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Spectral Matrix Computational Tau Approach for Fractional Differential Equations via
Fifth-Kind Chebyshev Polynomials
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abstract: This paper presents Tau approach for solving fractional differential equations (FDEs) via shifted
Chebyshev polynomials of the fifth kind. By leveraging the unique properties of these polynomials, we develop
operational matrices that facilitate the approximation of solutions to both linear and nonlinear FDEs. The
proposed method employs a tau technique in the matrix form to transform the problem into a solvable algebraic
system, ensuring computational efficiency and accuracy. This work presents a rigorous convergence analysis
and demonstrates the efficacy of the proposed approach through a series of illustrative examples, showcasing a
marked improvement in solution precision relative to conventional methodologies. This research contributes to
the growing of work in fractional calculus and offers a robust tool for researchers and practitioners in applied
mathematics and engineering.
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1. Introduction

Fractional calculus has gained substantial attention in recent years due to its ability to model complex
systems with memory and hereditary properties. These systems are commonly encountered in fields such
as physics [1,2], engineering [3], finance [4,5], and biology, where classical integer-order derivatives do
not adequately capture the underlying dynamics [6,7]. The concept of fractional derivatives and integrals
offers a powerful tool for characterizing non-local interactions, anomalous diffusion, and systems exhibiting
complex temporal and spatial behavior, making fractional differential equations (FDEs) an essential part
of contemporary modeling approaches [8].

Solving FDEs remains a challenging task, as closed-form solutions are not generally available. As a
result, the development of efficient numerical methods has become crucial. Among these, spectral methods
have gained popularity due to their high accuracy and fast convergence, particularly for problems that are
smooth and well-posed [9,10]. These methods rely on expanding the solution in terms of basis functions
that are globally defined, allowing for rapid convergence even when using relatively few grid points.
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Chebyshev polynomials (CPs), specifically the Chebyshev polynomials of the first (1kCP) and second
(2kCP) kinds, have been extensively used in spectral methods due to their remarkable properties, includ-
ing near-optimal convergence rates and efficient handling of boundary conditions [11,12]. Furthermore,
as a generalization, Jacobi polynomials (JPs) are a class of orthogonal polynomials that depend on two
parameters, α and β, and are widely used in approximation theory [13,14,15]. Their generalization to
other polynomials, such as CPs, Legendre polynomials (LPs), and more others when substitute with
a specific α, β. These polynomials are often used in spectral numerical methods because they provide
fast convergence and accurate solutions when discretizing problems on bounded intervals, particularly
in the context of solving partial differential equations. In addition, Symmetric polynomials (SPs) are
polynomials invariant under any permutation of their four parameters (α, β, γ, δ), playing a crucial role
in algebraic geometry, numerical analysis, and number theory. Their generalization, such as CPs, LPs,
Ultra spherical polynomials (USPs), introduces specific structures used in approximations and interpo-
lation [16,17]. These generalized polynomials are integral in spectral numerical methods, which involve
transforming problems into a spectral space for efficient solutions, particularly in solving DEs and FDEs.
Recently, there has been a growing interest in the generalization of these classical polynomials to higher-
order forms, such as the Chebyshev polynomials of the fifth kind (5kCPs) which are generated from the
SPs in a specific values of α, β, γ, δ. 5kCPs provide improved flexibility and accuracy when applied to
problems involving fractional derivatives [18,19]. These generalized CPs have shown promising results in
various fields, including the numerical solution of linear and nonlinear FDEs and PDEs [20,21,22,23,24] .

The shifted Chebyshev polynomials of the fifth kind ( S5kCPs) have further extended the potential
of Chebyshev polynomials by allowing for more efficient representation of functions that exhibit irregular
boundary conditions. The shift in the polynomials enables better handling of problems where non-
homogeneous or complex boundary conditions are present, such as in many engineering and physical
models. This approach has demonstrated superior performance in solving fractional boundary value
problems, such as those arising from the Bagley-Torvik equation, a fundamental model used to describe
viscoelastic behavior in materials [25].

This study is concerned with proving, finding S5kCPs through out SPs, and studying some of their
properties, convergence, total, error bound, and global error analysis. This paper explores the application
of S5kCPs with the matrix computational tau scheme in solving fractional boundary value problems,
particularly focusing on the linear and non-linear FDEs. By comparing the results obtained using the
S5kCPs tau method with those from other numerical methods, we demonstrate its enhanced accuracy
and computational efficiency. The findings highlight the superiority of the S5kCPs tau method in solving
complex fractional differential equations, offering new insights for researchers and practitioners working
in various scientific and engineering disciplines.

2. Fundamental properties of Fifth-kind Chebyshev Polynomials

In this section, we provide an overview of the 5kCPs, which serve as a fundamental tool in the spectral
methods employed in this study. We begin by introducing basic concepts from fractional calculus and then
proceed to define the 5kCPs. Their orthogonality and recurrence properties, as well as their relationships
with the well-established Chebyshev polynomials of the first kind, are explored. These relationships prove
essential for the development of the numerical algorithms introduced in subsequent sections.

2.1. Preliminaries

Definition 1. The left-sided Caputo’s fractional derivative of order φ, (where k − 1 < φ < k) of a
Lebesgue integrable function ϕ(τ) is defined as [26]:

CD
φ
a+ϕ(τ) =

1

Γ(k − φ)

∫ τ

a

ϕ(k)(s)

(τ − s)φ−k+1
ds, φ > 0, τ > a, (2.1)

where k is the smallest integer greater than φ, k ∈ N, and Γ(·) denotes the Gamma function, and ϕ(k)(τ)
represents the k-th derivative of ϕ(τ). The integral is taken over the interval [a, τ ], with a being the lower
limit of integration.
Definition 2. For the power function τν , the left-sided Caputo’s fractional derivative of order φ, and
φ > 0 is defined in terms of integer k as follows [27]:
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CD
φ
a+τ

ν =

{
0 if ν < ⌈φ⌉ ,
Γ(ν+1)τν−φ

Γ(ν+1−φ) if ν ≥ ⌈φ⌉ ,
(2.2)

where ⌈.⌉ is the ceiling function, ν ∈ N.
Definition 3. For a constant C, the left-sided Caputo’s fractional derivative of order φ is defined as
follows:

CD
φ
a+C = 0, φ > 0. (2.3)

2.2. Generalized Symmetric Polynomials

The generalized SPs can be derived using the extended Sturm–Liouville theorem for symmetric func-
tions by introducing additional parameters that modify their behavior and properties.

Let ζi(τ) represent a sequence of symmetric functions that satisfy the following second-order Sturm
liouville differential equation:

H1(τ)ζ
′′
i (τ) +H2(τ)ζ

′
i(τ) +

[
λiH3(τ) +H4(τ) +

1 + (−1)i+1

2
H5(τ)

]
ζi(τ) = 0, i = 0, 1, 2, . . . , n. (2.4)

Where, H1(τ), H2(τ), H3(τ), H4(τ), and H5(τ) are functions of τ , and {λi} represent a sequence of
constants.

As demonstrated by Masjed-Jamei 2006 [16], the functions H1(τ), H3(τ), H4(τ), and H5(τ) are even
functions, while H2(τ) is an odd function. To derive the symmetric class of orthogonal polynomials, the
following choices are made for these functions and constants:

H1(τ) = τ2(γτ2 + δ), H2(τ) = τ(ατ2 + β), H3(τ) = τ2, H4(τ) = 0, H5(τ) = −β,

λi = −i(β + (i− 1)γ),

where α, β, γ and δ are arbitrary real parameters.
Inserting these choices into the differential equation results in:

τ2(γτ2 + β)ζ ′′i (τ) + τ(ατ2 + β)ζ ′i(τ)− (i(α+ (i− 1)γ)τ2 +
β

2
(1 + (−1)i+1))ζi(τ) = 0. (2.5)

This equation defines the symmetric class of orthogonal polynomials based on the specified parameter
selections.
The solution of Eqn. (2.5) is the generalized polynomial known SPs and defined by:

G i
α,β,γ,δ(τ) =

⌊ i
2⌋∑

k=0

(⌊ i
2

⌋
k

)⌊ i
2⌋−(k+1)∏

j=0

Ψi,j,α,β,γ,δ

 τ i−2k, (2.6)

where,

Ψi,j,α,β,γ,δ =
(2j + (−1)i+1 + 2

⌊
i
2

⌋
)α+ γ

(2j + (−1)i+1 + 2)β + δ
.

In addition, Masjed-Jamei [16], introduced the monic (that have leading coefficients equal to 1) symmetric

orthogonal polynomials G i
α,β,γ,δ(τ), defined as:

G
i

α,β,γ,δ(τ) =

⌊ i
2⌋−1∏
j=0

1

Ψi,j,α,β,γ,δ

G i
α,β,γ,δ(τ). (2.7)

The monic polynomials G i
α,β,γ,δ(τ) satisfy the following recurrence relation:
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G
i+1

α,β,γ,δ(τ) = τ · G i

α,β,γ,δ(τ) + Λi
α,β,γ,δ · G

i−1

α,β,γ,δ(τ), i ≥ 0,

with the following initial values:

G
0

α,β,γ,δ(τ) = 1, G
1

α,β,γ,δ(τ) = τ,

and

Λi
α,β,γ,δ =

αβi2 + ((γ − 2α)β − (−1)iαδ)i+ 1
2δ(γ − 2α)

(
1− (−1)i

)
(2αi++γ − α) (2αi+ γ − 3α)

. (2.8)

The first five terms take the following forms:

G
2

α,β,γ,δ(τ) =
β+δ
α+γ + τ2,

G
3

α,β,γ,δ(τ) =
(3β+δ)τ
3α+γ + τ3,

G
4

α,β,γ,δ(τ) =
(β+δ)(3β+δ)
(3α+γ)(5α+γ) +

2(3β+δ)τ2

5α+γ + τ4,

G
5

α,β,γ,δ(τ) =
(3β+δ)(5β+δ)τ
(5α+γ)(7α+γ) + 2(5β+δ)τ3

7α+γ + τ5.

This formulation uses different symbols to provide a new appearance to the equations and expressions.

In the context of this research, the generalized monic function G
i

α,β,γ,δ(τ) can be employed to generate
CPs of various kinds by selecting appropriate values for the parameters α, β, γ, and δ. The function’s
versatility lies in its ability to represent different families of monic CPs as follows [16,17]: The 1kCPs
T i(τ) can be derived by selecting specific values for the parameters, given by:

Ti(τ) = 2i−1 G
i

−1,1,−1,0(τ).

In contrast, the 2kCPs U i(τ) are generated when the parameters are set as:

Ui(τ) = 2i G
i

−1,1,−3,0(τ).

By choosing another set of parameter values, specifically α = −1, β = 1, γ = −2, and δ = 0, the
function reduces to the LPs P i(τ):

Pi(τ) =
(2i)!

(i!)22i
G

2i

−1,1,−2,0(τ).

The USPs Ca
i (τ) emerge when the same parameters are assigned, resulting in:

Ca
i (τ) =

2i(a)i
i!

G
2i

−1,1,−(2a+1),0(τ),

where, (a)i represents the Pochhammer Symbol and, (a)i =
Γ(a+ i)

Γ(a)
. This parametric flexibility allows

the function G
i

α,β,γ,δ(τ) to serve as a unified framework for generating the different kinds of CPs, enabling
further exploration and analysis of their properties within a generalized structure.
Also, if we assign specific values to the parameters α, β, γ, and δ, we obtain the fifth kind and sixth kind

respectively C
i
(τ) and Yi(τ) [16,28,29]:

By setting α = −1, β = 1, γ = −3, and δ = 2, the function C
i
(τ) is expressed as:

C
i
(τ) = G

i

−1,1,−3,2(τ).

Similarly, by setting α = −1, β = 1, γ = −5, and δ = 2, the function Yi(τ) becomes:

Yi(τ) = G
i

−1,1,−5,2(τ).
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This demonstrates that the 5kCPs are a special case of the generalized SPs G
i

α,β,γ,δ(τ) when specific
parameter values are substituted.

From this point onward, we focus exclusively on the Chebyshev polynomials of the fifth kind C
i
(τ) and

their shifted versions.
The orthogonality condition for C

i
(τ) is given by:

∫ 1

−1

τ2√
1− τ2

C
i
(τ),C

j
(τ) dτ =

{
(−1)i

(∏i
k=1 Λ

k
−1,1,−3,2

)
π
2 , if i = j,

0, if i ̸= j,
(2.9)

where Λk
−1,1,−3,2 is as defined earlier in (2.8) with the special values of α, β, γ, δ.

This orthogonality relation can alternatively be expressed as:∫ 1

−1

τ2√
1− τ2

C
i
(τ),C

j
(τ) dτ =

{
hi, if i = j,

0, if i ̸= j,
(2.10)

where

hi =

{
π

22i+1 , if i is even,
π(i+2)
i22i+1 , if i is odd.

(2.11)

In the following sections, it will be more useful to work with the normalized version of the shifted
Chebyshev polynomials of the fifth kind.

2.3. Shifted Orthonormal Chebyshev Polynomials of the Fifth Kind

The 5kCPs are a specific class of orthogonal polynomials. They are defined through a recurrence
relation and exhibit properties that make them suitable for numerical applications, particularly in solving
fractional differential equations (see also [30,31]). The S5kCPs, denoted by C i(τ), can be defined on the
interval [0, 1] as follows:

C i(τ) =
1√
hi

C
i
(2τ − 1),

where hi is given in (2.11). From the previous relation, it is evident that C i(τ), for i ≥ 0, are orthonormal
over [0, 1]. Specifically, the orthonormality condition is:

∫ 1

0

w(τ)C i(τ)C j(τ) dτ =

{
1, if i = j,

0, if i ̸= j.
(2.12)

where the weight function w(τ) is defined as:

w(τ) =
(2τ − 1)2√
τ − τ2

.

The S5kCPs, denoted as C i(τ), are orthogonal polynomials defined on the closed interval [0, 1]. They
can be generated using the following recurrence relation:

C i(τ) = (2τ − 1)
(
C i−1(τ)

)
+ ΛiC

i−2(τ), (2.13)

where Λi = Λi
α,β,γ,δ, with the special values of α, β, γ, δ, it is defined in Eqn. (2.8), and the coefficient Λi

now is given by:

Λi =
−1 + (−1)i +

(
−1 + 2(−1)i

)
i− i2

4i(1 + i)
. (2.14)
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The first four terms take the following forms:

C 0(τ) =
√

2
π ,

C 1(τ) = 2
√

2
3π (−1 + 2τ),

C 2(τ) = 4
√

2
π

(
1
4 − 4τ + 4τ2

)
,

C 3(τ) = 8
√

6
5π

(
− 1

6 + 13τ
3 − 12τ2 + 8τ3

)
.

Theorem 2.1 The S5kCPs, C i(τ), can be expressed in terms of the S1kCPs, T ∗
i (τ), through the following

relation:

C i(τ) =

i∑
k=0

gi,kT ∗
k (τ), (2.15)

where the coefficients gi,k are defined as:

gi,k = 2

√
2

π
(−1)

i−k
2 ·


δk, if both i and k are even,
k
i , if both i and k are odd,

0, otherwise,

(2.16)

with δk defined as in Eqn. (2.18).

Proof Relation (2.15) with (2.16) is true at (i = 0), so, if we suppose that it is true at (i − 1) by
mathematical induction it easily proved at (i). For more details and to see another connection with the
trigonometric representation for the S5kCPs we refer to [28].

■

Remark 2.1 The connection formula in Eqn. (2.15) can be decomposed into two distinct connection
formulas, as follows in the next corollary. This separation allows for a more detailed and structured
representation of the connection between the S5kCPs and the S1kCPs.

Corollary 2.1 The S5kCPs, C i(τ), defined in (2.12), can be expressed in terms of the S5kCPs, T ∗
i (τ),

by the following connection formulas:
for even indices:

C 2i(τ) = 2

√
2

π

i∑
r=0

(−1)i+rδrT
∗
2r(τ), (2.17)

where δr is given by:

δr =

{
1
2 , if r = 0,

1, if r > 0,
(2.18)

for odd indices:

C 2i+1(τ) =
2
√
2√

π(2i+ 1)(2i+ 3)

i∑
r=0

(−1)i+r(2r + 1)T ∗
2r+1(τ). (2.19)

Lemma 2.1 The S1kCPs, T ∗
k (τ), can be represented in power series form (analytic form), and its in-

version formula is given by: (The power series expansion of T ∗
k (τ))

T ∗
k (τ) = k

k∑
r=0

(−1)r+k 2
2r(r + k − 1)!

(2r)!(k − r)!
τ r, (2.20)
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where k denotes the degree of the polynomial.
The inverse relation, expressing τk in terms of the polynomials T ∗

j (τ), (j = 0, 1, 2, ..., k), is:

τk = 21−2k(2k)!

k∑
j=0

δj
(k − j)!(k + j)!

T ∗
j (τ), (2.21)

where, the coefficients δj are as defined in Eqn. (2.18).

Theorem 2.2 The explicit analytic form of the S5kCPs, C i(τ), can be expressed as a finite power series
as:

C i(τ) =

i∑
p=0

αp,iτ
p, (2.22)

where, the coefficients αp,i are given by the following formula:

αp,i =


22p+

3
2√

π(2p)!

∑ i
2

j=⌈ p+1
2 ⌉(−1)

i
2+j−pjδj

(2j+p−1)!
(2j−p)! , if i is even,

1√
i(i+2)

∑ i−1
2

j=⌊ p
2 ⌋
(−1)

i+1
2 +j−p(2j + 1)2 (2j+p)!

(2j−p+1)! , if i is odd.
(2.23)

Theorem 2.3 The inversion formula for the analytic expression (2.22) can be explicitly stated as:

τm =

m∑
n=0

qn,mC n(τ), (2.24)

where, the coefficients qn,m are defined as follows:

qn,m =
√
π2−2m− 1

2 (2m)!


2((n+1)2+m2+m)
(m−n)!(n+m+2)! , if n is even,√

n+2
n

(m−n)!(m+n)! +

√
n

n+2

(m−n−2)!(m+n+2)! , if n is odd.
(2.25)

Proof. The proofs of Theorems 2.2 and 2.3 rely primarily on the application of Lemma 2.1.

■

To enhance the robustness of our findings, we have included additional details to validate our results,
confirm established relationships, and address inconsistencies with certain findings reported in [28], fur-
thermore, the next section also, has more details for approximation theory, convergence and error analysis
theorems.

3. Approximation, convergence and error analysis

In this part, we perform thorough examination of the convergence and error bound for the shifted
orthonormal expansion by utilizing Chebyshev polynomials of the fifth order. Assuming G(τ) is a square
Lebesgue integrable function defined on the interval [0, 1], it can be expressed as a linear combination of
the linearly independent S5kCPs vector Span{C 0(τ),C 1(τ),C 2(τ), . . . }, [24,28,30].
Express the function G(τ) as an infinite sum of S5kCPs:

G(τ) =

∞∑
j=0

M jC j(τ), (3.1)

where, the coefficients M j are determined by:

M j =

∫ 1

0

G(τ)C j(τ)w(τ) dτ, j = 0, 1, 2, . . . . (3.2)
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In practical applications, we approximate G(τ) using only the first (n+1) terms of the S5kCPs, so, one
writes:

G(τ) ≈ Gn(τ) =

n∑
j=0

M jC j(τ) = M Tψ(τ), (3.3)

where, the coefficient vector M and the shifted Chebyshev vector ψ(τ) are given by:

M T = [M 0,M 1, . . . ,M n], (3.4)

and
ψ(τ) = [C 0(τ),C 1(τ), . . . ,C n(τ)]T .

Lemma 3.1 Let ψ(τ) = [C 0(τ),C 1(τ), . . . ,C n(τ)] be a vector composed of orthonormal S5kCPs, where
n ∈ N. For τ ∈ [0, 1], the vector ψ(τ) can be expressed as:

ψ(τ) = BnT (τ), (3.5)

where, T (τ) = [T ∗
0 (τ), T

∗
1 (τ), T

∗
2 (τ), . . . , T

∗
n(τ)]

T is a vector of S1kCPs, and Bn is an (n + 1) × (n + 1)
lower triangular matrix defined as:

Bn =


B00 0 0 · · · 0
B10 B11 0 · · · 0
B20 B21 B22 · · · 0
...

...
...

. . .
...

Bn0 Bn1 Bn2 · · · Bnn

 .

Here, each Bij represents the coefficients that occupy the entries of the matrix Bn,

Bij =

B2i,2j = 2(−1)i−j
(
2
π

)1/2
δ2j and j ≤ i,

B2i+1,2j+1 = 2(−1)i−j
(

2
(2i+1)(2i+3)π

)1/2
δ2j+1, and j ≤ i.

(3.6)

Proof: The proof is established by thoroughly analyzing the coefficients in the power series form (2.16),
confirming the validity of the lemma. Hence, the proof is complete.

■

Lemma 3.2 The expression for the left-sided Caputo’s fractional derivative of order φ, applied to the
S5kCPs is given by:

CD
φ
0+C i(τ) ≈

i∑
j=0

ϕφ(i, j)C
j(τ), (3.7)

where,

ϕφ(i, j) =

i∑
s=0

BsiΓ(s+ 1)εs,φj

Γ(s− φ+ 1)
, (3.8)

and εs,φj is known as:

εs,φj =

∫ 1

0

w(τ)τs−φC j(τ) dτ. (3.9)

Proof. From the analytic form (2.22) we can express CD
φ
0+C i(τ) as :

CD
φ
0+C i(τ) = CD

φ
0+

i∑
s=0

αsiτs =

i∑
s=0

αsi
CD

φ
0+τ

s =

i∑
s=⌈φ⌉

αsiΓ(s+ 1)

Γ(s− φ+ 1)
τs−φ,
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From the inverse relation (2.21), where, s ≥ ⌈φ⌉

τs−φ ≈
n∑

j=0

εs,φj C j(τ),

and

εs,φj =

∫ 1

0

w(τ)τs−φC j(τ) dτ, (3.10)

then,

CD
φ
0+C i(τ) ≈

i∑
s=⌈φ⌉

n∑
j=0

αsiεs,φj Γ(s+ 1)

Γ(s− φ+ 1)
C j(τ), (3.11)

which verifies the result that is desired. Similar result as (3.11) found in [24,28,30].

■

Corollary 3.1 The left-sided Caputo’s fractional derivative of order φ, for the vector of S5kCPs, denoted
as ψ(τ) = [C 0(τ),C 1(τ), . . . ,C n(τ)]T , is expressed in the matrix form as:

CD
φ
0+ψ(τ) ≈ D(φ)ψ(τ). (3.12)

Here, D(φ) represents the operational matrix of the left-sided Caputo’s fractional derivative of order φ,
defined as:

D(φ) =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0∑i
s=⌈φ⌉ ϕφ(⌈φ⌉, 0)

∑i
s=⌈φ⌉ ϕφ(⌈φ⌉, 1) · · ·

∑i
s=⌈φ⌉ ϕφ(⌈φ⌉, n)

...
...

. . .
...∑i

s=⌈φ⌉ ϕφ(i, 0)
∑i

s=⌈φ⌉ ϕφ(i, 1) · · ·
∑i

s=⌈φ⌉ ϕφ(i, n)


, (3.13)

where, ϕφ(s, j) is defined in (3.8).
Proof: By utilizing Lemma 3.2, the present corollary can be proved as:
Applying Eqs. (3.7) – (3.11), we get:

CD
φ
0+C i(τ) ≈

i∑
s=⌈φ⌉

n∑
j=0

αsiεs,φj Γ(s+ 1)

Γ(s− φ+ 1)
C j(τ),

=

n∑
j=0

i∑
s=⌈φ⌉

ϕφ(s, j)C
j(τ) = D(φ) · ψ(τ), (3.14)

where, ϕφ(s, j) is defined in Eq.(3.8), we can express Eq. (3.14) in vector form as:

CD
φ
0+C i(τ) ≈

 i∑
s=⌈φ⌉

ϕφ(s, j),

i∑
s=⌈α⌉

ϕφ(s, j), . . . ,

i∑
s=⌈α⌉

ϕφ(s, j)

ψ(τ), i = ⌈α⌉, . . . , n. (3.15)

Also, one clearly can write:

CD
φ
0+C i(τ) = [0, 0, . . . , 0]ψ(τ), i = 0, 1, . . . , ⌈φ⌉ − 1. (3.16)

By combining Eqs. (3.15) and (3.16), one obtains the required result.

■
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Theorem 3.1 (see [30]): Let H be a Hilbert space, and let H̄ be a finite-dimensional subspace of
H (with dim H̄ < ∞). Consider the basis set H̄ = {h1, h2, . . . , hn} within H̄ . For any element h in
H , let h̄ represent the unique best approximation of h from the subspace H̄ . The squared norm of the
difference between h and h̄ is expressed as:

∥h− h̄∥2L2 =
Gram(h, h1, . . . , hn)

Gram(h1, h2, . . . , hn)
,

where Gram(h, h1, . . . , hn) denotes the Gram determinant defined by:

Gram(h, h1, . . . , hn) =

∣∣∣∣∣∣∣∣∣
⟨h, h⟩ ⟨h, h1⟩ · · · ⟨h, hn⟩
⟨h1, h⟩ ⟨h1, h1⟩ · · · ⟨h1, hn⟩

...
...

. . .
...

⟨hn, h⟩ ⟨hn, h1⟩ · · · ⟨hn, hn⟩

∣∣∣∣∣∣∣∣∣ .
Lemma 3.3 Let g(τ) ∈ L2[0, 1] have the optimal approximation according to relation (3.1) is given by:

g(τ) ≈ gn(τ) =

n∑
i=0

M iC i(τ) = M Tψ(τ).

Then, as n approaches infinity, the limit

lim
n→∞

∥g(τ)− gn(τ)∥L2 = 0.

And, assume that the error vector associated with the Caputo’s operational matrix is defined as:

Eφ =C Dφ
0+ψ(τ)−D(φ)ψ(τ),

where,

Eφ = [eφ0 , e
φ
1 , . . . , e

φ
n].

Therefore,

∥eφi ∥L2 ≤
i∑

s=0

Bsi Γ(s+ 1)

Γ(s− φ+ 1)

(
Gram(τν−φ,C 0(τ), . . . ,C n(τ))

Gram(C 0(τ), . . . ,C n(τ))

)
.

Proof: If we consider Span{C 0(τ),C 1(τ),C 2(τ), . . . ,C n(τ)} a subspace from Hilbert space L2[0, 1], and
th function τν−φ has an approximation from it then it can considered as τν−φ =

∑n
j=0 M j

φC j(τ), by
utilizing Theorem 3.1 then one can express the following relation:

∥τν−φ −
n∑

j=0

M j
φC j(τ)∥L2 =

(
Gram(τν−φ,C 0(τ), . . . ,C n(τ))

Gram(C0(τ), . . . ,C n(τ))

)
, (3.17)

which indicates that the norm of the ith error term can be expressed as:

∥eφ∥L2 = ∥CDφ
0+C i(τ)−

n∑
j=0

ϕφ(i, j)C
j(τ)∥L2 ,

= ∥
i∑

s=⌈φ⌉

αsiΓ(s+ 1)

Γ(s− φ+ 1)
τs−φ −

i∑
s=⌈φ⌉

n∑
j=0

αsiεs,φj Γ(s+ 1)

Γ(s− φ+ 1)
C j(τ)∥,

≤
i∑

s=⌈φ⌉

αis Γ(s+ 1)

Γ(s− φ+ 1)
∥ts−φ −

n∑
j=0

εs,φ,
j C j(τ)∥L2 .
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Substituting from Eqn. (3.17), obtain

∥eφ∥L2 ≤
i∑

s=⌈φ⌉

αis Γ(s+ 1)

Γ(s− φ+ 1)

(
Gram(τs−φ,C 0(τ), . . . ,C r(τ))

Gram(C 0(τ), . . . ,C r(τ))

)
. (3.18)

The final equation conclude the proof.

■

Theorem 3.2 It is established that S5kCPs are bounded on the interval [0, 1], and specifically, they satisfy
the inequality:

|C j(τ)| <
√

2

π
(j + 2), ∀ τ ∈ [0, 1]. (3.19)

Proof: To demonstrate the inequality in Eqn. (3.19) , we consider the following two cases:

Case 1: j = 2r: By applying the connection formula in Eqn. (2.17) and the straightforward inequality
|T ∗

j (τ)| ≤ 1, we obtain:

|C j(τ)| ≤ 2

√
2

π

r∑
l=0

1

= 2

√
2

π
(r + 1)

=

√
2

π
(2r + 2)

=

√
2

π
(j + 2).

Case 2: j = 2r+1: Utilizing the connection formula in Eqn. (2.19) along with the inequality |T ∗
j (τ)| ≤ 1,

we find:

|C j(τ)|| ≤ 2
√
2√

π(2r + 1)(2r + 3)

r∑
l=0

(2l + 1)

=
2
√
2√

π(2r + 1)(2r + 3)
(r + 1)2

<
2
√
2(r + 1)2√
π(2r + 1)

≤
√
2√
π
(2r + 2)

=

√
2√
π
(j + 2)

<

√
2

π
(j + 2).

Thus, combining the results from both cases, we conclude that for all j ≥ 0, the following estimate holds:

|C j(τ)| <
√

2

π
(j + 2), ∀τ ∈ [0, 1].

■
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Theorem 3.3 Let g(τ) ∈ L2[0, 1] such that |g(3)(τ)| ≤ L, and assume it has an expansion of the form
given in (3.1). Define the global error as:

En(τ) =

∞∑
j=n+1

M j C j(τ).

Then, the global error is bounded, as follows:

|En(τ)| < 3L

n
.

Proof : The complete proof of this theorem found in [31].

■

Theorem 3.4 Let g(τ) be a function that satisfies the conditions outlined in Theorem 3.3. Define the
approximate solution obtained through the proposed method as:

gn(τ) =

n∑
i=0

M i C i(τ).

Then, the following inequality holds:

sup
τ∈[0,1]

|g(τ)− gn(τ)| ≤
3L

n
+ ϵn∥M̃ − M ∥2.

Proof: Let gn(τ), and g̃n(τ), are two different approximate functions according to (3.3) of g(τ). therefore,
we can express the error as follows:

|g(τ)− gn(τ)| ≤ |g(τ)− g̃n(τ)|+ |g̃n(τ)− gn(τ)|. (3.20)

According to Theorem 3.3, we have

|g(τ)− g̃n(τ)| ≤
3L

n
. (3.21)

Additionally, applying the Cauchy–Schwarz inequality, we can write

|g̃n(τ)− gn(τ)| =

∣∣∣∣∣
n∑

i=0

M̃ iC i(τ)−
n∑

i=0

M iCi(τ)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=0

(M̃ i − M i)C i(τ)

∣∣∣∣∣ ,
then

|g̃n(τ)− gn(τ)| ≤
n∑

i=0

|M̃ i − M i| ·

(
n∑

i=0

|C i(τ)|2
)1/2

.

From Eqn. (3.19), we have (
n∑

i=0

|C i(τ)|2
)1/2

≤ ϵn =

(
n∑

i=0

2

π
(i+ 2)2

) 1
2

.

Let M̃ = [M̃ 0, M̃ 1, . . . , M̃ n]T , and M = [M 0,M 1, . . . ,M n], then we have:

n∑
i=0

|M̃ i − M i| =

(
n∑

i=0

|M̃ i − M i|2
) 1

2

= ∥M̃ − M ∥2,

then,
|g̃n(τ)− gn(τ)| ≤ ϵn∥M̃ − M ∥2. (3.22)

Combining (3.20), (3.21), and (3.22), obtain

sup
τ∈[0,1]

|g(τ)− gn(τ)| ≤
3L

n
+ ϵn∥M̃ − M ∥2.
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■

Theorem 3.5 Assume that: CD
iφ
0+g (τ) is a continuous function through the interval (0, 1] where, i =

0, 1, · · · , n, and
∣∣∣CDiφ

0+g (ξ)
∣∣∣ ≤ L̃, where L̃ is a real constant and 0 < ξ ≤ τ . Consider H̄n =

Span{C 0(τ),C 1(τ),C 2(τ), . . . ,C n(τ)} is an n-dimensional subspace. If gn (τ) is the best approxima-
tion of the function g (τ) out of H̄n, then the error bound is estimated by:

∥ g (τ)− gn (τ) ∥2≤
L̃ζn,φ

Γ (mα+ 1)
, (3.23)

where ζn,φ is defined by:

ζn,φ =

√
(1 + 2nφ(1 + 2nφ))

√
πΓ
(
1
2 + 2an

)
Γ(3 + 2nφ)

, (3.24)

which converges for all τ ∈ (0, 1]).

Proof: suppose that: the expansion of the continuous function g (τ) through the interval (0, 1] , in terms
of the generalized Taylor’s series [32,30], is given as:

g (τ) =

n−1∑
i=0

τ iφ

Γ (iφ+ 1)
CD

φ
0+g (0) +

τnφ

Γ (nφ+ 1)
CD

φ
0+g (ξ) , (3.25)

for ξ ∈ [0, τ ]. From the previous definition of the Taylor generalized series we can write:∣∣∣∣∣g (τ)−
n−1∑
i=0

τ iφ

Γ (iφ+ 1)
CD

φ
0+g (0)

∣∣∣∣∣ ≤ τnφ

Γ (nφ+ 1)

∣∣
CD

φ
0+g (ξ)

∣∣ = L̃τnφ

Γ (nφ+ 1)
.

Since, gn (τ) is the best approximation of g (t) in H̄n, hence, the squared norm (or distance) between the
original function g(τ) and its best approximation gn(τ) is less than or equal to the squared norm between
g(τ) and any other function in the subspace H̄n, then,

∥ g (τ)− gn (τ) ∥2≤∥ g (τ)−
n−1∑
i=0

τ iφ

Γ (iφ+ 1)
CD

φ
0+g (0) ∥2,

or ∫ 1

0

|g (τ)− gn (τ)|2 ω(τ)dτ ≤ L̃2

Γ (nφ+ 1)
2

∫ 1

0

τ2nφω(τ)dτ,

in other form

∥ g (τ)− gn (τ) ∥2≤
L̃

Γ (nφ+ 1)

√
(1 + 2nφ(1 + 2nφ))

√
πΓ
(
1
2 + 2an

)
Γ(3 + 2nφ)

,

then the error bound is:

∥ g (τ)− gn (τ) ∥2≤
L̃ζn,φ

Γ (nφ+ 1)
,

which proves the theorem.

■
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4. Operational matrices of derivative

In this section, we will present the operational matrices for the derivatives of the S5kCPs. Assuming
G(τ) is a square Lebesgue integrable function defined through the interval [0, 1], and ψ(τ), T (τ) are
defined as previous.

Proposition 4.1 The first order derivative of the vector ψ(τ) with respect to τ can be represented as:

dψ(τ)

dτ
= D(1)ψ(τ), (4.1)

where, D(1) is the operational matrix of derivatives, and represented as (n+ 1)× (n+ 1) matrix, defined
as:

D(1) =


0 0 · · · 0∑i

s=1 ϕ1(1, 0)
∑i

s=1 ϕ1(1, 1) · · ·
∑i

s=1 ϕ1(1, n)
...

...
. . .

...∑i
s=1 ϕ1(i, 0)

∑i
s=1 ϕ1(i, 1) · · ·

∑i
s=1 ϕ1(i, n)

 , (4.2)

where, ϕ1(s, j) = αsi s qj,s−1, in addition, αsi and qj,s−1 are previously defined in (2.23), (2.25).

Proof. The expression for the first order S5kCPs relation (2.22) is given by:

D1C i(τ) = D1
i∑

s=0

αsiτs =

i∑
s=0

αsisτs−1,

from the inverse relation (2.21), where, s ≥ 1,

τs−1 =

s−1∑
j=0

qj,s−1C
j(τ),

and qj,s−1 defined early in (2.25), then,

D1C i(τ) =

i∑
s=1

s−1∑
j=0

αsi s qj,s−1C
j(τ), (4.3)

or, in the other form

D1C i(τ) =

s−1∑
j=0

i∑
s=1

ϕ1(s, j)C
j(τ) = D(1) · ψ(τ),

where, ϕ1(s, j) = αsi s qj,s−1, we can express the previous equation in vector form as:

D1C i(τ) =

[
i∑

s=1

ϕ1(s, j),

i∑
s=1

ϕ1(s, j), . . . ,

i∑
s=1

ϕ1(s, j)

]
ψ(τ), i = 1, 2, . . . , n. (4.4)

Also, one clearly can write:

D1C i(τ) = [0, 0, . . . , 0]ψ(τ), at, i = 0. (4.5)

By combining Eqs. (4.4) and (4.5), one obtains the required result.

■
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Proposition 4.2 For any positive integer n, the n-th derivative of the S5kCPs vector ψ(τ) can be rep-
resented using the operational matrix D(1) (4.2) as:

dnψ(τ)

dτn
= D(n)ψ(τ), (4.6)

where, D(n) = (D(1))n, for n = 1, 2, 3, . . .. The matrix D(n) represents the operational matrix correspond-
ing to the n-th order derivative.

Proposition 4.3 The first order derivative of T (τ) = [T ∗
0 (τ), T

∗
1 (τ), . . . , T

∗
n(τ)]

T , with respect to τ can
then be represented as:

dT (τ)

dτ
= D(1)T (τ), (4.7)

where, D(1) is the ordinary operational matrix of derivative, which represented as an (n + 1) × (n + 1)
matrix, defined as:

D (1) = (dij) =


4i
ϵj , for j = 0, 1, . . . , i = j + k,

k = 1, 3, 5, . . . , n, if n is odd,

k = 1, 3, 5, . . . , n− 1, if n is even,

0, otherwise.

For example, when n is even, D(1) is given by:

D (1) = 2



0 0 0 0 0 · · · 0 0
1 0 0 0 0 · · · 0 0
0 4 0 0 0 · · · 0 0
3 0 6 0 0 · · · 0 0
0 8 0 8 0 · · · 0 0
5 0 10 0 10 · · · 0 0
...

...
...

...
... · · ·

...
...

n− 1 0 2n− 2 0 2n− 2 · · · 0 0
0 2n 0 2n 0 · · · 2n 0


.

Proposition 4.4 For any positive integer n, the n-th derivative of the S1kCPs vector T (τ) can be rep-
resented using the operational matrix D (1) as:

dnT (τ)

dτn
= D(n)T (τ), (4.8)

where, D(n) = (D(1))n, for n = 1, 2, 3, . . .. The matrix D (n) represents the operational matrix correspond-
ing to the n-th derivative.

Proposition 4.5 The left-sided Caputo’s fractional derivative of order φ for the vector of S1kCPs, de-
noted as T (τ) = [T ∗

0 (τ), T
∗
1 (τ), . . . , T

∗
n(τ)]

T , is expressed as:

CD
φ
0+T (τ) ≈ D(φ)T (τ), (4.9)

and the matrix D(φ) is the (n+1)×(n+1) operational matrix of the fractional derivative in the following
form:

D (φ) =



0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

n∑
r=⌈φ⌉

S⌈φ⌉,0,i
n∑

r=⌈φ⌉
S⌈φ⌉,1,i · · ·

n∑
r=⌈φ⌉

S⌈φ⌉,j,i

...
...

. . .
...

n∑
r=⌈φ⌉

Sr,0,i

n∑
r=⌈φ⌉

Sm,1,i · · ·
n∑

r=⌈φ⌉
Sn,j,i


, (4.10)
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also, the coefficients Sr,j,i is given by:

Sr,j,i =

√
π

hj

j∑
l=0

(−1)i+r+j+li(i+ r − 1)!j(j + l − 1)!22r+2lΓ(r + 1)Γ(r + l − φ+ 1
2 )

(i− r)!(j − l)!(2r)!(2l)!Γ(r − φ+ 1)Γ(r + l − φ+ 1)
. (4.11)

proof. By using Eqns.(2.2) and (2.20) we get

CD
φ
0+T

∗
i (τ) = i

∑i
r=0(−1)r+i 2

2r(r+i−1)!
(2r)!(i−r)! CD

φ
0+τ

r

= i
∑i

r=0(−1)r+i 2
2r(r+i−1)!
(2r)!(i−r)! · Γ[r+φ]

Γ[r+φ−1]τ
r−φ, r = ⌈φ⌉, . . . , n.

(4.12)
Next, we approximate τ r−φ using a shifted Chebyshev polynomial series consisting of (n+ 1) terms, we
have

τ r−α ≈
n∑

j=0

Ar,jT
∗
j (τ), (4.13)

where,

Ar,j =
1

hj

∫ 1

0

τ r−φT ∗
j (τ) dτ =

1

hj

j∑
l=0

(−1)l+j 2
2l(l + j − 1)!

(2l)!(j − l)!

∫ 1

0

1√
τ − τ2

τ r−φ+l dτ,

=

√
π

hj

j∑
l=0

(−1)l+j 2
2l(l + j − 1)! Γ(r − φ+ l + 1

2 )

(2l)! (j − l)! Γ(r − φ+ l + 1)
, (4.14)

and hj =
ϵjπ

2
, such that ϵj = 1 for k ≥ 1 and ϵ0 = 2. Applying Eqs. (4.12)–(4.14), then, we get:

CD
φ
0+T

∗
i (τ) ≈

i∑
r=⌈φ⌉

n∑
j=0

(−1)r+i 2
2ri(r + i− 1)!

(2r)!(i− r)!

Γ(r + φ)

Γ(r + φ− 1)
Ar,j T ∗

j (τ)

=

n∑
j=0

(

i∑
r=⌈φ⌉

Sr,j,i)T
∗
j (τ) =M · T ∗

j (τ), i = ⌈α⌉, . . . , n, (4.15)

where, Sr,j,i is defined in Eq.(4), we can express Eq. (4.15) in vector form as:

CD
φ
0+T

∗
i (τ) ≈

 i∑
r=⌈α⌉

Sr,0,i,

i∑
r=⌈φ⌉

Sr,1,i, . . . ,

i∑
r=⌈φ⌉

Sr,j,i

Φ(τ), i = ⌈φ⌉, . . . , n. (4.16)

Also, we can write:

CD
φ
0+T

∗
k (τ) = [0, 0, . . . , 0]Φ(τ), i = 0, 1, . . . , ⌈φ⌉ − 1. (4.17)

By combining Eqs. (4.16) and (4.17), obtain the required result.

■

Numerous prior works have demonstrated the construction of operational matrices for Caputo’s fractional
derivatives. See [33] for an illustration.

Proposition 4.6 The ordinary and fractional derivatives operate the well-defined function G(τ), which,
approximated in terms of the S5kCPs as: G(τ) = M Tψ(τ), (3.3), according to the operational matrices
of derivatives given in (4.6) and (3.12) as:

DnG(τ) = M T · D(n) · ψ(τ), (4.18)

CD
φ
0+G(τ) = M T · D(φ) · ψ(τ). (4.19)
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Proof. Since, the approximation of well-defined function in (3.3)

G(τ) = M Tψ(τ),

DnG(τ) = M TDnψ(τ) = M T · D(n) · ψ(τ).

Similarly,

CD
φ
0+G(τ) = M T

CD
φ
0+ψ(τ) = M T · D(φ) · ψ(τ).

■

Proposition 4.7 The ordinary and fractional derivatives operate the well-defined function
G(τ) = M Tψ(τ), (3.3) according to the operational matrices (4.8) and (4.9) and using the connection
relation (3.5) given as:

DnG(τ) = M T · Bn · D (n) · (Bn)
−1
ψ(τ). (4.20)

CD
φ
0+G(τ) = M T · Bn · D (φ) · (Bn)

−1
ψ(τ). (4.21)

Proof. Since, the approximation of the well-defined function in (3.3)

G(τ) = M Tψ(τ),

DnG(τ) = M TDnψ(τ) = M T · Bn ·DnT (τ) = M T · Bn · D (n)T (τ),

or

DnG(τ) = M T · Bn · D (n) · (Bn)
−1
ψ(τ).

Similarly,

CD
φ
0+T (τ) ≈ D(φ)T (τ),

CD
φ
0+G(τ) = M T · CD

φ
0+ψ(τ) = M T · Bn · CD

φ
0+T (τ) = M T · Bn · D (φ) · T (τ).

or

CD
φ
0+G(τ) = M T · Bn · D (φ) · (Bn)

−1
ψ(τ).

■

As demonstrated in Propositions 4.6 and 4.7, equivalent relationships can be established using distinct
matrices. These relationships not only support the following remark but also provide a framework for
developing two distinct schemes to approximate the function G(τ) and its derivatives of both integer and
fractional orders.

Remark 4.1 Using the connection relation (3.5), according to the operational matrices of derivatives
given in (4.1), (3.12), (4.8), and (4.9) the following matrices are equivalent.

D(φ) = Bn · D (φ) · (Bn)
−1
,

D(n) = Bn · D (n) · (Bn)
−1
.

(4.22)

These formulations provide a robust framework for analyzing and solving FDEs involving the S5kCPs
in the matrix computational discretization technique.

5. Linear and Nonlinear FDEs

In this section, we demonstrate the significance of the operational matrices (4.18), (4.19), (4.20), and
(4.21) for ordinary and fractional derivatives by applying them to solve some types of FDEs using matrix
tau approach.
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5.1. Linear FDEs

For the equation to be linear, each term involving G(τ) and its derivatives should only appear to the
first power, and products of G(τ) or its derivatives must not exist. If we assume that the equation can be
expressed without products of dependent variables, a linear representation could resemble the following
[34]:

n1∑
h=0

Ph(τ)G
(φh)(τ) = f(τ), (5.1)

and the suggested initial conditions are:

G(φh)(τh) = ξh, h = 0, . . . , (n1 − 1), (5.2)

where, f(τ) is well-defined function, and, G(φh)(τ) = CD
φh

0+G(τ), to solve the linear Eqn. (5.1), we
approximate G(τ) using S5kCPs as:

G(τ) ≈
n∑

j=0

M jC j(τ),= M Tψ(τ), (5.3)

where M j represents the coefficients vector, M = [M 0,M 1, . . . ,M n]T , is the vector of unknown coeffi-
cients, and ψ(τ) = [C 0(τ),C 1(τ), . . . ,C n(τ)]T , is the vector of S5kCPs, therefore, n > n1.
Using the operational matrices given in propositions 4.6 and 4.7 for fractional derivatives, Using tau’s
numerical approach, the residual can be constructed as follows:

Rn(τ) =

n1∑
h=0

Ph(τ) CD
φh

0+Mψ(τ)− f(τ), (5.4)

or,

Rn(τ) =

n1∑
h=0

Ph · M T · D(φh)ψ(τ)− FT · ψ(τ), (5.5)

Rn(τ) =

n1∑
h=0

Ph · M T · Bn · D (φh) · (Bn)
−1
ψ(τ)− FT · ψ(τ), (5.6)

such that,

Ph =


Ph(τ) 0 · · · 0
0 Ph(τ) · · · 0
...

...
...

...
0 0 · · · Ph(τ)

 , F =


f0
f1
...
fn

 , fj =

∫ 1

0

f(τ)w(τ)C jdτ.

By applying the tau method by enforcing the orthogonality of the residual:

⟨Rn(τ),C
j(τ)⟩ =

∫ 1

0

Rn(τ)C
j(τ)w(τ) dτ = 0, j = 0, 1, . . . , (n− n1 − 1). (5.7)

In addition, (n1 − 1) equations are produced directly from the initial conditions (5.2), and using the
formation of the operational matrices as shown below:

G(φh)(τh) = M T · D(φh) · ψ(τh) = [ξh] , h = 0, 1, 2, . . . , (n1 − 1), (5.8)

or, using the second scheme as:

G(φh)(τh) = M T · Bn · D (φh) · (Bn)
−1
ψ(τh) = [ξh] , h = 0, 1, 2, . . . , (n1 − 1). (5.9)

Solving the system (5.7) together with (5.8) or (5.9), yields the unknown coefficients M T , and the
approximate solution is then obtained from Eq. (5.3).
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5.2. Nonlinear FDEs

For the nonlinear case, the equation retains the nonlinear interactions between G(τ) and its fractional
derivatives [35]:

n1∑
k=0

n2∑
h=0

Qk,h(τ)G
k(τ)G(νh) +

n3∑
k=1

n4∑
h=0

Pk,h(τ)G
(h)(τ)g(φh) = f(τ). (5.10)

and the connected conditions are:

G(τh) = ξh, h = 0, 1, 2, . . . , (nl − 1). (5.11)

As in the linear case, we approximate G(τ), G(h)(τ), G(νh)(τ), and G(φh)(τ), using S5kCPs via two
proposed schemes, according to tau approach, then, the residual for nonlinear case (5.10), (5.11) is given
by:

Rn(τ) =

n1∑
k=0

n2∑
h=0

Qk,h(τ)(M
Tψ(τ))kM T

CD
(νh)
0+ ψ(τ)+

n3∑
k=1

n4∑
h=0

Pk,h(τ)M
TD(h)ψ(τ)M T

CD
(φh)
0+ ψ(τ)−f(τ).

Using the relations found in propositions 4.6, and 4.7 we get:

Rn(τ) =

n1∑
k=0

n2∑
h=0

Qk,h·(M Tψ(τ))k ·M T ·D(νh)ψ(τ)+

n3∑
k=1

n4∑
h=0

P k,h·M T ·D(h)ψ(τ)·M T ·D(φh)ψ(τ)−F ·ψ(τ).

(5.12)
and,

Rn(τ) =
∑n1

k=0

∑n2

h=0Q
k,h · (M Tψ(τ))k · M T · Bn · D (νh) · (Bn)

−1
ψ(τ)

+
∑n3

k=1

∑n4

h=0 P
k,h · M T · Bn · D (h) (Bn)

−1 · ψ(τ) · M T · Bn · D(φh) · (Bn)
−1
ψ(τ)− F · ψ(τ).

(5.13)
Therefore,

Qk,h =


Qk,h(τ) 0 · · · 0

0 Qk,h(τ) · · · 0
...

...
...

...
0 0 · · · Qk,h(τ)

 , P k,h =


Pk,h(τ) 0 · · · 0

0 Pk,h(τ) · · · 0
...

...
...

...
0 0 · · · Pk,h(τ)

 ,

F =


f0
f1
...
fn

 , fj =

∫ 1

0

f(τ)w(τ)C jdτ.

Since this is a nonlinear system, we apply iterative techniques, to minimize the residual and solve for the
unknown coefficient vector M . Applying the tau method leads us to enforce the orthogonality condition
in the same manner:

⟨Rn(τ),C
j(τ)⟩ =

∫ 1

0

Rn(τ)C
j(τ)w(τ) dτ = 0, j = 0, 1, . . . , (n− nl − 1). (5.14)

Eqn. (5.14) produces (n−nl−1) non-linear algebric equations, such that nl is the greatest for l = 0, 1, 2, 3
and 4, and it is noted that n > nl. In a similar case we can construct the system using (5.14) and the
conditions (5.11) as:

G(τh) = M T · ψ(τh) = [ξh] , h = 0, 1, 2, . . . , (nl − 1).

This results in a system of nonlinear equations that can be solved iteratively, to find the coefficient vector
M .
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6. Test Examples

In this section, we introduce a test cases to showcase the precision and effectiveness of the proposed
method utilizing S5kCPs. The method is applied to a fractional differential equation, with the numerical
results compared to the exact solution. The evaluation of the method’s performance is conducted through
comprehensive error analysis and an assessment of computational efficiency.

Example 1. Consider the initial value problem of Bagley Torvik equation [36,37,38,39].
The general form of the Bagley-Torvik equation is:

D2G(τ) +D(φ)G(τ) +G(τ) = f(τ), 0 ≤ τ ≤ 1, (6.1)

subject to the initial conditions:
G(0) = 0, G′(0) = 0. (6.2)

The Bagley–Torvik equation is solved using the tau method for three different cases with the results
compared to other numerical methods to assess the proposed approach’s reliability. The method is
applied to the problem for φ = 3

2 , within the interval [0, 1].

Case 1: When f(τ) = 2 + 4
√

τ
π + τ2.

By applying the method described in Section 5.1 with n = 3, we approximate the function G(τ) using
S5kCPs, represented by the following series expansion:

G(τ) ≈
n∑

j=0

M jC j(τ),= M Tψ(τ),

where the vector ψ(τ) = [C 0(τ),C 1(τ), . . . ,C n(τ)]T is the vector of S5kCPs, therefore, n > n1,
and the coefficient vector M j is given by:

M = [M 0,M 1, . . . ,M n]T .

From Eqns. (5.5-5.7) the residual of the fractional differential equation is formulated as:

Rn(τ) =

n1∑
h=0

Ph[M · Bn · D2 · (Bn)
−1 · ψ(τ) + M · Bn · D 3

2 · (Bn)
−1 · ψ(τ) + M · ψ(τ)− FT · ψ(τ)].

Here, we have

D (1) =


0 0 0 0
2 0 0 0
0 8 0 0
6 0 12 0

 ,

D (2) =


0 0 0 0
0 0 0 0
16 0 0 0
0 96 0 0

 ,

D
3
2 =


0 0 0 0
0 0 0 0
64

π3/2
128

3π3/2 − 128
15π3/2

128
35π3/2

− 128
3π3/2

768
5π3/2

768
7π3/2 − 256

9π3/2

 ,

B3 =



√
2
π 0 0 0

0 2
√

2
3π 0 0

−
√

2
π 0 2

√
2
π 0

0 −2
√

2
15π 0 2

√
6
5π

 ,
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and

ψ(τ) =



√
2
π

2
√

2
3π (−1 + 2x)

2
√

2
π

(
− 3

2 + 2(−1 + 2x)2
)

2
√

2
15π

(
1− 2x+ 3(−3(−1 + 2x) + 4(−1 + 2x)3)

)

 .

So that:
P0(τ) = 1, P1(τ) = 1, P2(τ) = 1.

Table (1) provides a comparison of the exact and numerical solutions, along with the absolute errors
for different methods at n = 5. The results demonstrate that the S5KCPs achieves superior accuracy,
with the absolute errors remaining exceptionally small across all values of τ , where the exact solution
is G(τ) = τ2. In contrast, the other methods show relatively larger errors, particularly at intermediate
values of τ , highlighting the high precision and reliability of the S5KCPs for solving the given problem.
Figure (1) presents a clear comparison between the exact solution and the numerical solution obtained
through the proposed method. As shown in the plot, the numerical solution closely matches the exact
solution, indicating the high accuracy and effectiveness of the method in approximating the solution of
the fractional differential equation. Figure(2) illustrates the comparison between the absolute error and
the values of τ . As observed, the absolute error decreases as τ increases, demonstrating the convergence
of the numerical method with respect to the chosen parameter. This behavior emphasizes the efficiency
of the S5kCPs in reducing the error.

Table 1: Comparison of exact and numerical solutions along with absolute errors for different methods,
for example 1, case 1.

τ Exact Solution Numerical Solution S5KCPs, n = 5 [37] [38] [39]

0.0 0.0 3.87× 10−16 3.87× 10−16 - - -

0.1 0.01 0.0100 3.97× 10−16 8.74× 10−9 9.64× 10−11 1.40× 10−13

0.2 0.04 0.0400 3.89× 10−16 8.17× 10−9 3.86× 10−10 5.60× 10−13

0.3 0.09 0.0900 3.88× 10−16 8.17× 10−9 8.67× 10−10 1.26× 10−12

0.4 0.16 0.1600 3.88× 10−16 8.34× 10−9 1.54× 10−9 2.24× 10−12

0.5 0.25 0.2500 3.88× 10−16 8.59× 10−9 2.41× 10−9 3.50× 10−12

0.6 0.36 0.3600 4.44× 10−16 8.90× 10−9 3.47× 10−9 5.04× 10−12

0.7 0.49 0.4900 3.33× 10−16 9.28× 10−9 4.72× 10−9 6.87× 10−12

0.8 0.64 0.6400 3.33× 10−16 9.72× 10−9 6.17× 10−9 8.97× 10−12

0.9 0.81 0.8100 3.33× 10−16 1.02× 10−8 7.81× 10−9 1.14× 10−11

1.0 1.00 1.0000 4.44× 10−16 1.09× 10−8 9.64× 10−9 1.40× 10−11

Case 2: Here, f(τ) is selected such that the exact solution G(τ) = sin(ατ) [40,41,42]. Table (2) shows
that increasing n improves accuracy, with n = 12 yielding the smallest errors when α = 1. While errors
increase with larger τ , higher n consistently ensures better precision, emphasizing the advantages of
higher-order methods. Table (3) highlights the superior accuracy of the S5kCPs method, with the the
mean absolute error (MAE) approaching machine precision as n increases. The another methods exhibit
larger errors, particularly for higher values of φ. Figure (3) shows the reduction in absolute error as n
increases, demonstrating that higher values of n lead to more accurate numerical solutions.

Case 3: In this scenario, the function f(τ) = 5τ + 8τ
3
2√
π

+ τ3 is selected, resulting in the exact solution

G(τ) = τ3 − τ , with the initial conditions G(0) = 0 and G′(0) = −1. Table (4) presents a comparison
of error values for four distinct numerical techniques with n = 5 and varying values of τ . The results
indicate that the S5KCPs technique consistently produces the smallest errors at each point, significantly
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Figure 1: Comparison between the exact and the numerical solution for example 1, case 1.

Figure 2: Comparison between Absolute error and τ values for example 1, case 1.

Figure 3: Absolute analysis with different n values for example 1, case 2
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Table 2: Absolute errors for n = 4, n = 8, and n = 12 at various τ values, along with the exact solution,
for example 1, case 2.

τ Exact Solution n = 4 n = 8 n = 12

0.0 0.000000 1.006× 10−16 1.084× 10−17 3.642× 10−17

0.1 0.0998334 4.065× 10−6 2.766× 10−11 1.640× 10−11

0.2 0.198669 1.532× 10−5 1.392× 10−11 1.287× 10−11

0.3 0.29552 7.998× 10−5 6.299× 10−11 1.418× 10−11

0.4 0.389418 1.855× 10−4 1.137× 10−10 8.602× 10−11

0.5 0.479426 3.110× 10−4 6.064× 10−10 2.419× 10−10

0.6 0.564642 4.284× 10−4 1.062× 10−9 1.194× 10−9

0.7 0.644218 5.115× 10−4 1.166× 10−9 2.377× 10−9

0.8 0.717356 5.443× 10−4 1.045× 10−9 3.339× 10−9

0.9 0.783327 5.293× 10−4 1.021× 10−9 4.166× 10−9

1.0 0.841471 4.943× 10−4 1.031× 10−9 4.965× 10−9

Table 3: Comparison of MAE between the methods for example 1, case 2.

n α = 1 α = 4π

S5KCPs FTM [41] CSM [42] S5KCPs FTM [41] CSM [42]

4 5.4×10−4 2.7× 10−4 3.4× 10−4 2.6× 10−2 2.5×10−2 3.9× 100

8 1.1× 10−9 3.5× 10−7 4.3× 10−7 4.2× 10−9 3.5× 10−4 4.7× 10−1

16 7.9× 10−16 4.2× 10−10 1.8× 10−8 2.3× 10−16 4.2× 10−9 3.5× 10−5

outperforming the other approaches. The error values for S5KCPs are smaller than those for the other
methods, demonstrating its superior accuracy and effectiveness. While the errors generally increase as
τ grows, S5KCPs remains the most precise even at higher values of τ , making it a highly reliable and
efficient solution. Figure (4) illustrates the comparison between the exact solution and the numerical
solution obtained using the proposed method, in addition, figure (5) shows the differences between the
numerical and the exact solution. This indicates the high accuracy and effectiveness of the numerical
method in approximating the exact solution.

Table 4: Comparison of Error Values for Different Methods with n = 5 for example 1, case 3.

n = 5

τ [37] [38] [39] S5KCPs

0.1 1.04× 10−7 1.85× 10−8 2.9432× 10−13 8.32× 10−17

0.2 1.41× 10−7 3.71× 10−8 2.5719× 10−12 2.78× 10−17

0.3 1.76× 10−7 5.59× 10−8 8.8158× 10−12 0.0
0.4 2.19× 10−7 7.51× 10−8 2.1010× 10−11 0.0
0.5 2.75× 10−7 9.48× 10−8 4.1136× 10−11 5.55× 10−17

0.6 3.49× 10−7 1.15× 10−7 7.1180× 10−11 1.11× 10−16

0.7 4.47× 10−7 1.36× 10−7 1.1312× 10−10 5.55× 10−17

0.8 5.77× 10−7 1.58× 10−7 1.6895× 10−10 1.67× 10−16

0.9 7.49× 10−7 1.81× 10−7 2.4064× 10−10 1.38× 10−16

Example 2. Consider the non-linear fractional differential equation [43]:

DφG(τ)− 6G2(τ) = f(τ), (6.3)
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Figure 4: The exact solution values represent the analytical solution for the given τ for example 1, case
3.

Figure 5: The differences between the numerical and exact solution for example 1, case 3.
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Figure 6: Comparison of the exact and approximate solutions for example 2.

with the initial conditions:

G(0) = 0, G′(0) = 1. (6.4)

This example investigates a fractional differential equation with specific initial conditions and a non-
homogeneous term to produce the exact solution

G(τ) = τ2φ − τ2.

Table (5) presents a comparison of absolute errors obtained using the S5kCPs and another numerical
method, highlighting the accuracy of S5KCPs for φ = 2. Figure (6) illustrates a comparison between the
exact solution G(τ) and the approximate solution Gapp(τ), showing agreement across the interval [0, 1].
The minimal deviation highlights the high accuracy and stability of the approximation method. Figure
(7) illustrates a comparison between the absolute errors for two different methods across the interval
[0, 1]. The minimal deviation between the methods demonstrates the high accuracy and stability of the
S5KCPs method compared to the other method, highlighting the effectiveness of the approximation in
capturing the exact solution’s behavior.

Table 5: Comparison of absolute errors for example 2 with φ = 2.

τ Exact Solution Absolute Error (S5KCPs) Method [43]

0.0 0.0000 6.93× 10−18 0.0
0.1 −0.0099 1.04× 10−17 2.83× 10−5

0.2 −0.0384 4.16× 10−17 2.36× 10−5

0.3 −0.0819 2.77× 10−17 2.02× 10−5

0.4 −0.1344 2.77× 10−17 8.19× 10−5

0.5 −0.1875 8.32× 10−17 1.81× 10−5

0.6 −0.2304 1.11× 10−16 1.73× 10−5

0.7 −0.2499 1.11× 10−16 1.65× 10−5

0.8 −0.2304 1.66× 10−16 1.91× 10−5

0.9 −0.1539 1.38× 10−16 2.36× 10−5

1.0 −9.02× 10−17 9.02× 10−17 2.53× 10−5

Example 3: Consider the following boundary-value problem [36]:

D3/2G(τ) +G(τ) = τ5 − τ4 +
128τ3.5

7
√
π

− 64τ2.5

5
√
π
, (6.5)
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Figure 7: Absolute Errors for example 2 with φ = 2.

subject to the boundary conditions:

G(0) = 0 and G(1) = 1, (0 ≤ τ ≤ 1).

We solve the boundary-value problem using the introduced method , with the exact solution given
by G(τ) = τ4(τ − 1). The results are presented in Table (6) highlights the accuracy of the S5kCPs
method, demonstrating its capacity to consistently yield very small absolute errors over the entire interval.
This indicates that the S5kCPs method is a reliable and efficient technique for solving such problems.
Furthermore, figures (8), (9) give comparison between exact and numerical solution and the absolute
error.

Table 6: A comparison of the results for example 3 when n = 5

τ Exact Solution G(τ) Absolute Error (S5kCPs) Method [36]

0.0 0.0 1.31× 10−16 0.0
0.1 −0.00009 1.16× 10−16 2× 10−6

0.2 −0.00128 8.04× 10−17 3× 10−6

0.3 −0.00567 5.72× 10−17 1× 10−6

0.4 −0.01536 2.08× 10−17 0.0
0.5 −0.03125 6.93× 10−18 2× 10−6

0.6 −0.05184 4.16× 10−17 1× 10−6

0.7 −0.07203 6.93× 10−17 3× 10−6

0.8 −0.08192 9.71× 10−17 2× 10−6

0.9 −0.06561 1.52× 10−16 0× 10−6

1.0 −1.2837× 10−16 1.28× 10−16 2× 10−6

Example 4. The following fractional boundary value problem of the Bagley–Torvik equation [43,44]:

G′′(τ) + 0.5D0.5G(τ) +G(τ) = 3 +
4τ3/2

3
√
π

+ τ2, (6.6)

with the boundary conditions:

G(0) = 1, G(1) = 2.

Table (7) presents a comparison of the absolute errors for two methods (S5KCPs and another method)
with the exact solution G(τ) = τ2 + 1. The presented method consistently produces zero absolute errors
for all values of τ , highlighting its exceptional accuracy. On the other hand, the other method exhibits
nonzero errors, indicating that S5kCPs outperforms it for solving this problem. Finally, figures (10), (11)
show the comparison between exact and S5kCPs solution and the absolute error.
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Figure 8: comparison between exact and numerical solution for example 3.

Figure 9: comparison between absolute error and the values of τ for example 3.

Figure 10: Numerical and exact solution for example 4.
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Table 7: A comparison of the results for example 4 when n = 8

τ Exact Solution G(τ) Absolute Error (S5KCPs) Absolute Error [44]
0.0 1.0 0.0 0.0
0.1 1.01 2.22× 10−16 1.93× 10−12

0.2 1.04 0.0 3.16× 10−11

0.3 1.09 0.0 3.67× 10−10

0.4 1.16 2.22× 10−16 3.66× 10−9

0.5 1.25 0.0 3.30× 10−9

0.6 1.36 0.0 2.74× 10−9

0.7 1.49 0.0 2.09× 10−10

0.8 1.64 0.0 1.40× 10−11

0.9 1.81 0.0 7.00× 10−12

1.0 2.0 0.0 0.0

Figure 11: Absolute errors for example 4.

Conclusion

In this work, we have presented an efficient approach using S5kCPs via matrix computational tau
method for solving FDEs. The proposed method was applied to a series of test cases, showcasing its
accuracy and computational efficiency. The comparison between the numerical solutions and exact so-
lutions demonstrated excellent agreement, reinforcing the reliability of the method. Through detailed
error analysis, we established that the method converges rapidly with increasing terms, highlighting its
robustness in dealing with both linear and nonlinear fractional-order problems. This approach proves
to be an effective and versatile tool for solving a wide range of fractional differential equations, offering
potential for use in diverse scientific and engineering fields. Future work can extend this technique to
handle more complex boundary conditions and higher-order fractional derivatives, further expanding its
applicability.
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