = pn−1x = x. This implies that pn−1a(1 −
pn−1) = 0 =⇒ pn−1a = pn−1apn−1 for each a ∈ R. Now let, y = pn−1 + (1 − pn−1)apn−1. Then
ypn−1 = y and pn−1y = pn−1. Also (1 − pn−1)pn−1y = 0, since R is strongly p-symmetric, so we have,
(1− pn−1)ypn−1pn−1 = 0 =⇒ (1− pn−1)ypn−1 = 0 =⇒ (1− pn−1)y = 0. Therefore pn−1y = y = pn−1.
So we have (1− pn−1)apn−1 = 0 =⇒ apn−1 = pn−1apn−1 for each a ∈ R. Thus we have pn−1 ∈ Z(R).

Again, let x, y, z ∈ pn−1Rpn−1 such that xyz = 0. Since pn−1Rpn−1 is a subring of strongly p-
symmetric ring R , so we have xzpn−1y = 0. This implies that xzy = 0, as pn−1y = y. Thus, pn−1Rpn−1

is a symmetric ring.

Conversely, let us assume that pn−1Rpn−1 is a symmetric ring and pn−1 ∈ Z(R). Also, let a, b, c ∈ R
such that abc = 0.Since pn−1Rpn−1 is a symmetric ring, we have
(pn−1apn−1)(pn−1bpn−1)(pn−1cpn−1) = 0 implies
(pn−1apn−1)(pn−1cpn−1)(pn−1bpn−1) = 0.
Therefore, pn−1apn−1bpn−1cpn−1 = 0 which implies pn−1apn−1cpn−1bpn−1 = 0.
As pn−1 ∈ Z(R), it follows that pn−1a = apn−1, pn−1b = bpn−1 and pn−1c = cpn−1 for each a, b, c ∈ R.
This implies that acpn−1b = 0. Thus R is a strongly p-symmetric ring.

2

We have the following corollary as a consequence of Propositions 2.1 and 3.1.
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Corollary 3.1 Let R be a ring and p ∈ PT (R). Then R is a strongly p-symmetric ring if and only if R
is a p-symmetric ring and pn−1 ∈ Z(R).

Proposition 3.2 Let R be a ring and p ∈ PT (R). Then R is a symmetric ring if and only if R is a
strongly p-symmetric and (1− p)R(1− p) is a symmetric ring.

Proof:
The necessary part is obvious.

For the sufficient part, let us assume that R is a strongly p-symmetric and (1−p)R(1−p) is a symmetric
ring. Since R is a strongly p-symmetric ring, so by Proposition 3.1 we have, pn−1Rpn−1 is a symmetric
ring and pn−1 ∈ Z(R). This implies that pn−1Rpn−1 ∼= R/(1 − pn−1)R(1 − pn−1) and (1 − pn−1)R(1 −
pn−1) ∼= R/pn−1Rpn−1. This implies R/(1−pn−1)R(1−pn−1) and R/pn−1Rpn−1 are symmetric rings, as
pn−1Rpn−1 and (1−pn−1)R(1−pn−1) are symmetric rings. Thus, R/((1−pn−1)R(1−pn−1)∩pn−1Rpn−1))
is a symmetric ring. But ((1− pn−1)R(1− pn−1) ∩ pn−1Rpn−1)) = 0. Hence R is a symmetric ring.

2

Lemma 3.1 Let R be a ring and pn−1 ∈ MPl(R). If pn−1 is right semicentral then pn−1 left semicentral.

Proof: We assume that a ∈ R. If (1− pn−1)apn−1 ̸= 0, then Rpn−1 = R(1− pn−1)apn−1. Let us write
pn−1 = c(1− pn−1)apn−1 for some c ∈ R. Since pn−1 is right semicentral, so we have pn−1 = pn−1c(1−
pn−1)apn−1 = pn−1cpn−1(1 − pn−1)apn−1 = 0, which a contradiction. Hence (1 − pn−1)apn−1 = 0 for
each a ∈ R. This shows that pn−1 is left semicentral.

2

Proposition 3.3 Let R be a ring and p ∈ PT (R). Then R is a strongly left min-p-abel ring if and only
if R is a strongly p-symmetric ring for any pn−1 ∈ MPl(R).

Proof: We assume that R is a strongly left min-p-abel ring. Then by Lemma 3.1, R is a left min-p-abel
ring. By Proposition 2.10, R is a p-symmetric ring for each pn−1 ∈ MPl(R). Again by Lemma 3.1, each
element of MPl(R) is central. Hence by Corollary 3.0.1, R is a strongly p-symmetric ring.

Conversely, let R be a strongly p-symmetric for each pn−1 ∈ MPl(R). Then by Proposition 3.1,
pn−1 ∈ Z(R) for each pn−1 ∈ MPl(R). This implies that R is a strongly left min-p-abel ring.

2

4. p-Reduced Rings

In this section, we define right (left) p-reduced rings and study their relationships with p-symmetric
rings and left min-p-abel rings. We begin with the following definition.

Definition 4.1 Let R be a ring and p ∈ PT (R). Then,

(i) R is called right p-reduced if N(R)pn−1 = 0.

(ii) R is called left p-reduced if pn−1N(R) = 0.

Example 4.1 Let F be any field. Let us consider the matrix ring R = M3(F ). Then N(R) =0 F F
0 0 F
0 0 0

, as

0 F F
0 0 F
0 0 0

3

=

0 0 0
0 0 0
0 0 0

 is nilpotent.

Let P =

−1 0 0
0 0 0
0 0 0

, then for any odd positive integer n, we have Pn = P , so P ∈ PT (R). Then

N(R)Pn−1 = N(R)

−1 0 0
0 0 0
0 0 0

n−1

=

0 0 0
0 0 0
0 0 0

 = 0.

Thus, R is a right P -reduced ring. But R is not a left P -reduced ring as,
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Pn−1N(R) =

−1 0 0
0 0 0
0 0 0

n−1

N(R) =

0 F F
0 0 0
0 0 0

 ̸=

0 0 0
0 0 0
0 0 0

 = 0.

Remark 4.1 We can also construct a left p-reduced ring which is not a right p-reduced. In Example

4.1, if we consider P =

0 0 0
0 0 0
0 0 −1

 ∈ PT (R), then R is a left P -reduced ring, but R is not a right

P -reduced ring.

Proposition 4.1 Let R be a ring and p ∈ PT (R). Then R is right p-reduced if and only if pn−1 is left
semicentral in R and pn−1Rpn−1 is reduced.

Proof: Let us assume thatR is a right p-reduced ring for any p ∈ PT (R). Then, we have (1−pn−1)pn−1 =
0. Now, for each x ∈ R, (1 − pn−1)xpn−1 ∈ N(R) and (1 − pn−1)xpn−1 ∈ N(R)pn−1 = 0, as R is a p-
reduced ring. So, we have (1− pn−1)xpn−1 = 0 =⇒ xpn−1 = pn−1xpn−1. Thus, pn−1 is left semicentral
in R. Again, we have N(pn−1Rpn−1) ⊆ N(R)pn−1 = 0. This implies that pn−1Rpn−1 is reduced ring.

Conversely, let pn−1 be left semicentral in R and pn−1Rpn−1 be a reduced ring. Then N(R)pn−1 =
pn−1N(R)pn−1 = N(pn−1Rpn−1) = 0. This implies that R is a p-reduced ring.

2

Similarly, we can establish the following result.

Proposition 4.2 Let R be a ring and p ∈ PT (R). Then R is left p-reduced if and only if pn−1 is right
semicentral in R and pn−1Rpn−1 is reduced.

Proposition 4.3 Right p-reduced rings are p-symmetric rings.

Proof: Let R be a right p-reduced ring. Then by Theorem 4.1, we get pn−1 is left semicentral in R
and pn−1Rpn−1 is reduced. Since reduced rings are symmetric by [ [1], Theorem I.3], so we have pn−1

is left semicentral in R and pn−1Rpn−1 is a symmetric ring . Thus, by Proposition 2.1 we have, R is a
p-symmetric ring.

2

Remark 4.2 Right p-reduced rings need not be strongly p-symmetric by Example 4.1 and Proposition
3.1.

Proposition 4.4 Let R be a ring and p ∈ PT (R). Then R is a left min-p-abel ring if and only if R is
a right p-reduced ring for each pn−1 ∈ MPl(R).

Proof: Let us assume that R is a left min-p-abel ring for each pn−1 ∈ MPl(R). If N(R)pn−1 ̸= 0, then
there exists a ∈ N(R) such that apn−1 ̸= 0 which implies there exists b ∈ R such that pn−1 = bapn−1,
as Rpn−1 = Rapn−1. Now, by Proposition 2.9 we have, pn−1 = abpn−1. This implies pn−1 = bapn−1 =
ba2bpn−1 = b2a2pn−1 = ... = bmampn−1 = ... for each m ≥ 1. Since a ∈ N(R), so am = 0 for some m ≥ 1.
Thus, we have pn−1 = 0, which is a contradiction. HenceN(R)pn−1 = 0 and so R is a right p-reduced ring.

The sufficient part follows directly from Proposition 4.1 .
2

Similarly, we can establish the following result.

Proposition 4.5 Let R be a ring and p ∈ PT (R). Then R is a strongly left min-p-abel if and only if R
is a left p-reduced for each pn−1 ∈ MPl(R).

Corollary 4.1 Let R be a ring and p, q ∈ PT (R). If R is right p-reduced and Rpn−1 ∼= Rqn−1 as left
R-modules, then R is a right q-reduced.
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Proof: Let us assume that R is right p-reduced ring. Then by Proposition 4.1 we have, pn−1 is left
semicentral and N(R)pn−1 = 0. Since Rpn−1 ∼= Rqn−1, pn−1qn−1 = qn−1. Which gives N(R)qn−1 = 0.
Thus R is a q-reduced ring. 2
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