(3s.) **v. 2025 (43)** : 1–15. ISSN-0037-8712 doi:10.5269/bspm.77621

Some Coupled fixed point theorems on G-metric spaces

G Sudhaamsh Mohan Reddy

ABSTRACT:

In this paper, we establish some coupled fixed point theorems for the weakly increasing mappings f and g with respect to partial ordering relation in the framework of generalized metric spaces and illustrated the usability of result with the help of an example.

Key Words: G-metric space, coupled fixed point, weakly increasing mappings, partially ordered set.

Contents

1	Introduction	1
2	Preliminaries	1
3	Main Results	3
4	Examples	12

1. Introduction

Banach contraction result [1] is one of fundamental result to find the solution of a nonlinear problem using fixed point approach. Several researchers like Ćirić [4,22,26], Kannan [7] and Chatterjea [3,12,14,15,16,17,18,19] generalized the contraction mapping and obtained very interesting results in fixed point theory. Dhage [5] was initiated the study of general metric spaces called D- metric spaces. In 2005, Mustafa and Sims [8] give the notion of new structure of metric spaces called G- metric spaces and derived some very interesting fixed point results in the setting of such spaces. Gnana Bhaskar and Lakshmikantham [6] obtained some coupled fixed point theorems for metric spaces having mixed monotone property. Thereafter, Choudhury and Maity [2] extend the results of Gnana Bhaskar and Lakshmikantham [6] in the setting of G- metric spaces. Using the idea of Gnana Bhaskar and Lakshmikantham [6], Choudhury and Maity [2] and of Shatanawi [21,23,24,27], we obtain some couple fixed point theorems for weakly increasing mappings in the setting of partially ordered G- metric spaces in this paper. Also, we provide an example to show the usability of the results obtained.

2. Preliminaries

To begin with, we give some basic definitions, notations and some results to be used in the sequel.

Definition 2.1 [8,25] Let X be a non-empty set, and let $G: X \times X \times X \to R^+$ be a function satisfying the following

- 1. G(x, y, z) = 0 if x = y = z,
- 2. G(x, x, y) > 0 for all $x, y \in X$, with $x \neq y$,
- 3. $G(x,x,y) \leq G(x,y,z)$, for all $x,y,z \in X$ with $y \neq z$,
- 4. $G(x,y,z) = G(y,z,x) = G(z,x,y) = \cdots$ (symmetry in all three variables),
- 5. $G(x, y, z) \le G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$ (rectangular inequality).

2010 Mathematics Subject Classification: 54H25, 47H10. Submitted July 02, 2025. Published September 01, 2025

Then the function G is called a generalized metric or more specifically a G-metric on X and the pair (X,G) is a G-metric space.

Example 2.1 If X is a non empty subset of R, then the function $G: X \times X \times X \to [0, \infty)$, given by G(x, y, z) = |x - y| + |y - z| + |z - x| for all $x, y, z \in X$, is a G-metric on X.

Example 2.2 [20] Let $X = \{0, 1, 2\}$ and let $G: X \times X \times X \to [0, \infty)$ be the function given by the following table.

(x,y,z)	G(x,y,z)
$(0,0,0),\ (1,1,1),\ (2,2,2)$	0
$(0,0,1),\ (0,1,0),\ (1,0,0),\ (0,1,1),\ (1,0,1),\ (1,1,0)$	1
$(1,2,2),\ (2,1,2),\ (2,2,1)$	2
(0,0,2), (0,2,0), (2,0,0), (0,2,2), (2,0,2), (2,2,0)	3
(1,1,2), (1,2,1), (2,1,1), (0,1,2), (0,2,1), (1,0,2)	4
$(1,2,0),\ (2,0,1),\ (2,1,0)$	4

Then G is a G-metric on X, but it is not symmetric because $G(1,1,2)=4\neq 2=G(2,2,1)$.

Definition 2.2 [8] Let (X,G) be a G-metric space, let $\{x_n\}$ be sequence of points of X, a point $x \in X$ is said to be the limit of the sequence $\{x_n\}$ if $\lim_{n,m\to\infty} G(x,x_n,x_m)=0$ and we say that the sequence $\{x_n\}$ is G-convergent to x.

Thus, if $x_n \to x$ in a G-metric space (X, G), then for any $\epsilon > 0$, there exists a positive integer N such that $G(x, x_n, x_m) < \epsilon$, for all $n, m \ge N$.

Definition 2.3 [8] Let (X, G) be a G-metric space. The sequence $\{x_n\}$ is said to be G- Cauchy if for every $\epsilon > 0$, there exists a positive integer N such that $G(x_n, x_m, x_l) < \epsilon$ for all $n, m, l \ge N$.

Lemma 2.1 [8] Let (X,G) be a G-metric space, then the following are equivalent:

- (1) $\{x_n\}$ is G-convergent to x.
- (2) $G(x_n, x_n, x) \to 0$, as $n \to \infty$.
- (3) $G(x_n, x, x) \to 0$, as $n \to \infty$.
- (4) $G(x_m, x_n, x) \to 0$, as $m, n \to \infty$.

Lemma 2.2 [8,21] If (X,G) be a G- metric space, then the following are equivalent:

- (1) $\{x_n\}$ is G-Cauchy.
- (2) for every $\epsilon > 0$, there exists a positive integer N such that $G(x_n, x_m, x_m) < \epsilon$ for all $n, m \geq N$.

Lemma 2.3 [8] If (X,G) be a G metric space, then $G(x,y,z) \leq 2G(x,y,z)$ for all $x,y \in X$.

Lemma 2.4 [8] If (X,G) be a G metric space, then The sequence $\{x_n\}$ is a G-Cauchy sequence if and only if for every $\epsilon > 0$, there exists a positive integer N such that $G(x_n, x_m, x_m) < \epsilon$ for all $m > n \ge N$.

Definition 2.4 [13,23,27] Let (X,G) and $(X^{'},G^{'})$ be two G-metric spaces and $f:(X,G) \to (X^{'},G^{'})$ be a function, then f is said to be G-continuous at a point $a \in X$ if and only if it is G sequentially continuous at x, that is, whenever $\{x_n\}$ is G-convergent to x, $\{f(x_n)\}$ is G-convergent to f(x).

Definition 2.5 [2] A G metric space (X,G) is called symmetric G-metric space if G(x,y,y) = G(y,x,x) for all $x,y \in X$.

Definition 2.6 A G-metric space (X,G) is said to be G-complete (or complete G-metric space) if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

Definition 2.7 (POSET) A partial order is a binary relation \leq over a set X satisfying the following properties. For all a, b and c in X,

- (1) Reflexivity: $a \le a$ (every element is related to itself)
- (2) Antisymmetry: If $a \le b$ and $b \le a$ then a = b
- (3) Transitivity: If $a \le b$ and $b \le c$ then $a \le c$

A set X with a partial order that is (X, \leq) is called a partially ordered set (also called a Poset).

Example 2.3 The set of natural numbers equipped with the relation of divisibility is a Poset.

Definition 2.8 For a, b elements of a partially ordered set X, if $a \leq b$ or $b \leq a$, then a and b are comparable.

Definition 2.9 [6] An element $(x, y) \in X \times X$; when X is any non empty set, is called a coupled fixed point of the mapping $F: X \times X \to X$ if F(x, y) = x and F(y, x) = y.

Definition 2.10 Let (X,G) be a G- metric space. A mapping $F: X \times X \to X$ is said to be continuous if for any two G- convergent sequences $\{x_n\}$ and $\{y_n\}$ converging to x and y respectively, $F(x_n, y_n)$ is G- convergent to F(x,y).

Lemma 2.5 [11,24] Let (X,G) be a G metric space, then the function G(x,y,z) is jointly continuous in all three of its variables. Every G- metric on X will define a metric d_G on X by $d_G(x,y) = G(x,y,y) + G(y,x,x)$, for all $x,y \in X$. For a symmetric G- metric space, $d_G(x,y) = 2G(x,y,y)$, for all $x,y \in X$. However, if G is not symmetric, then the following inequality holds $\frac{3}{2}G(x,y,y) \leq d_G(x,y) \leq 3G(x,y,y)$, for all $x,y \in X$.

Definition 2.11 [11] Let (X, \preceq) be a partially ordered set. Two mappings $f, g: X \to X$ are said to be weakly increasing if $f(x) \preceq g(f(x))$ and $g(x) \preceq f(g(x))$, for all $x \in X$.

Two weakly increasing mappings need not be non-decreasing.

Example 2.4 [11] Let X = [0,1] be endowed with usual ordering and $f, g : X \to X$ be define by $f(x) = x^2$ and $g(x) = \sqrt{x}$. Since $f(x) = x^2 \le g(f(x)) = g(x)$. Then f and g are weakly increasing mappings. Note that f and g are not non-decreasing.

The aim of this paper is to study a number of coupled fixed point results for two weakly increasing mappings f and g with respect to partial ordering relation (\leq) in a generalized metric space.

Now, we announce our first new result.

3. Main Results

Theorem 3.1 Let (X, \preceq) be a partially ordered set and there exists G- metric in X such that (X, G) is G- complete. Let $f, g: X \times X \to X$ be two weakly increasing mappings with respect to \preceq . Suppose there exist non negative real numbers a, b and c with 2a + 4b + 4c < 1 such that

$$G(f(x,y),g(u,v),g(u,v)) \le a[G(x,u,u) + G(y,v,v)]$$

$$+ b[G(x,f(x,y),f(x,y)) + G(x,g(u,v),g(u,v))$$

$$+ G(u,f(x,y),f(x,y)) + G(u,g(u,v),g(u,v))]$$

$$+ c[G(x,g(u,v),g(u,v)) + G(x,f(x,y),f(x,y))$$

$$+ G(u,g(u,v),g(u,v)) + G(u,f(x,y),f(x,y))]$$

$$(3.1)$$

and

$$G(g(x,y), f(u,v), f(u,v)) \leq a[G(x,u,u) + G(y,v,v)]$$

$$+ b[G(x,g(x,y),g(x,y)) + G(x,f(u,v),f(u,v))$$

$$+ G(u,g(x,y),g(x,y)) + G(u,f(u,v),f(u,v))]$$

$$+ c[G(x,f(u,v),f(u,v)) + G(x,g(x,y),g(x,y))$$

$$+ G(u,f(u,v),f(u,v)) + G(u,g(x,y),g(x,y))]$$

$$(3.2)$$

for all $x, y, u, v \in X$. If f or g is continuous, then f and g have a common coupled fixed point in X that is f(x, y) = x, f(y, x) = y and g(x, y) = x, g(y, x) = y

Proof: By inequality (3.2), we have

$$\begin{split} G(g(u,v),f(x,y),f(x,y)) \leq & a[G(u,x,x)+G(v,y,y)] \\ &+ b[G(u,g(u,v),g(u,v))+G(u,f(x,y),f(x,y)) \\ &+ G(x,g(u,v),g(u,v))+G(x,f(x,y),f(x,y))] \\ &+ c[G(u,f(x,y),f(x,y))+G(u,g(u,v),g(u,v)) \\ &+ G(x,f(x,y),f(x,y))+G(x,g(u,v),g(u,v))] \end{split} \tag{3.3}$$

If X is a symmetric G- metric space, then by adding inequalities (3.1) and (3.3), we obtain

$$\begin{split} G(f(x,y),g(u,v),g(u,v)) + G(g(u,v),f(x,y),f(x,y)) \\ & \leq a[G(x,u,u) + G(y,v,v) + G(u,x,x) + G(v,y,y)] \\ & + b[G(x,f(x,y),f(x,y)) + G(x,g(u,v),g(u,v)) \\ & + G(u,f(x,y),f(x,y)) + G(u,g(u,v),g(u,v)) \\ & + G(u,g(u,v),g(u,v)) + G(u,f(x,y),f(x,y)) \\ & + G(x,g(u,v),g(u,v)) + G(x,f(x,y),f(x,y))] \\ & + c[G(x,g(u,v),g(u,v)) + G(x,f(x,y),f(x,y)) \\ & + G(u,g(u,v),g(u,v)) + G(u,f(x,y),f(x,y)) \\ & + G(u,f(x,y),f(x,y)) + G(u,g(u,v),g(u,v))]. \end{split}$$

Thus

$$d_{G}(f(x,y),g(u,v)) \leq a[d_{G}(x,u) + d_{G}(y,v)]$$

$$+ 2(b+c)G(x,f(x,y),f(x,y))$$

$$+ 2(b+c)G(x,g(u,v),g(u,v))$$

$$+ 2(b+c)G(u,f(x,y),f(x,y))$$

$$+ 2(b+c)G(u,g(u,v),g(u,v))$$

$$\leq a[d_{G}(x,u) + d_{G}(y,v)]$$

$$+ (b+c)d_{G}(x,f(x,y)) + (b+c)d_{G}(x,g(u,v))$$

$$+ (b+c)d_{G}(u,f(x,y)) + (b+c)d_{G}(u,g(u,v)).$$

$$(3.4)$$

Therefore,

$$d_{G}(f(x,y),g(u,v)) \leq a[d_{G}(x,u) + d_{G}(y,v)]$$

$$+ b[d_{G}(x,f(x,y)) + d_{G}(x,g(u,v))$$

$$+ d_{G}(u,f(x,y)) + d_{G}(u,g(u,v))]$$

$$+ c[d_{G}(x,f(x,y)) + d_{G}(x,g(u,v))$$

$$+ d_{G}(u,f(x,y)) + d_{G}(u,g(u,v))].$$

$$(3.5)$$

Take $d_G = d$ in (3.5), we have

$$d(f(x,y),g(u,v)) \leq a[d(x,u) + d(y,v)]$$

$$+ b[d(x,f(x,y)) + d(x,g(u,v))$$

$$+ d(u,f(x,y)) + d(u,g(u,v))]$$

$$+ c[d(x,f(x,y)) + d(x,g(u,v))$$

$$+ d(u,f(x,y)) + d(u,g(u,v))],$$
(3.6)

for all $x, y \in X$ with $0 \le 2a + 4b + 4c < 1$. In this case for given $x_0 \in X$, choose $x_1 \in X$ such that $x_1 = f(x_0, y_0)$ and $x_2 = g(x_1, y_1)$, $x_3 = f(x_2, y_2)$. Since f and g are weakly increasing with respect to \le , we have $x_1 = f(x_0, y_0) \le g(f(x_0, y_0), f(y_0, x_0)) = g(x_1, y_1) = x_2 \le f(g(x_1, y_1), g(y_1, x_1)) = f(x_2, y_2) = x_3 \le ...$

Now we construct sequences $\{x_n\}$ and $\{y_n\}$ such that $x_{2k+1} = f(x_{2k}, y_{2k}), y_{2k+1} = f(y_{2k}, x_{2k}), x_{2k+2} = g(x_{2k+1}, y_{2k+1}), y_{2k+2} = g(y_{2k+1}, x_{2k+1}).$ Using (3.6), we have

$$\begin{split} d(x_{2k+1},x_{2k+2}) = &d(f(x_{2k},y_{2k}),g(x_{2k+1},y_{2k+1})) \\ &\leq a[d(x_{2k},x_{2k+1}) + d(y_{2k},y_{2k+1})] \\ &+ b[d(x_{2k},f(x_{2k},y_{2k})) + d(x_{2k},g(x_{2k+1},y_{2k+1})) \\ &+ d(x_{2k+1},f(x_{2k},y_{2k})) + d(x_{2k+1},g(x_{2k+1},y_{2k+1}))] \\ &+ c[d(x_{2k},g(x_{2k+1},y_{2k+1})) + d(x_{2k},f(x_{2k},y_{2k})) \\ &+ d(x_{2k+1},g(x_{2k+1},y_{2k+1})) + d(x_{2k+1},f(x_{2k},y_{2k}))] \\ = &a[d(x_{2k},x_{2k+1}) + d(y_{2k},y_{2k+1})] \\ &+ b[d(x_{2k},x_{2k+1}) + d(x_{2k},x_{2k+2}) \\ &+ d(x_{2k+1},x_{2k+1}) + d(x_{2k},x_{2k+2})] \\ &+ c[d(x_{2k},x_{2k+2}) + d(x_{2k},x_{2k+1}) \\ &+ d(x_{2k+1},x_{2k+2}) + d(x_{2k},x_{2k+1})] \\ &\leq &a[d(x_{2k},x_{2k+1})] + a[d(y_{2k},y_{2k+1})] \\ &+ b[d(x_{2k},x_{2k+1}) + d(x_{2k},x_{2k+1}) \\ &+ d(x_{2k+1},x_{2k+2}) + d(x_{2k+1},x_{2k+2})] \\ &+ c[d(x_{2k},x_{2k+1}) + d(x_{2k+1},x_{2k+2})] \\ &+ d(x_{2k},x_{2k+1}) + d(x_{2k+1},x_{2k+2})] \\ &+ d(x_{2k},x_{2k+1}) + d(x_{2k+1},x_{2k+2})] \\ &= (a+2b+2c)d(x_{2k},x_{2k+1}) \\ &+ (2b+2c)d(x_{2k+1},x_{2k+2}) + ad(y_{2k},y_{2k+1}). \end{split}$$

Therefore, we have

$$(1-2b-2c)d(x_{2k+1},x_{2k+2}) \le (a+2b+2c)d(x_{2k},x_{2k+1}) + ad(y_{2k},y_{2k+1}).$$

This implies that

$$d(x_{2k+1}, x_{2k+2}) \le \frac{a+2b+2c}{1-2b-2c}d(x_{2k}, x_{2k+1}) + \frac{a}{1-2b-2c}d(y_{2k}, y_{2k+1})$$
(3.7)

Proceeding similarly it is easy to prove that

$$d(y_{2k+1}, y_{2k+2}) \le \frac{a+2b+2c}{1-2b-2c}d(y_{2k}, y_{2k+1}) + \frac{a}{1-2b-2c}d(x_{2k}, x_{2k+1})$$
(3.8)

Adding (3.7) and (3.8), we get

$$\begin{split} d(x_{2k+1},x_{2k+2}) + d(y_{2k+1},y_{2k+2}) \\ &\leq \frac{2a+2b+2c}{1-2b-2c} d(x_{2k},x_{2k+1}) + \frac{2a+2b+2c}{1-2b-2c} d(y_{2k},y_{2k+1}) \\ &= \frac{2a+2b+2c}{1-2b-2c} [d(x_{2k},x_{2k+1}) + d(y_{2k},y_{2k+1})] \\ &= q[d(x_{2k},x_{2k+1}) + d(y_{2k},y_{2k+1})], \end{split}$$

where $q = \frac{2a+2b+2c}{1-2b-2c} < 1$. Also, we have

$$d(x_{2k+2}, x_{2k+3}) + d(y_{2k+2}, y_{2k+3})$$

$$\leq q[d(x_{2k+1}, x_{2k+2}) + d(y_{2k+1}, y_{2k+2})]$$

$$\leq q^{2}[d(x_{2k}, x_{2k+1}) + d(y_{2k}, y_{2k+1})].$$

Continuing in this manner, we have

$$\begin{aligned} d(x_n, x_{n+1}) + d(y_n, y_{n+1}) &\leq q[d(x_{n-1}, x_n) + d(y_{n-1}, y_n)] \\ &\leq q^2[d(x_{n-2}, x_{n-1}) + d(y_{n-2}, y_{n-1})] \\ &\leq \dots \leq q^n[d(x_0, x_1) + d(y_0, y_1)]. \end{aligned}$$

If $d(x_n, x_{n+1}) + d(y_n, y_{n+1}) = d_n$ then $d_n \le q d_{n-1} \le q^2 d_{n-2} \le \dots \le q^n d_{n_0}$. For m > n, we have

$$d(x_{n}, x_{m}) \leq d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_{m})$$

$$\leq q^{n} d(x_{0}, x_{1}) + q^{n+1} d(x_{0}, x_{1}) + \dots + q^{m-1} d(x_{0}, x_{1})$$

$$\leq (q^{n} + q^{n+1} + \dots + q^{m-1}) d(x_{0}, x_{1})$$

$$\leq q^{n} (1 + q + q^{2} + \dots + q^{m-n-1}) d(x_{0}, x_{1})$$

$$\leq \frac{q^{n}}{1 - q} d(x_{0}, x_{1}).$$
(3.9)

Similarly, we have

$$d(y_{n}, y_{m}) \leq d(y_{n}, y_{n+1}) + d(y_{n+1}, y_{n+2}) + \dots + d(y_{m-1}, y_{m})$$

$$\leq q^{n} d(y_{0}, y_{1}) + q^{n+1} d(y_{0}, y_{1}) + \dots + q^{m-1} d(y_{0}, y_{1})$$

$$\leq (q^{n} + q^{n+1} + \dots + q^{m-1}) d(y_{0}, y_{1})$$

$$\leq q^{n} (1 + q + q^{2} + \dots + q^{m-n-1}) d(y_{0}, y_{1})$$

$$\leq \frac{q^{n}}{1 - q} d(y_{0}, y_{1})$$

$$(3.10)$$

Adding (3.9) and (3.10), we get

$$d(x_n, x_m) + d(y_n, y_m) \le \frac{q^n}{1 - q} [d(x_0, x_1) + d(y_0, y_1)].$$
(3.11)

As $n \to \infty$, sequences $\{x_n\}$ and $\{y_n\}$ are G— Cauchy sequences in X. As X is complete G— metric space, so there exists $x, y \in X$ such that $\{x_n\} \to x$ and $\{y_n\} \to y$ as $n \to \infty$.

Now we will prove that f(x,y) = x and f(y,x) = y. From (3.6), we have

$$d(x, f(x,y)) \leq d(x, x_{n+1}) + d(x_{n+1}, f(x,y))$$

$$= d(x, x_{n+1}) + d(f(x_n, y_n), f(x,y))$$

$$\leq d(x, x_{n+1}) + a[d(x_n, x) + d(y_n, y)]$$

$$+ b[d(x_n, f(x_n, y_n)) + d(x_n, f(x, y))$$

$$+ d(x, f(x_n, y_n)) + d(x, f(x, y))]$$

$$+ c[d(x_n, f(x, y)) + d(x_n, f(x_n, y_n))$$

$$+ d(x, f(x, y)) + d(x, f(x_n, y_n))]$$

$$= d(x, x_{n+1}) + a[d(x_n, x) + d(y_n, y)]$$

$$+ (b + c)d(x_n, f(x_n, y_n)) + (b + c)d(x_n, f(x_n, y_n)).$$

Taking limit $n \to \infty$, we get d(x, f(x, y)) = 0. Therefore f(x, y) = x. Similarly, we can prove that f(y, x) = y. Also, we can prove that g(x, y) = x and g(y, x) = y. Hence (x, y) is a common coupled fixed point of f and g.

In order to prove the uniqueness of the coupled fixed point, if possible let (p, q) be the another common coupled fixed point of f and g. Then by using the inequality (3.6), we have

$$\begin{split} d(x,p) = &d(f(x,y),g(p,q)) \\ &\leq a[d(x,p)+d(y,q)] \\ &+ b[d(p,g(p,q))+d(p,f(x,y))+d(x,g(p,q))+d(x,f(x,y))] \\ &+ c[d(p,f(x,y))+d(p,g(p,q))+d(x,f(x,y))+d(x,g(p,q))] \\ &= a[d(x,p)+d(y,q)] \\ &+ b[d(p,p)+d(x,p)+d(p,x)+d(x,x)] \\ &+ c[d(p,x)+d(p,p)+d(x,x)+d(x,p)] \\ &= ad(x,p)+ad(y,q)+b[d(p,x)+d(x,p)]+c[d(p,x)+d(x,p)] \\ &= ad(x,p)+ad(y,q)+2bd(x,p)+2cd(x,p). \end{split}$$

Therefore $d(x,p) \leq \frac{a}{1-a-3b-3c}d(y,q)$. Similarly, $d(y,q) \leq \frac{a}{1-a-3b-3c}d(x,p)$. Adding last two inequalities, we get $d(x,p)+d(y,q) \leq \frac{a}{1-a-3b-3c}[d(x,p)+d(y,q)]$. This implies d(x,p)+d(y,q)=0. Hence (x,y)=(p,q). Thus f and g have unique coupled common fixed point.

Now if X is not a symmetric G— metric space then by the definition of metric (X, d_G) and inequalities (3.1) and (3.3), we obtain

$$d_G(f(x,y),g(u,v)) \le a[d_G(x,u) + d_G(y,v)]$$

$$+ \frac{4}{3}b[d_G(x,f(x,y)) + d_G(x,g(u,v))$$

$$+ d_G(u,f(x,y)) + d_G(u,g(u,v))]$$

$$+ \frac{4}{3}c[d_G(x,f(x,y)) + d_G(x,g(u,v))$$

$$+ d_G(u,f(x,y)) + d_G(u,g(u,v))]$$

for all $x, y, u, v \in X$. Here, the contractivity factor $2a + \frac{8}{3}b + \frac{8}{3}c$ may not be less than 1. Therefore Gmetric gives no information. In this case for given $x_0 \in X$, choose $x_1 \in X$ such that $x_1 = f(x_0, y_0)$, $x_2 = g(x_1, y_1)$ and $x_3 = f(x_2, y_2) \cdots$. Since f and g are weakly increasing with respect to \leq , we have

$$x_1 = f(x_0, y_0) \leq g(f(x_0, y_0), f(y_0, x_0)) = g(x_1, y_1) = x_2 \leq f(g(x_1, y_1), g(y_1, x_1)) = f(x_2, y_2) = x_3 \leq \dots$$
(3.12)

Now we construct sequences $\{x_n\}$ and $\{y_n\}$ such that $x_{2k+1} = f(x_{2k}, y_{2k}), y_{2k+1} = f(y_{2k}, x_{2k}), x_{2k+2} = g(x_{2k+1}, y_{2k+1}), y_{2k+2} = g(y_{2k+1}, x_{2k+1})$. From (3.1) we have

$$\begin{split} G(x_{2k+1},x_{2k+2},x_{2k+2}) &= G(f(x_{2k},y_{2k}),g(x_{2k+1},y_{2k+1}),g(x_{2k+1},y_{2k+1}))\\ &\leq a[G(x_{2k},x_{2k+1},x_{2k+1})+G(y_{2k},y_{2k+1},y_{2k+1})]\\ &+b[G(x_{2k},f(x_{2k},y_{2k}),f(x_{2k},y_{2k}))\\ &+G(y_{2k},g(x_{2k+1},y_{2k+1}),g(x_{2k+1},y_{2k+1}))\\ &+G(x_{2k+1},f(x_{2k},y_{2k}),f(x_{2k},y_{2k}))\\ &+G(y_{2k+1},g(x_{2k+1},y_{2k+1}),g(x_{2k+1},y_{2k+1}))]\\ &+c[G(x_{2k},g(x_{2k+1},y_{2k+1}),g(x_{2k+1},y_{2k+1}))]\\ &+G(y_{2k},f(x_{2k},y_{2k}),f(x_{2k},y_{2k}))\\ &+G(y_{2k},f(x_{2k},y_{2k}),f(x_{2k},y_{2k}))\\ &+G(y_{2k+1},f(x_{2k},y_{2k}),f(x_{2k},y_{2k}))]\\ &=a[G(x_{2k},x_{2k+1},x_{2k+1})+G(y_{2k},y_{2k+1},y_{2k+1})]\\ &+b[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k},x_{2k+2},x_{2k+2})\\ &+G(x_{2k+1},x_{2k+1},x_{2k+1})+G(x_{2k},x_{2k+2},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k},x_{2k+1},x_{2k+1})\\ &+G(x_{2k+1},x_{2k+2},x_{2k+2})+G(x_{2k},x_{2k+1},x_{2k+1})]\\ &+b[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k},x_{2k+1},x_{2k+1})]\\ &+b[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k},x_{2k+1},x_{2k+1})]\\ &+b[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k},x_{2k+1},x_{2k+1})]\\ &+b[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k},x_{2k+1},x_{2k+1})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k},x_{2k+1},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})]\\ &+c[G(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})]\\ &+c(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})\\ &+c(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})\\ &+c(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})\\ &+c(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})\\ &+c(x_{2k},x_{2k+1},x_{2k+1})+G(x_{2k+1},x_{2k+2},x_{2k+2})\\ &+c(x_{2k},x_{2k+1},x_{2k+1})+G(x_{$$

Therefore, we have

$$G(x_{2k+1}, x_{2k+2}, x_{2k+2}) \le \frac{a+2b+2c}{1-2b-2c}G(x_{2k}, x_{2k+1}, x_{2k+1}) + \frac{a}{1-2b-2c}G(y_{2k}, y_{2k+1}, y_{2k+1}).$$

$$(3.13)$$

Proceeding similarly it is easy to see that

$$G(y_{2k+1}, y_{2k+2}, y_{2k+2}) \le \frac{a+2b+2c}{1-2b-2c}G(y_{2k}, y_{2k+1}, y_{2k+1}) + \frac{a}{1-2b-2c}G(x_{2k}, x_{2k+1}, x_{2k+1}).$$

$$(3.14)$$

Adding (3.13) and (3.14), we get

$$\begin{split} G(x_{2k+1},x_{2k+2},x_{2k+2}) + G(y_{2k+1},y_{2k+2},y_{2k+2}) \\ & \leq \frac{2a+2b+2c}{1-2b-2c} G(x_{2k},x_{2k+1},x_{2k+1}) \\ & + \frac{2a+2b+2c}{1-2b-2c} G(y_{2k},y_{2k+1},y_{2k+1}) \\ & = \frac{2a+2b+2c}{1-2b-2c} [G(x_{2k},x_{2k+1},x_{2k+1}) \\ & + G(y_{2k},y_{2k+1},y_{2k+1}] \\ & = h[G(x_{2k},x_{2k+1},x_{2k+1}) \\ & + G(y_{2k},y_{2k+1},y_{2k+1})], \end{split}$$

where $h = \frac{2a+2b+2c}{1-2b-2c} < 1$ Also, it is easy to see that

$$G(x_{2k+2}, x_{2k+3}, x_{2k+3}) + G(y_{2k+2}, y_{2k+3}, y_{2k+3})$$

$$\leq h[G(x_{2k+1}, x_{2k+2}, x_{2k+2}) + G(y_{2k+1}, y_{2k+2}, y_{2k+2})]$$

$$< h^2[G(x_{2k}, x_{2k+1}, x_{2k+1}) + G(y_{2k}, y_{2k+1}, y_{2k+1})].$$

Continuing in this way, we have

$$\begin{split} G(x_n,x_{n+1},x_{n+1}) + G(y_n,y_{n+1},y_{n+1}) \\ & \leq h[G(x_{n-1},x_n,x_n) + G(y_{n-1},y_n,y_n)] \\ & \leq h^2[G(x_{n-2},x_{n-1},x_{n-1}) + G(y_{n-2},y_{n-1},y_{n-1})] \\ & \leq \ldots \leq h^n[G(x_0,x_1,x_1) + G(y_0,y_1,y_1)]. \end{split}$$

If
$$G(x_n, x_{n+1}, x_{n+1}) + G(y_n, y_{n+1}, y_{n+1}) = G_n$$
 then $G_n \le hG_{n-1} \le h^2G_{n-2} \le \dots \le h^nG_{n_0}$.

$$G(x_{n}, x_{m}, x_{m}) \leq G(x_{n}, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+2}, x_{n+2})$$

$$+ \dots + G(x_{m-1}, x_{m}, x_{m})$$

$$\leq h^{n} G(x_{0}, x_{1}, x_{1}) + h^{n+1} G(x_{0}, x_{1}, x_{1})$$

$$+ \dots + h^{m-1} G(x_{0}, x_{1}, x_{1})$$

$$\leq (h^{n} + h^{n+1} + \dots + h^{m-1}) G(x_{0}, x_{1}, x_{1})$$

$$\leq h^{n} (1 + h + h^{2} + \dots + h^{m-n-1}) G(x_{0}, x_{1}, x_{1})$$

$$\leq \frac{h^{n}}{1 - h} G(x_{0}, x_{1}, x_{1})$$

$$(3.15)$$

Similarly, we get

$$G(y_{n}, y_{m}, y_{m}) \leq G(y_{n}, y_{n+1}, y_{n+1}) + G(y_{n+1}, y_{n+2}, y_{n+2})$$

$$+ \dots + G(y_{m-1}, y_{m}, y_{m})$$

$$\leq h^{n} G(y_{0}, y_{1}, y_{1}) + h^{n+1} G(y_{0}, y_{1}, y_{1})$$

$$+ \dots + h^{m-1} G(y_{0}, y_{1}, y_{1})$$

$$= (h^{n} + h^{n+1} + \dots + h^{m-1}) G(y_{0}, y_{1}, y_{1})$$

$$= h^{n} (1 + h + h^{2} + \dots + h^{m-n-1}) G(y_{0}, y_{1}, y_{1})$$

$$= \frac{h^{n}}{1 - h} G(y_{0}, y_{1}, y_{1})$$

$$(3.16)$$

Adding (3.15) and (3.16), we get

$$G(x_n, x_m, x_m) + G(y_n, y_m, y_m) \le \frac{h^n}{1 - h} [G(x_0, x_1, x_1) + G(y_0, y_1, y_1)]$$

$$= \frac{h^n}{1 - h} G_0.$$
(3.17)

Letting $n \to \infty$, $\{x_n\}$ and $\{y_n\}$ are G— Cauchy sequences in a complete G— metric space (X, G), so there exists $x, y \in X$ such that $\{x_n\} \to x$ and $\{y_n\} \to y$ as $n \to \infty$. Now we will prove that f(x, y) = x and f(y, x) = y. From (3.2), we have

$$G(x, f(x, y), f(x, y)) \leq G(x, x_{n+1}, x_{n+1}) + G(x_{n+1}, f(x, y), f(x, y))$$

$$= G(x, x_{n+1}, x_{n+1}) + G(f(x_n, y_n), f(x, y), f(x, y))$$

$$\leq G(x, x_{n+1}, x_{n+1}) + a[G(x_n, x, x) + G(y_n, y, y)]$$

$$+ b[G(x_n, f(x_n, y_n), f(x_n, y_n)) + G(x_n, f(x, y), f(x, y))$$

$$+ G(x, f(x_n, y_n), f(x_n, y_n)) + G(x, f(x, y), f(x, y))]$$

$$+ c[G(x_n, f(x, y), f(x, y)) + G(x_n, f(x_n, y_n), f(x_n, y_n))$$

$$+ G(x, f(x, y), f(x, y)) + G(x, f(x_n, y_n), f(x_n, y_n))]$$

$$= G(x, x_{n+1}, x_{n+1}) + a[G(x_n, x, x) + G(y_n, y, y)]$$

$$+ (b + c)G(x_n, f(x_n, y_n), f(x_n, y_n))$$

$$+ (b + c)G(x, f(x, y), f(x, y))$$

$$+ (b + c)G(x, f(x_n, y_n), f(x_n, y_n)).$$

Since $\{x_n\}$ and $\{y_n\}$ are convergent to x and y. Therefore by taking limit as $n \to \infty$, we get G(x, f(x, y), f(x, y)) = 0, that is f(x, y) = x. Similarly, we can prove that f(y, x) = y. Also, it is easy to see that g(x, y) = x and g(y, x) = y. Hence (x, y) is a common coupled fixed point of f and g.

In order to prove the uniqueness of the coupled fixed point, if possible let (p,q) be another common coupled fixed point of f and g. Then by using the inequality (3.1), we have

$$\begin{split} G(p,x,x) = & G(g(p,q),f(x,y),f(x,y)) \\ \leq & a[G(p,x,x)+G(q,y,y)] \\ & + b[G(p,g(p,q),g(p,q))+G(p,f(x,y),f(x,y)) \\ & + G(x,g(p,q),g(p,q))+G(x,f(x,y),f(x,y))] \\ & + c[G(p,f(x,y),f(x,y))+G(p,g(p,q),g(p,q)) \\ & + G(x,f(x,y),f(x,y))+G(x,g(p,q),g(p,q))] \\ \leq & a[G(p,x,x)+G(q,y,y)] \\ & + b[G(p,p,p)+G(p,x,x)+G(x,p,p)+G(x,x,x)] \\ & + c[G(p,x,x)+G(p,p,p)+G(x,x,x)+G(x,p,p)] \\ \leq & aG(p,x,x)+aG(q,y,y)+b[G(p,x,x)+G(x,p,p)] \\ & + c[G(p,x,x)+G(x,p,p)] \\ = & aG(p,x,x)+aG(q,y,y)+3bG(p,x,x)+3cG(p,x,x) \end{split}$$

Therefore, we get

$$G(p, x, x) \le \frac{a}{1 - a - 3b - 3c} G(q, y, y)$$
 (3.18)

Similarly,

$$G(q, y, y) \le \frac{a}{1 - a - 3b - 3c}G(p, x, x)$$
 (3.19)

Adding (3.18) and (3.19), we get

$$G(p, x, x) + G(q, y, y) \le \frac{a}{1 - a - 3b - 3c} [G(p, x, x) + G(q, y, y)]$$

This implies that G(p, x, x) + G(q, y, y) = 0. Hence (x, y) = (p, q). Thus f and g have unique coupled common fixed point. This completes the proof.

Theorem 3.2 Let (X, \preceq) be a partially ordered set and suppose that there exists G- metric in X such that (X, G) is G- complete. Let $f, g: X \times X \to X$ be two weakly increasing mappings with respect to \preceq . Suppose there exist non negative real numbers a, b and c with 2a + 4b + 4c < 1 such that

$$\begin{split} G(f(x,y),g(u,v),g(u,v)) \leq & a[G(x,u,u) + G(y,v,v)] \\ & + b[G(x,f(x,y),f(x,y)) + G(x,g(u,v),g(u,v)) \\ & + G(u,f(x,y),f(x,y)) + G(u,g(u,v),g(u,v))] \\ & + c[G(x,g(u,v),g(u,v)) + G(x,f(x,y),f(x,y)) \\ & + G(u,g(u,v),g(u,v)) + G(u,f(x,y),f(x,y))] \end{split}$$

and

$$\begin{split} G(g(x,y),f(u,v),f(u,v)) \leq & a[G(x,u,u)+G(y,v,v)] \\ &+b[G(x,g(x,y),g(x,y))+G(x,f(u,v),f(u,v)) \\ &+G(u,g(x,y),g(x,y))+G(u,f(u,v),f(u,v))] \\ &+c[G(x,f(u,v),f(u,v))+G(x,g(x,y),g(x,y)) \\ &+G(u,f(u,v),f(u,v))+G(u,g(x,y),g(x,y))] \end{split}$$

for all $x, y, u, v \in X$. Assume that X has the following property: (P) If $\{x_n\}$ and $\{y_n\}$ are an increasing sequences converges to x and y respectively in X; then $x_n \leq x$ and $y_n \leq y$ for all $n \in N$ then f and g have a common coupled fixed point $(x, y) \in X \times X$ that is f(x, y) = x, f(y, x) = y and g(x, y) = x, g(y, x) = y.

Proof: As in the proof of Theorem 3.1, it is easy to construct increasing sequences $\{x_n\}$ and $\{y_n\}$ in X such that $x_{2n+1} = f(x_{2n}, y_{2n})$, $y_{2n+1} = f(y_{2n}, x_{2n})$, $x_{2n+2} = g(x_{2n+1}, y_{2n+1})$, $y_{2n+2} = g(y_{2n+1}, x_{2n+1})$ and show that $\{x_n\}$ and $\{y_n\}$ are G— Cauchy. Since X is G— complete, there are $x, y \in X$ such that $\{x_n\}$ converges to x and $\{y_n\}$ converges to y in X. Thus $\{x_{2n}\}$, $\{x_{2n+1}\}$, $f(x_{2n}, y_{2n})$, $g(x_{2n+1}, y_{2n+1})$ are converging to x and $\{y_{2n}\}$, $\{y_{2n+1}\}$, $f(y_{2n}, x_{2n})$, $g(y_{2n+1}, x_{2n+1})$ are converging to y. Since X satisfies the property (P), we get that $x_n \leq x$ and $y_n \leq y$ for all $n \in \mathbb{N}$. Thus $\{x_{2n}\}$ and x are comparative. Here by inequality (3.1), we have

$$G(f(x_{2n}, y_{2n}), g(x, y), g(x, y)) \leq a[G(x_{2n}, x, x) + G(y_{2n}, y, y)] + b[G(x_{2n}, f(x_{2n}, y_{2n}), f(x_{2n}, y_{2n})) + G(x_{2n}, g(x, y), g(x, y)) + G(x, f(x_{2n}, y_{2n}), f(x_{2n}, y_{2n})) + G(x, g(x, y), g(x, y))] + c[G(x_{2n}, g(x, y), g(x, y)) + G(x_{2n}, f(x_{2n}, y_{2n}), f(x_{2n}, y_{2n})) + G(x, g(x, y), g(x, y)) + G(x, f(x_{2n}, y_{2n}), f(x_{2n}, y_{2n}))]$$

$$(3.20)$$

On letting $n \to \infty$, we get

$$G(x, g(x, y), g(x, y)) \le (2b + 2c)G(x, g(x, y), g(x, y)). \tag{3.21}$$

Since, 2(b+c) < 1, we get G(x, g(x, y), g(x, y)) = 0. Hence g(x, y) = x. Similarly, it is easy to show that g(y, x) = y, f(x, y) = x and f(y, x) = y. Hence the result.

Corollary 3.1 Let (X, \preceq) be a partially ordered set and suppose that there exists G- metric in X such that (X, G) is G- complete. Let $f: X \times X \to X$ be a continuous mapping such that $f(x) \preceq f(f(x))$, for all $x \in X$. Suppose there exist non negative real numbers a, b and c with 2a + 4b + 4c < 1 such that

$$\begin{split} G(f(x,y),f(u,v),f(u,v)) \leq & a[G(x,u,u)+G(y,v,v)] \\ &+b[G(x,f(x,y),f(x,y))+G(x,f(u,v),f(u,v)) \\ &+G(u,f(x,y),f(x,y))+G(u,f(u,v),f(u,v))] \\ &+c[G(x,f(u,v),f(u,v))+G(x,f(x,y),f(x,y)) \\ &+G(u,f(u,v),f(u,v))+G(u,f(x,y),f(x,y))] \end{split}$$

for all $x, y, u, v \in X$. Then f has a unique coupled fixed point $(x, y) \in X \times X$ that is f(x, y) = x, f(y, x) = y.

Proof: It follows from Theorem 3.1 by taking g = f.

Corollary 3.2 Let (X, \preceq) be a partially ordered set and suppose that there exists G- metric in X such that (X, G) is G- complete. Let $f: X \times X \to X$ be a continuous mapping such that $f(x) \preceq f(f(x))$, for all $x \in X$. Suppose there exist non negative real numbers a, b and c with 2a + 4b + 4c < 1 such that

$$\begin{split} G(f(x,y),f(u,v),f(u,v)) \leq & a[G(x,u,u)+G(y,v,v)] \\ &+ b[G(x,f(x,y),f(x,y))+G(x,f(u,v),f(u,v)) \\ &+ G(u,f(x,y),f(x,y))+G(u,f(u,v),f(u,v))] \\ &+ c[G(x,f(u,v),f(u,v))+G(x,f(x,y),f(x,y)) \\ &+ G(u,f(u,v),f(u,v))+G(u,f(x,y),f(x,y))] \end{split}$$

for all $x, y, u, v \in X$. Assume that X has the following property:

(P) If $\{x_n\}$ and $\{y_n\}$ are an increasing sequences converges to x and y respectively in X; then $x_n \leq x$ and $y_n \leq y$ for all $n \in \mathbb{N}$. Then f has a coupled fixed point $(x,y) \in X \times X$ that is f(x,y) = x, f(y,x) = y.

Proof: It follows from Theorem 3.2 by taking g = f.

4. Examples

Example 4.1 Let $X = \mathbb{R}$ be the set of real numbers and (\mathbb{R}, \leq) be a poset and let G(x, y, z) = |x - y| + |y - z| + |z - x| for all $x, y, z \in X$. Then (X, G) is a G- metric space. Let $f(x, y) = g(x, y) = \frac{2x - 2y + 8}{8}$ for all $x, y \in X$. Here f, g are weakly increasing mappings that is $f(x) \leq g(f(x))$. Consider

$$\begin{split} G(f(x,y),g(u,v),g(u,v)) &= |f(x,y) - g(u,v)| + |g(u,v) - g(u,v)| \\ &+ |g(u,v) - f(x,y)| \\ &= 2|f(x,y) - g(u,v)| \\ &= 2|\frac{2x - 2y + 8}{8} - \frac{2u - 2v + 8}{8}| \\ &= \frac{1}{4}|2x - 2u - 2y + 2v| \\ &= \frac{1}{4}[2|x - u| + 2|y - v|] \\ &= \frac{1}{4}[G(x,u,u) + G(y,v,v)] \\ &\leq \frac{1}{3}[G(x,u,u) + G(y,v,v)] \end{split}$$

Hence inequality (3.1) is satisfied with $a = \frac{1}{3}$ and b = c = 0. Note that Corollary 3.1 is also satisfied. Therefore f, g have a unique coupled fixed point (x, y) = (1, 1).

Example 4.2 Let $X = \mathbb{R}$ be the set of real numbers with the usual partial order \leq , and define the G-metric $G: X \times X \times X \to [0, \infty)$ by

$$G(x, y, z) = |x - y| + |y - z| + |z - x|$$

for all $x, y, z \in X$. Then (X, G) is a G-metric space.

Define the mappings $f, g: X \times X \to X$ as

$$f(x,y) = \frac{x+3y+4}{8}$$
, $g(x,y) = \frac{3x+y+4}{8}$, for all $x, y \in X$.

We observe that f and g are weakly increasing. Indeed, for $x \leq u$ and $y \leq v$, we have

$$f(x,y) = \frac{x+3y+4}{8} \le \frac{u+3v+4}{8} = f(u,v), \quad g(x,y) = \frac{3x+y+4}{8} \le \frac{3u+v+4}{8} = g(u,v).$$

Now, we verify the contractive condition:

$$\begin{split} G(f(x,y),g(u,v),g(u,v)) &= 2 \left| f(x,y) - g(u,v) \right| \\ &= 2 \left| \frac{x+3y+4}{8} - \frac{3u+v+4}{8} \right| \\ &= \frac{1}{4} |x+3y-3u-v| \\ &\leq \frac{1}{4} (|x-u|+3|y-v|) \\ &= \frac{1}{4} \left[|x-u|+|y-v|+|y-v|+|y-v| \right] \\ &= \frac{1}{4} \left[G(x,u,u) + 2|y-v| \right] \leq \frac{1}{3} [G(x,u,u) + G(y,v,v)]. \end{split}$$

Hence, the inequality (3.1) holds with $a = \frac{1}{3}$, b = c = 0, and the mappings satisfy the conditions of Theorem 3.1 and Corollary 3.1.

To find the coupled fixed point, solve the equations:

$$f(x,y) = x$$
, $f(y,x) = y$.

That is,

$$x = \frac{x + 3y + 4}{8} \Rightarrow 8x = x + 3y + 4 \Rightarrow 7x - 3y = 4$$
 (1)

$$y = \frac{y + 3x + 4}{8} \Rightarrow 8y = y + 3x + 4 \Rightarrow 7y - 3x = 4$$
 (2)

Solving equations (1) and (2) simultaneously:

$$49x - 21y = 28$$
 (multiply (1) by 7)
 $21y - 9x = 12$ (multiply (2) by 3)
 $40x = 40 \Rightarrow x = 1$

Substitute in (1):
$$7(1) - 3y = 4 \Rightarrow y = 1$$
.

Therefore, (x,y) = (1,1) is the unique coupled fixed point of f and g.

References

- 1. S. Banach, Sur les operations dans les ensembles abstraits et leur application auxequations integrales, Fund. Math., 3(1922), 133-181.
- B. S. Choudhury, P. Maity, Coupled Fixed point results in generalised metric spaces, Math. Comp. Model. 54(2011), 73-79.
- 3. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25(1972), 727-730.
- 4. Lj. B. Ciric, Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N. S.) 12(26)(1971), 19-26.
- 5. B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc. 84(1992), 329-336.
- T. Gnana Bhaskar, V. Laxmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65(2006), 1379-1393.
- 7. R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60(1968), 71-76.
- 8. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2)(2006), 289-297.
- 9. Z. Mustafa, W. Sathanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Internat. J. Math. Mathematical Sci. (10)(2009).
- 10. S. Reich, Some remarks concerning contraction mappings, Canadian Math. Bull. 14(1)(1971), 121-124.
- 11. W. Shatanawi, Some fixed point theorems in ordered G-metric spaces and applications, Abstract Appl. Anal. Article ID 126205(2011), 11 pages.
- 12. Sudhaamsh Mohan Reddy.G, A Common Fixed Point theorem on complete G-metric spaces, International Journal of Pure and Applied Mathematics, 118(2)(2018), 195-202.
- 13. Y. Rohen, T. Dosenovic and S. Radenovic, A Note on the paper "A Fixed Point Theorems in S_b -Metric Spaces", Filomat 31:11(2017), 3335-3346.
- 14. Sudhaamsh Mohan Reddy.G, Generalization of Contraction Principle on G-Metric Spaces, Global Journal of Pure and Applied Mathematics, 14(9)(2018), 1177-1283.
- 15. Sudhaamsh Mohan Reddy.G, Fixed point theorems of contractions of G-metric Spaces and property'P'in G-Metric spaces, Global Journal of Pure and Applied Mathematics, 14(6)(2018), 885-896.
- 16. Sudhaamsh Mohan Reddy.G, Fixed Point Theorems for (ε, λ) -Uniformly Locally Generalized Contractions, Global Journal of Pure and Applied Mathematics, 14(9)(2018), 1177-1183.
- 17. Srinivas Chary.V, Sudhaamsh Mohan Reddy.G, Fixed Point Results for Almost Z_G -contraction via Simulation Functions in G-metric spaces, International Journal of Control and Automation, 12(6)(2019), 608-615.
- Sudhaamsh Mohan Reddy.G, Fixed point theorems of Rus-Reich- Ciri´c type contraction and Hardy-Rogers type contraction on G-metric spaces, International Journal of Advanced Science and Technology, Vol. 29, No.02, (2020), pp. 2782-2787.
- T. Došenović, S. Radenović, S. Sedghi, Generalized Metric Spaces: Survey, TWMS J. Pure Appl. Math. V. 9, N.1, 2018, pp. 3-17
- R. P. Agarwal, E. Karapinar, D. O'Regan, A.F.R.L. -de Hierro, Fixed Point Theory in Metric Type Spaces, Springer International Publishing Switzerland 2015
- 21. Sudhaamsh Mohan Reddy.G,(2020). Generalized Ciric Type Contraction in G metric spaces, *International Journal of Grid and Distributed Computing*, Vol.13, No.1, 302-308(2020).
- Sudhaamsh Mohan Reddy.G, Srinivas Chary V., Srinivasa Chary D., Hseyin Isik and Aydi Hassen, (2020). Some fixed
 point theorems for modified JS-G-contractions and an application to integral equation, *Journal of Applied Mathematics*and Informatics, 38, No. 5-6, 507-518 (2020).
- 23. Srinivas Chary V., G S M Reddy, Srinivasa Chary D, Hseyin Isik and Aydi Hassen, (2021). Some fixed point theorems on $\alpha \beta$ -G-complete G-metric spaces, Carpathian Mathematical Publications, 13, 1, 58–67 (2021).
- Sudhaamsh Mohan Reddy.G, Guran, L.; Mitrović, Z.D.; Belhenniche, A.; and Stojan Radenović, (2021). Applications
 of a Fixed Point Result for Solving Nonlinear Fractional and Integral Differential Equations, Fractal Fract, (2021), 5,
 211.
- 25. Srinivas Chary V, G S M Reddy, Srinivasa Chary D, Stojan Radenovic.,(2023). Existence of fixed points in G-metric spaces, *Boletim da Sociedade Paranaense de Matematica*, 41, 1–18(2023).
- Sudhaamsh Mohan Reddy.G, V Srinivas Chary., Srinivasa Chary D, Stojan Radenovic and Slobodanka Mitrovic, (2023).
 Coupled fixed point theorems of JS-G-contraction on G-metric spaces, Boletim da Sociedade Paranaense de Matematica, 41, 1–10(2023).
- 27. Sudhaamsh Mohan Reddy.G,(2024). Fixed Point Results for G-F-Contractive Mappings of Hardy-Rogers Type, Boletim da Sociedade Paranaense de Matematica, 42, 1–5(2024).

- 28. Stojan Radenović, Remarks on some recent coupled coincidence point results in symmetric G-metric spaces, Journal of Operators Volume 2013, Article ID 290525, 8 pages.
- 29. Ljiljana Gajić, Zoran Kadelburg, Stojan Radenović, *Gp-metric spaces symmetric and asymmetric*, Scientific Publications of the State University of Novi Pazar, Ser. A: Appl. Math. Inform. and Mech. vol.9, 1 (2017), 37-46.
- 30. Hamid Faraji, Dragana Savić and S. Radenović, Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications, Aximoms 2019, 8, 34.
- 31. Ravi P. Agarwal, Zoran Kadelburg, Stojan Radenović, On coupled fixed point results in asymmetric G-metric spaces, Journal of Inequalities and Applications, 2013, 2013:528.
- 32. M. Abbas, Azhar Hussain, Branislav Popović and Stojan Radenović, Istratescu-Susuki-Ćirí-type fixed points results in the framework of G-metric spaces, J. Nonlinear Sci. Appl. 9(2016), 6077-6095.
- 33. Wasfi Shatanawi, Sunny Chauhan, Mihai Postolache, Mujahid Abbas, and Stojan Radenović, Common fixed point for contractive mappings of integral type in G-metric spaces, J. Adv. Math. Stud. Vol. 6 (2013), No.1, 53-72.
- 34. Hemant Kumar Nashine, Zoran Kadelburg, and Stojan Radenović, Coincidence and fixed point results under generalized weakly contractive condition in partially ordered G-metric spaces, Filomat 27:7(2013), 1333-1343.

G SUDHAAMSH MOHAN REDDY,

Department of Mathematics,

Faculty of Science and Technology(IcfaiTech), Icfai Foundation for Higher Education,

Hyderabad-501203, INDIA.

E-mail address: dr.sudhamshreddy@gmail.com, sudhamsh@ifheindia.org