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abstract: This paper investigates a boundary value problem for a second-order integro-differential equation
of mixed parabolic-hyperbolic type with variable coefficients and fractional loading. The main focus is on
establishing the existence and uniqueness of a regular solution under integral gluing conditions imposed on
the line of type change. The method of integral equations is employed to study the solvability of the problem.
Sufficient conditions for unique solvability are formulated and proven. The results contribute to the theory of
mixed-type equations with nonlocal and fractional conditions, which are relevant in various physical models
involving memory and hereditary effects.
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1. Introduction and Formulation of the Problem

Integral and nonlocal conditions, including integral gluing conditions, play a fundamental role in
the mathematical modeling of various physical and engineering processes. These conditions help ensure
continuity and compatibility of solutions across interfaces and transitions - particularly in the context of
mixed-type equations. Applications are vast: in thermoelasticity, such conditions capture heat and stress
distributions in deformable bodies; in chemical and environmental systems, they govern diffusive-reaction
processes; and in biological models, they regulate spatial-temporal dynamics of interacting populations
[1,2,3].

The foundational concept of gluing conditions was introduced by Tricomi in 1957, laying the ground-
work for later studies. Building on this, the monograph [6] expanded the framework for differential
equations with gluing and integral transmission conditions. Further analytical developments were made
in [7], focusing on fractional and nonlocal boundary constraints. Analytical tools for equations involv-
ing both integral and fractional operators were explored in [8], supported by the classical framework of
fractional calculus presented in [14].

In recent years, significant efforts have been directed toward studying boundary value problems that
combine fractional operators with integral or nonlocal gluing conditions. A variety of approaches -
including integral equation methods and functional analytic techniques - have been applied to such
problems. For example, fractional Caputo-type derivatives were incorporated into mixed-type models in
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[15], while nonlocal and inverse problems were treated in [16,17,18]. The Volterra-type solvability of such
systems has been addressed in [19], and solvability results for integral gluing conditions were elaborated
in [20,21,22,23].

Broader analytical and numerical investigations of fractional differential equations have gained mo-
mentum. The monograph [28] offers an in-depth theoretical foundation for fractional-order equations,
while the book by Feehan and Pop [25] presents a comprehensive treatment of control and analysis
methods for fractional parabolic and elliptic equations. The recent work [24] studies nonlocal problems
involving fractional derivatives with general boundary conditions, contributing novel tools for operator-
theoretic analysis. Numerical aspects are also increasingly studied, as seen in [26], which focuses on
inverse problems in fractional diffusion, and in the overview by Yang and Yamamoto [27], which outlines
inverse problem methodologies for fractional dynamics.

From an application perspective, recent works have shown the relevance of fractional and integral
gluing conditions in diverse models - from electrochemical systems [31] and hybrid control frameworks
[32] to three-point boundary value problems [30] and diffusion in complex materials [29]. Foundational
studies also address elliptic and parabolic-elliptic systems with nonclassical boundary interactions [5,4].

Nevertheless, problems that combine fractional loading, variable coefficients, and integral gluing con-
ditions in parabolic-hyperbolic equations remain insufficiently explored. Addressing this gap is essential
for modeling physical processes that exhibit memory, heredity, or anomalous transport - particularly in
viscoelastic media, thermal systems, and diffusion in heterogeneous materials [29,33,34,35,36,37,38,39,
40,41,42].

Motivated by these considerations, the present work aims to establish the existence and uniqueness
of a regular solution to a boundary value problem for a parabolic-hyperbolic integro-differential equation
with variable coefficients and integral gluing conditions. By employing the method of integral equations,
we contribute to the theoretical framework for such problems, thereby extending the results presented in
existing works such as [15], [16], and [29]

Consider a boundary value problem for a loaded second-order integro-differential equation of parabolic-
hyperbolic type. Let D be a domain bounded by segments y = 0, x = 1, y = 1 and x = −1. We introduce
the following notations

D1 = D ∩ {x > 0}, D2 = D ∩ {x < 0}, I = {(x, y) : x = 0, 0 < y < 1},

γ1 = {(x, y) : −1 < x < 0, y = 0} , γ2 = {(x, y) : 0 < y < 1, x = 1} ,

D = D1 ∪D2 ∪ I.

Figure 1: The domain D bounded by x = −1, x = 1, y = 0, and y = 1, divided into D1, D2, and I.
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We consider the following linear loaded integro-differential equation:

0 =


uxx + a1(x, y)ux + b1(x, y)uy + c1(x, y)u−

n∑
i=1

di(x, y)D
αi
0yu(0, y), in D1,

uxx − uyy + a2(x, y)ux + b2(x, y)uy + c2(x, y)u−
n∑

i=1

ei(x, y)D
βi

0yu(0, y), in D2,
(1.1)

where the functions ai(x, y), bi(x, y), ci(x, y) (i = 1, 2) are sufficiently smooth. Assume that b1(x, y) < 0
in D1, and that a1, b1, c1, and their first-order derivatives satisfy the Holder condition in D1; a2,
b2 ∈ C2(D2), c2 ∈ C1(D2), and

di(x, y) ∈ C1(D1) ∩ C2(D1), ei(x, y) ∈ C1(D2) ∩ C3(D2), i = 1, . . . , n.

Here, Dαi
0y and Dβi

0y are Riemann-Liouville fractional integral operators of order αi < 0 and βi < 0,
respectively. If f(y) ∈ L(a, b) with a < b < +∞, then

Dαi
ayf(y) =

sgn(y − a)

Γ(−αi)

∫ y

a

f(t)

(y − t)1+αi
dt, y ∈ (a, b).

The function D−αi
ay f(y) is defined almost everywhere on (a, b) and belongs to L(a, b). We also adopt the

convention: D0
ayf(y) = f(y), for αi = 0.

We will consider the following problem with special integral gluing conditions for the loaded integro-
differential equation (1.1) with variable coefficients.

Problem 1. Find a function u(x, y) such that:

1) u(x, y) ∈ C(Dk) ∩ C1(Dk ∪ I ∪ γk) for k = 1, 2;

2) u(x, y) is a regular solution of equation (1.1) in Dk, k = 1, 2;

3) The following gluing conditions are satisfied on I:

τ1(y) = µ(y)τ2(y) + σ(y),

ν1(y) =

y∫
0

γ(y, η)ν2(η)dη + δ(y)ν2(y) + ξ(y)τ2(y) + θ(y),

 (1.2)

where τ1(y) = u(+0, y), ν1(y) = ux(+0, y), τ2(y) = u(−0, y), ν2(y) = ux(−0, y);

4) The boundary conditions are:

u(−1, y) = φ1(y), ux(1, y) = φ2(y), 0 ≤ y ≤ 1, (1.3)

u(x, 0) = ψ1(x), uy(x, 0) = 0, −1 ≤ x ≤ 0, (1.4)

u(x, 0) = ψ2(x), 0 ≤ x ≤ 1. (1.5)

Here, φ1(y), φ2(y), ψ1(x), ψ2(x), µ(y), σ(y), δ(y), γy(y, η), ξ(y), θ(y) are given functions, with µ(y) ̸= 0,
and

γ2(y, η) + δ2(y) ̸= 0.

Additionally, we impose the consistency conditions:

φ1(0) = ψ1(−1), φ2(0) = ψ′
2(1), ψ2(0) = µ(0)ψ1(0) + σ(0).

It is worth noting that the gluing conditions considered here are of a more general nonlocal type involv-
ing integral operators. In the case of continuous gluing, the problem reduces to a special case of our
formulation, which also yields a new result within the fractional framework. We are now in a position to
state our main result.
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Theorem 1.1 If the functions ψ′′
1 (x), φ

′′
1(y), ψ

′′
2 (x), φ2(y), c1(x, y), µ

′(y), σ′(y), δ′(y), γy(y, η), ξ
′(y),

and θ′(y) are Hölder continuous; φ′
1(0) = 0; c1(x, y) ≤ 0; b1(x, y) = −1; and the following compatibility

conditions hold:{
δ(0)ψ′

1(0) +
(
ξ(0) + (a2(0, 0) +

1
2b2(0, 0))δ(0)

)
ψ1(0) + θ(0) = 0, if δ(y) ̸= 0,

ξ(0)ψ1(0) + θ(0) = 0, if δ(y) ≡ 0,
(1.6)

then Problem 1 has a unique solution.

This article is structured as follows. The first section introduces the problem and outlines the foundational
concepts necessary for its formulation. Sections 2 and 3 are devoted to a detailed analysis of the problem
within the hyperbolic and parabolic subregions of the domain Ω, denoted by Ω1 and Ω2, respectively.
In each subregion, we derive the core integro-differential relations and examine how these extend to the
interface separating the two types-specifically, the line segment AB.

In Section 4, we incorporate nonstandard gluing conditions to formulate a system of integro-differential
equations along the interface where the integral discontinuity occurs. These Volterra-type equations [43]
are crucial for proving the existence and uniqueness of solutions to the overall problem.

2. Basic Functional Relations Derived from the Domain D2

In this section, we consider the following hyperbolic partial differential equation with a fractional
source term defined for x ∈ R and y > 0:

A1u ≡ uxx − uyy + a2(x, y)ux + b2(x, y)uy + c2(x, y)u =

n∑
i=1

ei(x, y)D
βi

0yu(0, y). (2.1)

with the initial conditions
u(x, 0) = ψ1(x), uy(x, 0) = 0. (2.2)

Theorem 2.1 (Duhamel’s Principle for the Hyperbolic Equation) The solution u(x, y) of the
initial problem (2.1)–(2.2) for the fractional hyperbolic partial differential equation can be represented
as

u(x, y) = v(x, y) +

∫ y

0

w(x, y; τ) dτ, (2.3)

where

1. v(x, y) is the solution of the homogeneous problem

A1v(x, y) ≡ vxx − vyy + a2(x, y)vx + b2(x, y)vy + c2(x, y)v = 0, (2.4)

with
v(x, 0) = ψ1(x), vy(x, 0) = 0; (2.5)

2. w(x, y; τ) satisfies, for each fixed τ ∈ [0, y],

wxx − wyy + a2(x, y)wx + b2(x, y)wy + c2(x, y)w = 0, y > τ,

w(x, y; τ)
∣∣
y=τ

= 0,

wy(x, y; τ)
∣∣
y=τ

=

n∑
i=1

ei(x, τ)D
βi

0τu(0, τ).

(2.6)

Proof: [Proof of Theorem 2.1] The method of Duhamel involves treating the nonhomogeneous term as
a continuous superposition of point sources along the y-axis. To prove the representation (2.3), we verify
that the constructed solution u(x, y) satisfies this form. Duhamel’s principle allows us to interpret the
right-hand side of the equation as a superposition of instantaneous source effects acting at each time
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τ . Given the initial problem (2.1)–(2.2), our goal is to demonstrate that the solution can be written in
the form (2.3), where v(x, y) solves the associated homogeneous equation (i.e., with zero source term),
and w(x, y; τ) solves the homogeneous equation in the region y > τ , exhibiting a discontinuity in its
y-derivative at y = τ , determined by the inhomogeneous term.

Step 1: Construction of the homogeneous solution. Let v(x, y) be the solution to the homogeneous
problem, satisfying the same differential operator as the original equation but without the source term,
and preserving the original initial and boundary conditions. Since the PDE is linear and, under suitable
regularity assumptions, such a solution exists locally for y > 0.

Step 2: Construction of the particular solution. We define the auxiliary function w(x, y; τ), which
solves the homogeneous equation for y > τ , with initial data at y = τ that reflects the contribution of
the source term at time τ . Notably, w(x, y; τ) has a discontinuous derivative at y = τ , modeling the
instantaneous effect of the source.

Step 3: Superposition. Due to the linearity of the equation and the continuity of the source term with
respect to y, we integrate the effect of each point source over the interval [0, y]. According to Duhamel’s
principle, the solution to the original nonhomogeneous problem (2.1)–(2.2) is given by

u(x, y) = v(x, y) +

∫ y

0

w(x, y; τ) dτ.

This integral accumulates the effect of each instantaneous source at time τ , represented by the derivative
jump in w at y = τ .

We now verify that u(x, y) satisfies the initial conditions and the full equation.

Differentiate u(x, y) under the integral:

uxx(x, y) = vxx(x, y) +

∫ y

0

wxx(x, y; τ) dτ,

uyy(x, y) = vyy(x, y) +

∫ y

0

(
wyy(x, y; τ) + wy(x, y; y)

)
dτ.

(Similarly for other derivatives, if needed.)
Applying the operator A1 to u(x, y) and using Leibniz’s rule for differentiation under the integral sign,

we obtain

A1u = A1v +

∫ y

0

A1w(x, y; τ) dτ +
∂w(x, y; τ)

∂y

∣∣∣∣
τ=y

.

Since w(x, y; y) = 0, the correction term simplifies, and from the initial condition on wy, we obtain

uxx − uyy + a2(x, y)ux + · · · =
∫ y

0

n∑
i=1

ei(x, τ)D
βi

0τu(0, τ)δ(y − τ) dτ =

n∑
i=1

ei(x, y)D
βi

0yu(0, y),

which matches exactly the right-hand side of equation (2.1).
Therefore, u(x, y) satisfies the full equation. From the construction of v(x, y), we also have the initial

conditions:

u(x, 0) = v(x, 0) +

∫ y

0

w(x, y; τ) dτ

∣∣∣∣
y=0

= ψ1(x),

and

uy(x, 0) = vy(x, 0) +
∂

∂y

∫ y

0

w(x, y; τ) dτ

∣∣∣∣
y=0

= 0,

because the integral vanishes at y = 0.
Hence, the function

u(x, y) = v(x, y) +

∫ y

0

w(x, y; τ) dτ
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satisfies both the initial conditions and the nonhomogeneous equation (2.1), completing the proof. 2

Consequently, we consider the following solution to the problem, satisfying equation A1v(x, y) = 0, with
homogeneous conditions (2.5), which can be written in the form

v(x, y) =
1

2
[R(x, y;x+ y, 0)ψ1(x+ y) +R(x, y;x− y, 0)ψ1(x− y)]−

−1

2

x+y∫
x−y

[Rη(x, y; ξ, 0) + b2(ξ, 0)R(x, y; ξ, 0)]ψ1(ξ) dξ, (2.7)

where R(x, y; ξ, η) is a Riemann function [44].

Therefore, according to Duhamel’s principle, if the function W (x, y, τ) of variables x ∈ R, y ∈ R, τ ∈
R is a smooth solution to the following problem:

Wxx −Wyy + a2(x, y)Wx(x, y, τ) + b2(x, y)Wy(x, y, τ) + c2(x, y)W (x, y, τ) = 0, τ > 0, (2.8)

W (x, y, τ)
∣∣
y=τ

= 0, Wy(x, y, τ)
∣∣
y=τ

=

n∑
i=1

ei(x, τ)D
βi

0τu(0, τ), (2.9)

then the Duhamel integral, given by the equality

v1(x, y) =

y∫
0

W (x, y − τ, τ) dτ,

is a solution to the Cauchy problem (2.8)–(2.9) for the loaded integro-differential equation.
Therefore, if we take the substitution y − τ = s, and also use the Cauchy solutions similar to (2.7),

we obtain

v1(x, y) =

y∫
0

x+y−η∫
x−y+η

R(x, y; ξ, 0)

n∑
i=1

ei(ξ, η)D
βi

0ητ2(η) dξ dη. (2.10)

The obtained expression (2.10) represents the solution of the nonhomogeneous part of equation (2.1).
Thus, the solution of the Cauchy problem (2.1)–(2.2) can be written as follows:

u(x, y) =
1

2
[R(x, y;x+ y, 0)ψ1(x+ y) +R(x, y;x− y, 0)ψ1(x− y)]−

−1

2

x+y∫
x−y

[Rη(x, y; ξ, 0) + b2(ξ, 0)R(x, y; ξ, 0)]ψ1(ξ) dξ+

+
1

2

y∫
0

x+y−η∫
x−y+η

R(x, y; ξ, 0)Ei(ξ, η)D
βi

0ητ2(η) dξ dη, (2.11)

where Ei(ξ, η) depends on ei(ξ, η), and the repeated index i implies summation over i = 1, 2, . . . , n.

Ei(ξ, η)D
βi

0ητ2(η) =

n∑
i=1

ei(ξ, η)D
βi

0ητ2(η),

that is, by the repeating index i we mean the sum from i = 1 to n.
Direct substitution of expression (2.11) into equation (2.1), taking into account the initial condi-

tions (2.2), as well as equation (2.4) and conditions (2.5), shows that (2.11) is indeed a solution to the
problem (2.1)–(2.2).
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We apply the condition u(−0, y) = τ2(y) to the resulting solution (2.11):

2τ2(y) = [R(0, y; y, 0)ψ1(y) +R(0, y;−y, 0)ψ1(−y)]−

−
0∫

−y

[Rη(0, y; ξ, 0) + b2(ξ, 0)R(0, y; ξ, 0)]ψ1(ξ) dξ−

−
y∫

0

[Rη(0, y; ξ, 0) + b2(ξ, 0)R(0, y; ξ, 0)]ψ1(ξ) dξ +

y∫
0

dη

y−η∫
−y+η

R(0, y; ξ, 0)Ei(ξ, η)D
βi

0ητ2(η) dξ.

As a result, since the function ψ1(y) is known on [−1, 0], but unknown on the interval [0, 1], we
separate the unknown part and obtain:

ψ1(y)−
0∫

y

[Rη(0, y; ξ, 0) + b2(ξ, 0)R(0, y; ξ, 0)]ψ1(ξ) dξ−

−
0∫

−y

[Rη(0, y; ξ, 0) + b2(ξ, 0)R(0, y; ξ, 0)]ψ1(ξ) dξ+

+

y∫
0

dη

x+y−η∫
x−y+η

R(0, y; ξ, 0)Ei(ξ, η)D
βi

0ητ2(η) dξ +R(0, y;−y, 0)ψ1(−y) = 2τ2(y).

Hence, we obtain the following integral equation [43] for determining the function ψ1(y) on the
unknown interval (0, 1):

ψ1(y)−
y∫

0

Q(0, y, ξ)ψ1(ξ) dξ = 2τ2(y)−R(0, y;−y, 0)ψ1(−y)+

+

0∫
−y

Q(0, y, ξ)ψ1(ξ) dξ −
y∫

0

Dβi

0ητ2(η) dη

x+y−η∫
x−y+η

R(0, y; ξ, 0)Ei(ξ, η) dξ, (2.12)

where
Q(0, y, ξ) = Rη (0, y; ξ, 0) + b2(ξ, 0)R (0, y; ξ, 0) .

Taking into account the properties of the fractional integral operator

y∫
0

Dβi

0ητ2(η)dη

x+y−η∫
x−y+η

Ei(ξ, η)R (0, y; ξ, 0)dξ =

=
1

Γ(−βi)

y∫
0

τ2(s)ds

y∫
s

(η − s)
−1−βidη

x+y−η∫
x−y+η

Ei(ξ, η)R (0, y; ξ, 0)dη,

substitution in our equation (2.12), then, after several substitutions from the relation, we obtain the
following equation for 0 ≤ y ≤ 1:

ψ1(y)−
y∫

0

Q(0, y, η)ψ1(η) dη = 2τ2(y)−
y∫

0

H(y, η)τ2(η) dη − g1(y), (2.13)
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where

H(y, η) =
1

Γ(−βi)

y∫
η

(s− η)−1−βi ds

y−s∫
−y+s

Ei(ξ, s)R(0, y; ξ, 0) dξ,

g1(y) = R(0, y;−y, 0)ψ1(−y)−
0∫

−y

Q(0, y, η)ψ1(η) dη.

Assuming that the function on the right-hand side of equation (2.13) is known for the time being,
and denoting the resolvent of the kernel of equation (2.13) by Z1(y, s), we can express the solution of the
equation in the following form:

ψ1(y) = 2τ2(y) +

∫ y

0

X1(y, η)τ2(η) dη + g∗1(y), 0 ≤ y ≤ 1,

where

X1(y, η) = 2Z1(y, η) +H(y, η) +

y∫
η

Z1(y, ξ)H(y, ξ) dξ,

g1(y) = g1(y) +

y∫
0

Z1(y, η)g1(η) dη.

Thus, the function ψ1(y), as it appears in expression (2.11), can be extended over the entire segment
[−1, 1] in the following form:

ψ̃1(y) =


2τ2(y) +

y∫
0

Z1(y, η)τ2(η) dη + g1(y), 0 ≤ y ≤ 1,

ψ1(y), −1 ≤ y ≤ 0.

(2.14)

Proceeding in this manner, the function ψ̃1(y) can be extended over the entire real axis, (−∞,+∞), as
shown in [29]. Accordingly, the solution of equation (2.1), subject to the initial conditions

u(x, 0) = ψ̃1(x), uy(x, 0) = 0, −1 ≤ x ≤ 0,

is defined as follows:

u(x, y) = 1
2

[
R(x, y;x+ y, 0)ψ̃1(x+ y) +R(x, y;x− y, 0)ψ̃1(x− y)

]
−

1
2

x+y∫
x−y

[Rη(x, y; ξ, 0) + b2(ξ, 0)R(x, y; ξ, 0)] ψ̃1(ξ) dξ+

+ 1
2

y∫
0

x+y−η∫
x−y+η

R(x, y; ξ, 0)Ei(ξ, η)D
βi

0ητ2(η) dξ dη. (2.15)

Now, applying the condition ux(−0, y) = ν2(y) to the solution (2.15), we obtain:

ν2(y) = τ ′2(y) + τ2(y) [Rx(0, y; y, 0)−Rη(0, y; y, 0)− b2(y, 0)]+

+

y∫
0

T (y, s) τ2(s) ds+ g11(y), 0 < y < 1. (2.16)
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where
T (y, s) = 1

2 [Rx(0, y; y, 0)X1(y, s) +X ′
1x(y, s)−X1(y, s)] +

+

y∫
s

(η − s)−1−βi

2Γ(−βi)
[R(0, y; y − η, 0)Ei(y − η, η)−R(0, y;−y + η, 0)Ei(−y + η, η)] dη+

+
1

2Γ(−βi)

y∫
s

(η − s)−1−βi dη

y−η∫
−y+η

Rx(0, y; ξ, 0)Ei(ξ, η) dξ −

2Qx(0, y, s) +

y∫
s

Qx(0, y, ξ)X1(ξ, s) dξ

 ,

g11(y) =
1
2 [Rx(0, y; y, 0) g1(y) + g′1(y) +Rx(0, y; y, 0)ψ1(y) +R(0, y;−y, 0)ψ′

1(y)

−
(
Rη(0, y; y, 0) + b2(y, 0)

)
g1(y) +

(
Rη(0, y; y, 0) + b2(y, 0)R(0, y;−y, 0)

)
ψ1(y)

]
−

0∫
−y

Qx(0, y, ξ)ψ1(ξ) dξ −
y∫

0

Qx(0, y, ξ)g1(ξ) dξ.

Thus, we have derived the first principal integro-differential relation (2.16), corresponding to the hyper-
bolic region D2 over the interval I.

3. Basic Functional Relations Derived from the Domain D1

At this stage, we begin the analysis of the problem within the parabolic part of the domain

D1 = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1}.

We consider the following fractional parabolic equation:

uxx + a1(x, y)ux + b1(x, y)uy + c1(x, y)u =

n∑
i=1

di(x, y)D
αi
0yu(0, y), (x, y) ∈ D1, (3.1)

subject to the initial and boundary conditions:

u(0, y) = τ1(y), ux(1, y) = φ2(y), u(x, 0) = ψ2(x), (3.2)

where αi < 0, and τ1(y) is assumed to be an unknown function to be determined. Additionally, we take
b1(x, y) = −1 throughout the domain.

Due to the linearity of equation (3.1), and in view of the superposition principle, we split the solution
into two parts:

u(x, y) = u(h)(x, y) + u(τ)(x, y), (3.3)

where u(h)(x, y) denotes the solution to the homogeneous problem (i.e., with vanishing right-hand side)
subject to the prescribed boundary and initial conditions, and u(τ)(x, y) denotes the particular solution
of the nonhomogeneous problem, where the source term involves the unknown function τ1(y) and satisfies
homogeneous boundary conditions.

Consequently, we will have
ux(0, y) = u(h)x (0, y) + u(τ)x (0, y), (3.4)

which makes it possible to apply the condition ux(0, y) = ν1(y) to the obtained solution of the problem
(3.1)–(3.2).

Thus, we proceed to identify the representation of the nonhomogeneous solution. Assume that the
Green’s function U(x, ξ; t) represents the fundamental solution of the homogeneous forward parabolic
operator [44]. Then, the particular solution u(τ) can be expressed, by Duhamel’s principle, as

u(τ)(x, y) =

∫ y

0

∫ 1

0

U(x, ξ; y − s) f(ξ, s) dξ ds, (3.5)
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where the nonhomogeneous source term is given by

f(x, y) =

n∑
i=1

di(x, y)

Γ(−αi)

∫ y

0

(y − s)−αi−1 τ1(s) ds.

Differentiating with respect to x at x = 0 gives

u(τ)x (0, y) =

∫ y

0

∫ 1

0

∂U

∂x
(0, ξ; y − s) f(ξ, s) dξ ds

=

n∑
i=1

∫ y

0

∫ 1

0

∂U

∂x
(0, ξ; y − s) · di(ξ, s)

Γ(−αi)

∫ s

0

(s− η)−αi−1 τ1(η) dη dξ ds.

Changing the order of integration, we explicitly identify the kernel:

u(τ)x (0, y) =

n∑
i=1

∫ y

0

τ1(η)

[∫ y

η

∫ 1

0

∂U

∂x
(0, ξ; y − s) · di(ξ, s)

Γ(−αi)
(s− η)−αi−1 dξ ds

]
dη. (3.5)

Solutions of the homogeneous problem (i.e., with vanishing right-hand side), subject to the prescribed
boundary and initial conditions (3.2), at b1(x, y) = −1, can be written in the form

u(h)(x, y) =

∫ 1

0

ψ2(ξ)G(x, y; ξ, 0) dξ +

∫ y

0

τ1(η)Gξ(x, y; 0, η) dη.

u(h)(x, y) =

∫ 1

0

ψ2(ξ)G(x, y; ξ, 0) dξ +

∫ y

0

τ1(η)Gξ(x, y; 0, η) dη+∫ y

0

φ2(η)G(x, y; 1, η) dη −
∫ y

0

∫ 1

0

G(x, y; ξ, η)V (ξ, η) dξ dη. (3.6)

Here, G(x, y; ξ, η) is the Green’s function of the mixed problem for the heat equation [35], and the function
V (x, y) is the solution to the following integral equation:

V (x, y)−
∫ y

0

∫ 1

0

Ξ(x, y; ξ, η)V (ξ, η) dξ dη =

p1(x, y) +

∫ y

0

L1(x, y; η) τ
′
1(η) dη −

∫ y

0

Ξ(x, y; 1, η)φ2(η) dη. (3.7)

Here,
Ξ(x, y; ξ, η) = a1(x, y)Gx(x, y; ξ, η) + c1(x, y)G(x, y; ξ, η),

L1(x, y; η) = a1(x, y)N(x, y; 0, η)−
∫ y

η

c1(x, y)Gξ(x, y; 0, t) dt,

where p1(x, y) is a continuously differentiable function depending on the given data, and

N(x, y; 0, η) =
1

4
√
π(y − η)

+∞∑
n=−∞

{
exp

[
− (x− 4n)2

4(y − η)

]
− exp

[
− (x− 2− 4n)2

4(y − η)

]}
.

Equation (3.7) is a Volterra-type integral equation in two variables. Taking into account the properties
of the functions a1(x, y) and c1(x, y), along with Theorem 1.1, we can readily verify that the solution has
the following form:

V (x, y) = p̃1(x, y) +

∫ y

0

L̄1(x, y; t) τ
′
1(t) dt. (3.8)

where

p̃1(x, y) = p1(x, y)−
∫ y

0

(
Ξ1(x, y; η)φ2(η)−

∫ 1

0

Ξ̃(x, y; ξ, η) p1(ξ, η) dξ

)
dη,
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L̄1(x, y; t) = L1(x, y; t) +

∫ y

0

∫ 1

0

Ξ̃(x, y; ξ, η)L1(ξ, η; t) dξ dη,

Ξ1(x, y; t) = Ξ(x, y; t) +

∫ y

0

∫ 1

0

Ξ̃(x, y; ξ, η) Ξ(ξ, η; t) dξ dη,

where Ξ̃ is the resolvent of the kernel Ξ(x, y; ξ, η). Substituting this result into expression (3.6), we obtain
the following representation:

u(h)(x, y) =

∫ 1

0

ψ2(ξ)G(x, y; ξ, 0) dξ +

∫ y

0

φ2(η)G(x, y; 1, η) dη −
∫ y

0

∫ 1

0

G(x, y; ξ, η) p̃1(x, y) dξ dη

+

∫ y

0

τ1(η)Gξ(x, y; 0, η) dη −
∫ y

0

τ ′1(t) dt

∫ y

t

∫ 1

0

L̄1(ξ, η; t)G(x, y; ξ, η) dξ dη. (3.9)

Now, applying the condition ux(0, y) = ν1(y) to the resulting solution of the mixed problem (3.1)–(3.2),
with reference to (3.4), (3.6), and (3.9), we obtain the following integro-differential relation with respect
to the functions τ1(y) and ν1(y):

ν1(y) =

∫ y

0

K(y, t) τ1(t) dt−
∫ y

0

Φ1x(y, t) τ
′
1(t) dt+Φ0x(y). (3.10)

where

K(y, t) = Gξx(0, y; 0, t) +

n∑
i=1

∫ y

t

∫ 1

0

Ux(0, ξ; y − η)
di(ξ, η)

Γ(−αi)
(η − t)−αi−1 dξ dη,

Φ1x(y, t) =

∫ y

t

∫ 1

0

L1(ξ, η; t)Gx(0, y; ξ, η) dξ dη,

and

Φ0x(y) =

∫ y

0

[
φ2(η)Gx(0, y; 1, η)−

∫ 1

0

Gx(0, y; ξ, η) p̃1(ξ, η) dξ

]
dη

+

∫ 1

0

ψ2(ξ)Gx(0, y; ξ, 0) dξ.

Thus, relation (3.10) constitutes our second principal integro-differential relation, derived from the do-
main D1 over the interval I.

4. Connecting System of Equations on the Line of Intersection of the Integral
Discontinuity

In this section, we provide a proof of Theorem 1.1 by employing the fundamental relations derived
in Sections 2 and 3. We begin by formulating a system of integro-differential equations for the func-
tions τ1(y), τ2(y), ν1(y), and ν2(y), based on expressions (2.16), (3.10), and the gluing conditions (1.2)
defined within the parabolic and hyperbolic subdomains D.

0 =



ν1(y)−
y∫
0

K(y, t) τ1(t) dt+
y∫
0

Φ1x(y, t) τ
′
1(t) dt = Φ0x(y),

ν2(y)− τ ′2(y)−Π(y)τ2(y)−
y∫
0

T (y, t)τ2(t)dt = g11(y),

τ1(y)− µ(y)τ2(y) = σ(y),

ν1(y)−
y∫
0

γ(y, t)ν2(t)dt− δ(y)ν2(y)− ξ(y)τ2(y) = θ(y).

(4.1)
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where
Π(y) = Rx(0, y; y, 0)−Rη(0, y; y, 0)− b2(y, 0). (4.2)

Eliminating the intermediate functions τ1(y), ν1(y), and ν2(y) by combining the first and second
equations of the system with the third discontinuous gluing condition, we reduce system (4.1) to a
Volterra integral equation of the third kind with respect to τ ′2(y):

δ(y) τ ′2(y) +

∫ y

0

[
δ(y)Π(y) + ξ(y) + µ(t) Φ1x(y, t)− γ(y, t)−

∫ y

t

α(y, s) ds

]
τ ′2(t) dt =

= −F (y)− δ(y)Π(y)ψ1(0)− ξ(y)ψ1(0). (4.3)

where

Φ1x(y, t) =

∫ y

t

∫ 1

0

L1(ξ, η; t)Gx(0, y; ξ, η) dξ dη,

α(y, t) = µ(t)K(y, t) + µ′(t) Φ1x(y, t)− γ(y, t)Π(t)− δ(y)T (y, t),

F (y) = Φ0x(y) +

y∫
0

(σ (t)K (y, t) + g11 (t) γ (y, t)) dt+

+σ′ (y)

y∫
0

Φ1x (y, t) dt+ δ (y) g11 (y) + θ (y) .

If δ(y) ̸= 0, then (4.3) becomes:

τ ′2(y) +
1

δ(y)

∫ y

0

[
δ(y)Π(y) + ξ(y) + µ(t) Φ1x(y, t)− γ(y, t)−

∫ y

t

α(y, s) ds

]
τ ′2(t) dt =

= −F (y)
δ(y)

−Π(y)ψ1(0)−
ξ(y)

δ(y)
ψ1(0), (4.4)

which represents a Volterra integral equation of the second kind, featuring a weak singularity in the case
0 < δ(y) < 1. Denoting the kernel and the right-hand side by K1(y, t) and F1(y), respectively, we have

τ ′2(y) +
1

δ(y)

∫ y

0

K1(y, t) τ
′
2(t) dt = F1(y), 0 < δ(y) < 1. (4.5)

We next analyze the asymptotic behavior of the right-hand side as y → 1 and y → 0:

F1(y) = −F (y)
δ(y)

−Π(y)ψ1(0)−
ξ(y)

δ(y)
ψ1(0) = R1(y) +R2(y) +R3(y), (4.6)

where

|R1(y)| =
∣∣∣∣ 1

δ(y)

∫ y

0

σ(t)K(y, t) dt

∣∣∣∣+ ∣∣∣∣ 1

δ(y)

∫ y

0

σ′(y) Φ1x(y, t) dt

∣∣∣∣+ ∣∣∣∣ 1

δ(y)
Φ0x(y)

∣∣∣∣+
+

1

δ(y)

∣∣∣∣∫ y

0

γ(y, η) g11(η) dη

∣∣∣∣+ |g11(y)|+
∣∣∣∣ 1

δ(y)
θ(y)

∣∣∣∣ ≤ c1
yε
, ε < 1,

|R2(y)| = |Φ(y)ψ1(0)| ≤ c2, and similarly, |R3(y)| ≤ c3 = const.

Hence, the right-hand side is uniformly bounded, i.e., |F1(y)| ≤ const, for some constant C > 0. Analo-
gously, for the kernel, we obtain

|K1(y, t)| ≤ |δ(y)| |Π(y)|+ |ξ(y)|+ |µ(t)| |Φ(y, t)|+ |γ(y, t)|+
∣∣∣∣∫ y

0

A(y, s) ds

∣∣∣∣ ≤ c4,
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therefore, K1(y, t) is bounded and continuous on the square [0, 1]× [0, 1], where ci = const, i = 1, 2, 3, . . ..
According to classical results in the theory of integral equations (see, e.g., [34]), integral equations of
the second kind with continuous kernels and weakly singular right-hand sides (with singularity order less
than one) admit a unique solution.

If δ(y) = 0, equation (4.3) reduces to a Volterra equation of the first kind:∫ y

0

K2(y, t) τ
′
2(t) dt = F2(y), (4.7)

where

K2(y, t) = ξ(y)− γ(y, t) + µ(t)Φ1x(y, t)−
∫ y

t

α(y, s) ds, F2(y) = −F (y)− ψ1(0) ξ(y).

From the existence and uniqueness results for the integral equation obtained above [43], together with
the assumptions of Theorem 1.6, it follows that the derivative τ ′2(y) is uniquely determined. Conse-
quently, the auxiliary functions τ ′1(y), ν

′
1(y), and ν

′
2(y) can be uniquely reconstructed from the original

system (4.1). This establishes the unique solvability of the problem with an integral discontinuity for the
loaded equation (2.1) with variable coefficients. Therefore, Theorem 1.1 is proven.

5. Conclusion

In this study, we investigated a boundary value problem for a mixed-type integro-differential equation
involving fractional loading and nonlocal (integral) gluing conditions. Utilizing the framework of integral
equations, we established the existence and uniqueness of a regular solution under suitable smoothness
and compatibility assumptions. The results obtained contribute to the broader theory of mixed-type
equations with fractional and integral characteristics.

The techniques developed here pave the way for extending the analysis to more complex scenarios,
including nonlinear or degenerate cases. In particular, the integral formulation provides a robust toolset
for addressing intricate boundary behaviors and discontinuities inherent in such problems.

Furthermore, we demonstrated that the boundary value problem for a second-order loaded integro-
differential equation with an integral gluing condition is well-posed and uniquely solvable under natural
assumptions on the kernel and source terms. The methodology presented confirms the effectiveness of
integral equation techniques in tackling challenging problems in parabolic-hyperbolic systems, and lays
a solid foundation for future analytical and numerical developments in this field.
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Institut de Mathématiques de Marseille,

Aix-Marseille Université,
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