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Quasistatic Frictional Wear in Electro-Elasto-Viscoplastic Materials with Unilateral
Constraints *

Laldja Benziane®, Sihem Smata, Nemira Lebri and Fares Yazid

ABSTRACT: We investigate a mathematical model for wear-induced quasistatic frictional contact between a
moving foundation and a piezoelectric body. Archard’s law governs the evolution of the wear function. Taking
damage effects into account, the electro-elasto-viscoplastic constitutive law is used. In order to account
for foundation wear, the model takes into consideration both a regularized Coulomb’s law of dry friction
and a normal compliance condition with unilateral constraints. A parabolic inclusion with homogeneous
Neumann boundary conditions describes the evolution of damage. We provide a variational formulation for
the model, which is represented as a system that includes the wear field, damage field, electric potential field,
and displacement field. Arguments based on differential equations, elliptic variational inequalities, parabolic
inequalities, and the Banach fixed point theorem have been used to demonstrate the existence and uniqueness
of a result.
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1. Introduction

In some materials, the intrinsic link between mechanical and electrical properties is described by
the piezoelectric effect. This phenomenon shows a direct dependence on the deformation process and is
characterized by the appearance of electric charges in crystals exposed to mechanical forces and surface
traction. On the other hand, strain and stress are produced when an electric field is applied to these
materials. These materials, known as piezoelectrics, are widely used as switches and actuators in a vari-
ety of technical domains, such as measurement systems, electroacoustics, and radioelectronics. [2], [4],
and [5] provide comprehensive models for electro-elastic materials. [3] and [7] have examined static fric-
tional contact issues in these materials. Additionally, [10] investigated slip-dependent frictional contact in
piezoelectrics, whereas [11], [6], and [5] dealt with frictional issues for electro-viscoelastic materials with
normal compliance. Numerous authors have taken into consideration examples and mechanical interpre-
tations of elastic-viscoplastic materials that do not suffer material degradation from plastic deformations;
for example, see [3,13] and the references therein. Because it directly affects the intended structure’s or
component’s useful life, the damage topic is crucial to design engineering. A vast amount of engineering
literature has been written about it. Mathematical studies have been conducted on models that consider
the impact of internal material deterioration on the contact process. The virtual power theory was used
in [7] to build general models for damage. One-dimensional problems can be mathematically analyzed
in [8]. The damage function can only have values in the range of 0 and 1. When ¢ = 1 there is no
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damage in the material, when { = 0 the material is completely damaged, when 0 < < 1 there is partial
damage and the system has a reduced load carrying capacity. Contact problems with damage have been
investigated in [1,9,14]. Wear of surfaces is a degradation phenomenon of the superfficial layer caused
by many factors such as pressure, lubrication friction, and corrosion. The wear implies the evolution of
contacting surfaces and these changes affect the contact process. Thus, due to its crucial role, there exists
a large engineering and mathematical literature devoted to this topic. We resume to mention here the
references [8,1,15], among others. The aim of this paper is to continue the study of problems begun in
[12], [13]. The novelty of the present paper is describes the equilibrium of an electro-elesto-viscoplastic
body in frictional contact with a moving foundation by taking into account the wear of the foundation.
The paper is structured as follows. In Section 2, we present the notation and some preliminary material.
In Section 3, we introduce the electro-elesto-viscoplastic contact model with sliding friction and wear,
list the assumptions on the data and derive its variational formulation. The unique weak solvability
of the contact problem is presented in Section 4. There, we state and prove our main existence and
uniqueness result. The proof is based on arguments on time-dependent variational inequalities and fixed
point argument is detailed in [9].

2. Notations and preliminaries

This section contains some preparatory material as well as the notation we will be using. The notation
N is used throughout this paper to denote the set of positive integers, while R, is used to denote the set
of nonnegative real numbers, i.e., R, = [0,00). The space of second-order symmetric tensors on R is
represented by S? for d € N. Additionally, the norm and inner product on R? and S? are determined by
uwv = uv;, |lu|| = (uu)% for every u,v € RY,
O.T = 04Tij, lo|| = (0.0)7  for every o, T € S
Here and everywhere in this paper i, j, k, [ run from 1 to d, summation over repeated indices is implied,
and the index that follows a comma represents the partial derivative with respect to the corresponding

ouy;
component of the spatial variable, for example, u; ; = 8—’ The notation is used here and below.
Ly

Vu = (ui;), e(u) = (gi;(w)), eij(u) = §(uij +uj:) Vu e H(Q)4,
Divoo = (0;,;) Yo € Hi.

Now, let us consider the closed subspace of H'(2)%, which is defined by
V={veH' () /v=00nT4},
through space V, we take into account the inner product provided by over the space

(u,v)y = (e (u),e(v)y »

and let the corresponding norm be ||.||;,. For an element v € V' we still write v for the trace of v on the
boundary I'. We denote by v, and v, the normal and the tangential component of v on I', respectively,
defined by v, = v-v, v; = v — v,v. By the Sobolev trace theorem, there exists a positive constant cg
which depends on €2, I'; and I's such that

[oll L2pgys < collvlly Yo eV (2.1)

For a regular function o : QUT — S¢ we denote by o, and o, the normal and the tangential components
of the vector ov on T, respectively, and we recall that o, = ov.v and o, = ov — o,v. Further, Green’s
formula is as follows:

/0.5 (v) dx+ /Div ow dx = /(n/.v da YveV. (2.2)

Q Q r
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Additionally, we present the spaces

W={ypeH (Q), ¥=00nT,},
W={D=(D;)/ D;eL*Q); D;; € L*(Q)}.

The inner products of the real Hilbert spaces W and W are provided by

(W, Q)w = /w.w dz, (D, F)y = /D.F d:c+/divD.divF dz,
Q Q Q

|-l and [.||,) will be used to represent the corresponding norms.

2 2 . 2
[y = IVellg s 1Py = DI + Idiv Dll72q) - (2.3)

Furthermore, the following Green’s type formula applies when D € W is a regular function

(D, V) g+ (div D, §) 120y = /D.l/ Yda VY€ HY(Q). (2.4)
r

Since meas (I';) > 0, the following Friedrichs-Poincaré inequality holds:
IVl g = Cr 9]l g1(q) for all v € W, (2.5)

where C'r > 0 is a constant which depends only on 2 and T',.

3. The model and variational formulation

In this section, we introduce the contact problem, list the assumptions on the data, and derive
its variational formulation. We consider the following physical setting: A piezoelectric body occupies a
bounded domain 2 C R? (d = 2, 3) with a Lipschitz continuous boundary dQ = T'. The body is submitted
to the action of body forces of density fy and volume electric charges of density qq. It is also subject
to mechanical and electrical constraints on its boundary. To describe these constraints, we partition I’
into three measurable parts I'1, I's and I's, as well as two other measurable parts, I', and I'y, such that
measT'y > 0, measT, > 0, and '3 C I',. We assume that the body is clamped on I'; and surface traction
of density f, act on I's. We also assume that the electrical potential vanishes on I', and a surface electric
charge of density ¢, is prescribed on I'y. On I's, the body is in frictional contact with a moving insulator
obstacle, the so-called foundation. We denote by v* the velocity of foundation, which is supposed to be a
non-vanishing time-dependent function in the plane of I'3. The friction implies the wear of the foundation
that we model with a surface variable, the wear function. Its evolution is governed by a simplified version
of Archard’s law, as describe in (see [12]). Moreover, we assume that the foundation is deformable and,
therefore, its penetration is allowed. We model the contact with a normal compliance condition with
unilateral constraint, which takes into account the wear of the foundation. We associate this condition to
a sliding version of Coulomb’s law of dry friction. We adopt the framework of the small strain theory and
we assume that the contact process is quasistatic and it is studied in the interval of time R4 = [0.00). To
model the material’s behavior, we employ an electro-elastic-viscoplastic constitutive law that incorporates
damage effects. At this point, the classical formulation of the contact problem under consideration is as
follows.

Problem P Find a displacement field uw :  x Ry — RY, a stress field o : © x Ry — S? an electric
potential field ¢ : Q x R, — R, an electric displacement field D : Q x R, — R, a wear function
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w:I's x Ry — R4, and a damage field ¢ : 2 x Ry — R such that

o (t) = Aﬁ(' () + B (e(u (1) — ETE(p (1))

+ f G (0 (s) — Ac(au(s) + ETE(p (), e(u (), C () ds  in (3.1)
D = BE(y) + &&(u) in Q, (3.2
(= kA + 00k (C) 3 ¢(o — As(ir) + ETE(p () ,e(u),{) inQ, (3.3
Dive+ fo=0 in Q, (34
divD—-¢ =0 in £, (3.5
u=0 on I'y, (3.6
ov=1fy on I'y, (3.7

v (1) < g o (1) +p(u () —w () <O,
{( t)—g) (o, (t) +p(uy (t) —w(t))) =0 on I's, (3.8
(uy

—or (t) = pp (u (1) —w(t))n*(t)  onTs, (3.9
w(t) =a(t)p(u, (t) —w(t)) on I's, (3.10
x=0 onT, (3.11
=0 on I'g, (3.12
Dwv=gy only, (3.13

for all t € R, and, in addition,

w(0) =0 on I, (3.14)
w(0) =up, ¢(0)=¢ in Q. (3.15)

Here and below, for simplicity, we do not indicate explicitly the dependence of various functions on the
spatial variable . Moreover, the functions n* and « are given by

(1)
[ERCIK

Where h represents the wear coefficient, and v* (t) is the velocity of the foundation at each moment
t. We now provide a brief explanation of the equations and conditions in Problem P. First, equation
(3.1) and (3.2) represent the electro-elasto-viscoplastic constitutive law with damage, where u denotes
the displacement field and o, € (u) represent the stress and the linearized strain tensor, respectively.
E(¢) = —Vp is the electric field, where Vo = (gTi) is an electric potential & = (ei;i) represents the

n (1) = - a(t)=hv* (1)) Vt € Ry, (3.16)

piezoelectric operator, £7 is its transposed given by £7 = (eijl) , where e j1 = e and B denotes the
electric permittivity operator. Here A and B are nonlinear operators descrlblng the purely viscous and
the elastic properties of the material, respectively, and G is a nonlinear constitutive function that describes
the viscoplastic behavior of the material. We also consider that the function G depends on the internal
state variable { describing the damage of the material caused by plastic deformations. The evolution of
the damage field is governed by the inclusion of parabolic type given by the relation (3.3), where ¢ is the
mechanical source of the damage growth is assumed to be rather a general function of the strains and
damage itself, dpk is the sub-differential of the indicator function of the admissible damage functions set
K. Next, equations (3.4) and (3.5) are the equilibrium equations for the stress and electric displacement
fields, respectively, in which ”Div” and ”div” denote the divergence operator for tensor and vector-valued
functions, respectively. Conditions (3.6) and (3.7) are the displacement and traction boundary conditions,
respectively. Next, condition (3.8) represents the normal compliance contact condition with unilateral
constraints in which g > 0 and p is a positive Lipschitz continuous increasing function which vanishes
for a negative argument, equation (3.9) represents the sliding version of Coulomb’s law of dry friction,
modified to take into account the wear of the foundation. The differential equation (3.10) describes the
evolution of the wear function modeling how the wear depth changes over time (see [8,12]) for details
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Equation (3.11) represents a homogeneous Fourier boundary condition where 2 e represents the normal
derivative of ¢. whereas (3.12) and (3.13) represent the electric boundary conditions. (3.14) represents
the initial condition for the wear function, which shows that at the initial moment, the foundation is
new. Finally, (3.15) represents the initial displacement field and the initial damage field. We note that
considering an arbitrary contact surface I's and a thickness g = g(«) depending on the spatial variable
does not cause additional mathematical difficulties in the analysis of Problem P. Nevertheless, we decided
to assume that I'3 is plane and g is a constant since these assumptions arise in a large number of industrial
process and lead to a simple geometry which helps the reader to better understand the wear phenomenon.
In this study of mechanical Problem P we assume that The viscosity operator A : Q x S — S? satisfies

(a) There exists a constant L4 > 0 such that

HA(:E,&?l) — A(IE,EQ)H < Ly ||€1 — EQH Ve, eq € Sd, a.e. x € Q.

(b) There exists m 4 > 0 such that

(A(x,e1) — A, e2) 61 — €2) > ma ||le1 — 2| (3.17)
Vey, €0 €S ae. €.

(¢) The mapping  — A (x,€) is Lebesgue measurable on €2, Ve € S%.

(d) The mapping z — A (x,0) belongs to H.

The elasticity operator B : Q x S — S? satisfies

(a) There exists a constant Lp > 0 such that

IB(z,e1) — B(z,e2)|| < Lp ||le1 — €2]| V e1,62 €S54, ace. z € Q.

(b) The mapping  — B (x,€) is Lebesgue measurable on (2, Ve € S%.
(¢) The mapping x — B (x,0) belongs to H.

(3.18)

The visco-plasticity operator G:  x S x S x R — S¢ satisfies

(a) There exists a constant Lg > 0 such that

Hg ($7 01,€1, Cl) -G (83, 02, €2, CQ)” <

Lg (llox — o2l + |lex — 2 + [|C1 = )

VO’1,0’2,€1,€2 ESd and Cl,CQERa.e. x € Q. (319)
(¢) The mapping * — G (x,0,¢€,() is Lebesgue measurable on £,

Vo, e € S? and ¢ € R.

(d) The mapping z — G (x, 0,0,0) € H.

The piezoelectric operator & : Q x S — R¢ satisfies

p) = (eng) € L% (Q), 1<i,5,h<d, (3.20)

T)= (emh( )Tjh)7 VT = (Tij) GSd, a.e. x € Q.
ijh
=0.8Tr VoeS¢ VreRY ae x e

7
(e
pn
The electric permittivity operator B : Q x R? — R? satisfies

(a) B(z,E) = (b;j (z)E;) VE = (E;) € R, ae. x € Q.
(b) There holds b;; =bj;, 1 <4, j <d.

(¢) There exists a constant mg > 0 such that
B(z,E).E > mg |E]° VE = (E;) € R%, ae. z € Q.

(3.21)

The damage source function ¢ : Q x S? x S x R — S? satisfies

(a) There exists Ly > 0 such that
H¢($;0—1,€13C1) - ¢($70—23523<2)H <
¢ (llov — o2l + [[e1 — €2l +[1C1 — Gall)
va'l,O_Q,El,EQGSd and (1,(; € Rae. x €. (3.22)
(¢) The mapping x — ¢ (x,0,€,() is Lebesgue measurable on €,
Vo, e € S and ¢ € R.
(d) The mapping z — ¢ (x,0,0,0) belongs to H.
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The normal compliance function p : I's x R — R satisfies

(a) There exists L, > 0 such that
p(z,m) —p(x,7m2)| < Lp|ri —ra| Vri,re €R, ae. zeTs.
) (p(x,m) —p(x,7r2)) (11 —72) >0 Vry,m €R, ae x el (3.23)
(¢) The mapping © — p (a,r) is measurable on I's,Vr € R.
(d) p(x,r)=0forall r <0, ae. ¢ €T}5.

The densities of body forces, surface tractions, volume and surface electric charges satisfy

fo € C(Ry,H), foeC (R+,L2 (FQ)d) , (3.24)
@ € C(Ry,L*(Q), ¢eC(Ry, L (Iy)), (3.25)
g2 = 0 onlz Vtel0,T]. (3.26)

Note that we need to impose assumption (3.26) for physical reasons, indeed the foundation is assumed
to be an insulator and therefore the electric charges (which are prescribed on I's C I'y) have to vanish on
the potential contact surface. The friction coefficient, the wear coefficient, and the foundation velocity
verify

p € L*Ts), u(x) >0 ae onls, (3.27)
h € L*(([T3), h(xz)>0 ae. onls, (3.28)
v* € O (Ry,R?), there exists v > 0 such that [[v* (¢)] > v, V¢ € R,. (3.29)

Note that assumption (3.29) is compatible with the physical setting described above since, at each time
moment, the velocity of the foundation is assumed to be large enough. In addition (3.16), (3.28) and
(3.29) imply that

n* € C (R4, RY), a € C Ry, L™ (T3)), (3.30)

moreover,
a(t)>0 aeonly, forallteR,. (3.31)

The initial displacement and damage field satisfy
u V. (3.32)
Next, we introduce the set of admissible displacement fields defined by
U={veV: v, <gonTs}. (3.33)

We define the bilinear form a : H'(Q) x H}(Q) — R by

a(& )= k/ VENs d. (3.34)
Q
Using Riesz’s representation theorem, we define the functions f: Ry — V and ¢ : Ry — W by
(00 = [ fo®w do+ [ fale)o da, (3.35)
Q s
(a(0): 8w = [ ao(t)3 da ~ [ aa(0)5 da. (3.36)
Q T,

Yo eV, B €W, ae. t€R,, and note that conditions (3.24) and (3.25) imply that

f e CRy,V), (3.37)
¢ € CRL,W). (3.38)
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Also, define j : L? (I'3) x V x V — R by the formula

J wya,0) = [0, () = w ) v+ iy s 6) = 0 (0) 0 (6 07 )da (339)
I3
and note that the integral is well-defined due to the assumptions (3.23) and (3.29)-(3.31).
Using the above notation and Green’s formula, we drive the following variational formulation of
mechanical Problem P
Problem Py . Find a displacement field u : Ry — U, an electric potential ¢ : Ry — W, a stress field

o : Ry — H, an electric displacement field D : R, — W, a damage field ¢ : Ry — H! () and a wear
function w : Ry — L? (I'3) such that

(f) Ae(i (1) + B (e(u (1)) — ETE(p (1))
+ [ G (0 (s) — Ae(tu (s) + ETE(p (s)),e(u(s)),( (s)) ds ae. t € Ry,

0
(0/(8) 12 (v (1)) — 2 (@ (8)))gy + 5 (w () i (1) v () — it (1)) (5.4)
> (f(t), v (t) —a (), VveUtekR,, '

CWek, (C1,6-Cm) | +alCt),&-(1)

(3.40)

L2(Q)

> @0 (1) — Ae( (1)), £(u (), ¢ (£) & = C (D)o@ (3.42)
VéEe K, ae teRy,

BV (1), V) — (E(u (), Vi) = (¢ (1), ¥)y V€W, tERy, (3.43)

(0= falplu 9 ~u)ds R (3.44)

u (0) = uo, € (0) = (o, w (0) = wo. (3.45)

In this section with some additional comments on our contact model. Assume that (3.1)—(3.15) has a
classical solution. Then, since o and p are positive functions, it follows from (3.16) that w(t) > 0 for
all t, i.e. the wear is increasing, at each point of the contact surface. Moreover, if at a moment ¢y we
have w(tg) = g, then, using Equation (3.16) and the properties (3.23) of the function p, it can be easily
proved that w(tg) = g for all ¢ > ty. This behavior shows that the wear of the foundation is limited by
the constraint w(t) < g, which fits with the assumption that the rigid layer of the foundation does not
wear.

4. An existence and uniqueness result
Our main existence and uniqueness result in the study of Problem Py is the following.

Theorem 4.1 Assume that (3.17)-(5.32) hold. Then there exists a constant po which depends only on
Q, I'y, T's and A such that, if

1l oy < o, (4.1)

then Problem Py has a unique solution. Moreover, the solution has the regularity
u € CHRL,U), (4.2)
p € C(R4,W), (4.3)
o € CR4,Hi), (4.4)
¢ € W' (R, L () NL? (Ry, H' (), (4.5)
D e CRy,W), (4.6)
w € C'(Ry,L? (), (4.7)

and, in addition,

w(t) >0 aeonls, foralteR,. (4.8)
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We conclude that the weak solution (u,o,p,(, D,w) of the piezoelectric contact Problem P has the regu-
larity (4.2)-(4.7).

The proof of theorem 4.1 will be carried out in several steps. We assume in the rest of this section that
(3.17)-(3.32) hold, and we consider that C' is a generic positive constant which depends on €2, 'y, I's and
may change from place to place. In the first step, we consider a given wear function w € C (R+, L? (Fg)) ,
Let n € C (R4, H) and we contract the following intermediate variational problem.

Problem Py, . Find v, : Ry — V such that

oy (t) = Ale (v, (1)) + 0 (1), (4.9)
(A(e (vg (1) & (V) =& (vy (8)))gy + 5 (W (2) , vg, v =0y (1)) (4.10)
> (f(t)=n(t),v—u,(t), YwelUtecRy ’

We consider
(F )~ () ¥y = (fy (0 .v), WeltcR, (411)
We use assumption (3.37) to deduce that f, (t) € C (R4, V).

Lemma 4.1 There exists a constant jig > 0 which depends on 2, T'1,T's, A and p such that Problem Py,
has a unique solution v, € C (Ry,U).

Proof: Let t € Ry and consider the operator A : V — V defined by
(Avy (6) v = v, (1)) = (A (e (0, () v — v, () + 5 (w,vov v, (1) WeEV.  (412)

we use assumptions (3.17)(a), (3.23)(a), (3.27) and inequality (2.1) to see that the operator A is Lipschitz
continuous, i.e. it verifies the inequality

vy — Avgaly < (La+ ALy (14l g e ) ) o = vs2lly (4.13)

for all vy1,v2 € V. Next, we introduce the constant o defined by

ma

=, 4.14
o C(Q)Lp ( )

and note that it depends only on ©,T'1,T'5, A and p. Assume that (4.1) holds. Then, we obtain
oLy ||MHLOO(F3) < my. (4.15)

We use again assumptions (3.17)(b), (3.23)(b), (3.27) and inequalities (2.1) and (4.15) to deduce that
the operator A is strongly monotone, i.e it satisfies the inequality

2
(Avgs = Avga, v = vg2)y = (ma = Ly ll ey ) o1 = w2l (4.16)

for all vy1, vy2 € V. Using these ingredients, by classical results for elliptic variational inequalities,
(see for example [6]), we deduce that there exists a unique element v, € V' such that

(Avy, v —vp)y, > (fy (1), v—uy)y, Vv e V. (4.17)

Then, it follows from (4.17), (4.12) that the element v, (t) € V' is the unique element which solves the
variational inequality (4.12). We now prove the continuity of the function t — v, (t) : Ry — V. To this
end, let t1,t2 € Ry and denote v, (t;) = v;, w; = w (), fu = f (&), nf =n*(t;), for i = 1,2. We use
standard arguments in (4.9)-(4.10) to find that

(Ae(v1) — Ae(v2), e (V1) — g(v2))
< (fi = fo,v1 —w2)y + f [P (v1y — w1) — p (Vo — w2)] (we —w1) da

- f [p (V1 —w1) — p(svmz —w2)] [(v2y — w2) — (V1 — w1)] da
+ f pp (v, —wr) N —p(vey, —wa) ng]. (Vo —v1,) da

+ f wp (vay — we) Mt — p(vay — wo) N3] . (V2r — V1) da.
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Therefore, (3.17), (3.23), (3.27) and inequality (2.1) yield

(ma = C3Ly Nl o oy ) llon = 2}
< (coLp (14 il g oy ) 0t = w2l gy + 2 = ol
+cop (9) [|1ll oo (ry) 127 = m3 1) [or = wally + Ly [lwr — wzHiz(Fa) -
We use (4.15) and the elementary inequality
z,y,z > 0 and x> Syx+z:>a?2 §y2+2z
to deduce that
o = vl <

e e 5 (4.18)
o (lwr = w2l ey + 11 = olly + I3 = n5l) "+ b lwn = ws

where a and b denote two positive constants which do not depend on ¢; and t5. This inequality combined
with (3.30), (3.31) and the regularity f, € C (Ry,V), w € C (R, L? (I's)) show that v, € C (R4, V).
Also, we denote by u, : R — V the function defined by

¢
uy (t) = /U,, (s)ds +ug, VteRy (4.19)

0
From Lemma 4.1 we deduce that u,, € C* (R, U). o

In the second step we use the displacement field u, obtained in Lemma 4.1 Problem Qy, : Find the
electric potential field ¢, : R4 — W such that

(BVey (1), V) i = (Ee(uy (1), V) i = (q (), ¥)y, Vb € W, t € Ry (4.20)

Lemma 4.2 Qv, has a unique solution @, which satisfies the reqularity (4.3). moreover, if o; represents
the solution of Problem QV,, corresponding to u;, i = 1,2, then there exists C > 0 such that

ler — 2l < Cllur — ually, - (4.21)
Proof: We define a bilinear form b : W x W — R such that

b (507 1/)) = (BVSD (t) ’ Vzb)H VQD, T/J ew. (422)

We use (2.5) and (3.21) to show that the bilinear form b is continuous, symmetric, and coercive on W.
Moreover using Riesz Representation Theorem we may define an element L, : Ry — W such that

(L (@), )y = (Ee(un (1)), V) g + (a (), )y V€W, TRy,

We apply the Lax-Milgram Theorem to deduce that there exists a unique element such that

by (1), 9) = (Ly () ,9)y, V€W (4.23)

We conclude that ¢, (t) is a solution of QV,, . Let t;,t € Ry, it follows from (2.3), (2.5), (3.20), (3.21)
and (4.20) that

oy (t1) = @ (t2)lyy < C (Juy (t1) — uy (t2) ]y, + lar — a2lyy) -
the previous inequality and the regularity of u, and ¢ imply that ¢, € C (R4, W). Finally, inequality
(4.21) is obtained by arguments similar to those used in the proof of the previous inequality, which
concludes the proof. O
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In the third step, we let § € L? (R+; L? (Q)), be given and consider the following variational problem

for the damage field.
Problem Py, : Find the damage field ¢y : Ry — H' (Q) such that

G0 €K, (&1),E-GM) , FalG0).6 G )

(4.24)
>(0(t),E—Co ()2 Y €K, ae teRy,
Go (0) = Go- (4.25)
In the study of the Problem Py, we have the following result.
Lemma 4.3 Problem Py, has a unique solution (y which satisfying
Coe H (R4, L?(Q)) N L? (Ry, H' () . (4.26)

Proof: We use a classical existence and uniqueness results in parabolic inequalities (see, e.g. [14], p.47).
O

In the fourth step we use the displacement field u,, obtained in Lemma 4.1 and (g obtained in Lemma

4.3 to construct the following Cauchy problem for the stress field. Problem Py, ,. Find a stress field
o9y : Ry — H such that

%Mﬂ=BMw@m+/QWW@»d%@»@®»%aﬂt€K~ (4.27)
0

In the study of Problem Py, , we have the following result.

Lemma 4.4 There exists a unique solution of Problem Py,, and it satisfies o9 (t) € W2 (R, H).
Moreover, if o;, u; and (; represent the solutions of Problem Py, , ., Py, and Py,,, respectively, for
(n:,0;) € L? (R+;HXL2 (Q)) , 1 =1,2, then there exists C > 0 such that

t
2 2 2
loy = o2ll3y < Cllur = ually + [ flux (s) — w2 (s)]y ds
0

. (4.28)
+gMM@—@@W;mM8)WSR+
Proof: Let A,g: L? (Ry;H) — L? (Ry;H) be the operator given by
¢
Aygo (t) = B (e(uy (1)) + /g (ome (5)), €(uy (5)), o (5)) ds (4.29)
0

for all o € L? (Ry;H) and t € Ry . For oy, 03 € L? (Ry;H) we use (4.29) and (3.19) to obtain for all
teR,

t
HMM@-Mm@MS%/W&%@@Mﬁ
0

It follows from this inequality that for n large enough, a power AZ,H of the operator A, ¢ is a contraction
on the Banach space L? (Ry;H) and, therefore, there exists a unique element 0,9 € L? (Ry;H) such that
Ay 00,9 = 0y9. Moreover, o, is the unique solution of Problem Py, , and, using (4.27), the regularity of
uy, the regularity of (s and the properties of the operators B and G, it follows that o,9 € W12 (R ;H).
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Consider now (11,61), (n2,62) € L? (Ry; HxL?(Q)) and for i = 1,2, denote u,, = u;, 0y,9; = 0; and
Co;, = ¢;. we have

o; (t) =B (e(u; (1)) + /Q (0:(8)),e(w; (5)),¢; (s))ds ae. Vi€ Ry,
0
and, using the properties (3.18) and (3.19) we find

o (1) — 02 ()12, < Clllur (&) — s (O3 + [ llus (5) — wa ()% ds
t t " (4.30)
01 () =2 () s+ [ 160 () = G (3) e ) Vi € R

using now a Gronwall argument in the previous inequality we deduce (4.27), which concludes the proof

of Lemma 4.4. O

Finally, as a consequence of these results and using the properties of the operator G, the operator B
and the function ¢, for Vt € R, we consider the element

A(n,0) (8) = (A1 (1,0) (t), A2 (n,0) (1)) € HXL (Q), (4.31)
defined by the equalities
Ay t(m 0) (t) = B (e(uy (1)) — ETE(py (1))
+Ofg (00 (5),e(ty (), Co (5)) ds ae. t € Ry,
A (n,0) (t) = d(one (t) e(uy (1)), Co (1)) (4.33)

Here, for every (n,0) € L? (R+;HXL2 (Q)), Uy, P, Go and o9 represent the displacement field, an
electric potential field, the damage field, and the stress field obtained in lemmas 4.1, 4.2, 4.3 and 4.4
respectively. We have the following result.

(4.32)

Lemma 4.5 The operator A has a unique fized point (n*,0*) € L? (R+;HXL2 (Q)) such that
An™,0%) = (n",0%).

Proof: Let now (n1,61), (12,02) € L? (R+;H><L2 (Q)) We use the notation u,; = w;, Un; = vy =
Vi, Pn, = @i, Coi = G and oy,9, = 05 for i = 1,2. Using (2.3),(3.18)-(3.19), and (4.21), we have

1AL (1, 61) (1) = A (12, 0) (1) 34 122y < Be (wn) () = Be () (1),
+Oft IG (01 (5) ,(ua (), €1 () = G (02 (5) ,e(ua (5)), G2 (5)) 15, ds
+|ETVer (t) — ETV, (t))tHH

<0 (0= wa O + [ s () = wa ) s

t ¢
+ g o (5) = 02 ()13, ds + { 161 (5) = G (3)I[72(0 dS) :
We use (4.28) to obtain

AL (71, 61) (8) = Ax (72, 02) (D)3 120

< C(flus (8) — w2 )2 + f s (5) — s ()% ds + f 16 (5) = G ()P ds). Y
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By a similar argument, for (4.28), (4.33) and (3.22) it follows that

1A2 (71, 61) () = Az (2, 02) (D)1 3y 200y <
< Clluy (8) = uz ) + llor () — o2 (O3, + 11¢1 (£) = G2 (8)][72(0) -

¢
4.35
<0 (1 0 = wa @, + 1 (5 = wa ()1 (4:39)
t
161 (8) = Go (D72 + Jy 161 (8) = G2 ()20 )
Using (4.34), (4.35) to obtain
1A (71, 01) (£) — A (12, 6) ()]s 12
¢
<0 (1 0 = wa O, + 1 (5 - wa ()1 (4.56)
¢
+ 116 () = G (D)0 + E[ 16 (8) = G2 () 720 dS) :
Moreover, from (4.10) we obtain that
(A(e (1)) = A(e (v2)) € (V1) — € (V2))y +J (w, V1,01 — V2) = ji (W, V2,01 — V2)
+(77177727U1*/02)’H><V =0 VtGR_;,_
We use again assumptions (3.17)(b), (3.23)(b), (3.27) and inequalities (2.1) and (4.15) to find
(ma = BLp il ey ) o = Il < = I = mall3,
which, by the hypothesis (4.1), implies
lor = vlfy < C llm = mall3,
we integrate this inequality for time, we obtain
/||U1 —v( ||V s < C’/ [l (s )||Hd5. (4.37)
Since
(t) fvz Yds +ug Vit eR,,
U1 (0) = ’LLQ (O) = U
we have

t
Jur ()= w2 ()1 =C [ o (5) = va (5)] s,
0
On the other hand, from (4.24) we have

G =G - )LQ(Q)+Q(<1—C27C1—C2)
< (0 —02,G — Q)2 ae t€RL

Integrating the previous inequality on R, after some manipulation we obtain

t t
1
3= Gl < [ 166) = GG ds+ [ 160(5) = 62 6) (e s
0 0
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Applying Gronwall’s inequality to the previous inequality, we find

t
16 = GllZaey < / 181 () — 02 ()22 ) s, (4.38)
0
we consider the previous inequality and (4.36) to obtain

1A (71, 01) () — A (n2,02) ()3, 12 () < C (f lur (s) = va (s)]3, ds
16 () = G O a0 + Jo 1161 (5) = G2 ()12 ds) :

It follows now from the previous inequality, the estimates (4.37) and (4.38) that

1A (11, 01) (8) = A (72, 02) (D)5, 120 < C/ 1 01) (5) = (m2,02) (5)||72 ) s
0

Reiterating this inequality m times leads to

m m CanL
A" (1, 01) (8) = A (2, 02) () [ 223, 20 20600y < o 105 61) = (2, 02) L2, ez -

Thus, for m sufficiently large, A™ is a contraction on the Banach space L? (R+,7-[><L2 (Q)) , and so A
has a unique fixed point. O

We assume in what follows that (4.1), (4.14) hold and we consider the operator £ : C' (R4, L? (I's)) —
C (R4, L?(I's)) defined by
t
Lw(t) = /a (s)p(uy (s) —w(s))ds, (4.39)
0

for all w € C (R+, L? (Fg)) , where w,, is the unique solution of Problem Py, . We have the following fixed
point result, which represents the second step in the proof of Theorem 4.1.

Lemma 4.6 The operator L has a unique fized point w* € C (R+, L? (Fg)) such that Lw* = w*.

Proof: Let wy,ws € C (R+, L? (Fg)) . For simplicity we denote by u;, i = 1, 2 the solutions of Problems
Py, i.e. u; = uy;. Let n € N and let ¢ € [0,n]. Taking into account (4.39), (3.16) and (3.23) we deduce

that
([ Lwr — £w2||L2(F3)
t

. j (4.40)
<oy, | co Of l[wr () —uz (s)lly ds + Of [wy (s) — w2 ()] Lo (r,) ds )
where
i = Ly bl ) 1 [f0” (7).

On the other hand, using arguments similar to those used in the proof of (4.18)

[l (8) —uz ()|l < Va+b|wr () —wa ()]l L2, (4.41)
which implies that

s (8) = wa (B)lly < Vat b wn (8) = w2 (8)| ey - (4.42)

We now combine the inequalities (4.42) and (4.41) to deduce that

t
ICwr — Luwsl| 2y < V5 (cm/a To+ 1) / lws (5) = ws (5) | p2(ry ds- (4.43)
0
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Lemma 4.6 is now a direct consequence of Theorem 4.1. O

Now, we have all the ingredients to provide the proof of Theorem 4.1.

Proof:

Existence. Let n*,6* € L* (R, HxL? () and w* € C (R4, L? (I'3)) be the fixed point of the operators
A and £ defined by (4.31)-(4.33) and (4.39) respectively and let (u,~ (t), @y« (t), (o~ (t)) be the solution
of Problems Py, , Qv,, Py, for n =n" that is u* = u,, ¢* = py+, ¢* = (o~ and

L7

ot (t) = As(a (1)) - ETE(¢" () + oyeo,
D(t) = BE(g" (1) + Ee(u’(t)).

It results from (4.31)-(4.33), for A; (n*,0%) = n* and Az (n*,0*) = 6* that (u*, 0", ¢*, (*,w*) a solution
of Py. The regularities (4.2)-(4.7) follows from Lemmas 1, 2, 3, 4, 6

Uniqueness. The uniqueness of the solution follows from the unique solvability of the Problems PV,
PVye, PVy and QV;, combined with the uniqueness of the fixed point of the operators A, £ defined by
(4.31)-(4.33) and (4.39) respectively. 0

5. Conclusion

This study develops an analytical model for quasistatic frictional contact with wear in damaged
electro-elasto-viscoplastic materials, integrating unilateral constraints. The variational formulation and
existence-uniqueness proofs enable reliable simulations of multi-physics interactions. By unifying wear,
damage, and electro-mechanical coupling, the work advances predictive capabilities for material behavior
in engineering applications, while its mathematical framework extends to broader challenges in contact
mechanics.
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