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An additive functional inequality in C∗-algebras

Siriluk Donganont

abstract: In this paper, we introduce an additive functional inequality∥∥∥∥2g(λu+ y

2

)
− λg(u)− g(y)

∥∥∥∥ ≤ ∥s(g (λu+ y)− λg(u)− g(y))∥ (0.1)

for all λ ∈ C, all unitary elements u in a unital C∗-algebra P and all y ∈ P , where |s| < 1. Using both the
direct method and the fixed point method, we establish the Hyers-Ulam stability of inequality (0.1) in unital
C∗-algebras. Furthermore, we apply these results to the study of C∗-algebra homomorphisms and C∗-algebra
derivations in unital C∗-algebras.

Key Words:Hyers-Ulam stability, fixed point method, additive functional inequality, C∗-algebra
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question posed by Ulam [19] con-
cerning the stability of group homomorphisms. Hyers [8] provided the first affirmative partial answer
to Ulam’s question in the context of Banach spaces. Hyers’ theorem was later generalized by Aoki [2]
for additive mappings, and by Rassias [18] for linear mappings by considering an unbounded Cauchy
difference. A further generalization of Rassias’ theorem was obtained by Găvruta [6], who replaced the
unbounded Cauchy difference with a general control function, following the spirit of Rassias’ approach.

Park [14,15] introduced additive ρ-functional inequalities and proved the Hyers-Ulam stability of
these inequalities in both Banach spaces and non-Archimedean Banach spaces. The stability problems
of various functional equations, functional inequalities, and differential equations have been extensively
studied by numerous authors (see [1,5,7,10,12,20]).

We now recall a fundamental result in fixed point theory.

Theorem 1.1 [3,4] Let (X, d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant α < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
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for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point w of J ;

(3) w is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, w) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [9] were the first to apply the stability theory of functional equations to
prove new fixed point theorems with practical applications. Using fixed point methods, the stability
problems of various functional equations have since been extensively studied by numerous authors (see
[16,17]).

Let P and Q be unital C∗-algebras. A C-linear mapping g : P → P is a C∗-algebra derivation if
g : A → A satisfies

g(xy) = g(x)y + xg(y), g(x∗) = g(x)∗

for all x, y ∈ P , and a C-linear mapping h : P → Q is a C∗-algebra homomorphism if h : P → Q satisfies

h(xy) = h(x)h(y), h(x∗) = h(x)∗

for all x, y ∈ P .

In this paper, we solve the additive functional inequality (0.1) and prove the Hyers-Ulam stability of
the functional inequality (0.1) in unital C∗-algebras by using the direct method and by the fixed point
method. Furthermore, we investigate C∗-algebra derivations and C∗-algebra homomorphisms in unital
C∗-algebras associated to the additive functional inequality (0.1).

Throughout this paper, assume that P is a unital C∗-algebra with unitary group U(P ) := {u ∈
P |u∗u = uu∗ = e} and Q is a unital C∗-algebra and that s is a fixed nonzero complex number with
|s| < 1.

2. Hyers-Ulam stability of the functional inequality (0.1): direct method

In this section, we solve and investigate the functional inequality (0.1) in unital C∗-algebras.

Lemma 2.1 Assume that a mapping g : P → Q satisfies∥∥∥∥2g(λu+ y

2

)
− λg(u)− g(y)

∥∥∥∥ ≤ ∥s(g (λu+ y)− λg(u)− g(y))∥ (2.1)

for all λ ∈ C, all u ∈ U(P ) and all y ∈ P . Then the mapping g : P → Q is C-linear.

Proof: Let λ = 0 in (2.1), we get 2g
(
y
2

)
= g(y) for all y ∈ P and so we get g(0) = 0.

∥g (λu+ y)− λg(u)− g(y)∥ =

∥∥∥∥2g(λu+ y

2

)
− λg(u)− g(y)

∥∥∥∥
≤ ∥s(g (λu+ y)− λg(u)− g(y))∥

and so

g (λu+ y) = λg(u) + g(y) (2.2)

for all λ ∈ C, all u ∈ U(P ) and all y ∈ P , since |s| < 1

Let y = 0 in (2.2), we get g(λu) = λg(u) for all λ ∈ C and all u ∈ U(P ).
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Since each x ∈ P is a finite linear combination of unitary elements (see [11]), i.e., x =
∑m

j=1 λjuj (λj ∈
C, uj ∈ U(P )),

g(λx+ y) = g(λ

m∑
j=1

λjuj + y) = g(

m∑
j=1

λλjuj + y) = g(λλ1u1 +

m∑
j=2

λλjuj + y)

= λλ1g(u1) + g(

m∑
j=2

λλjuj + y)

...

= λλ1g(u1) + λλ2g(u2) + · · ·+ g(λλmum + y)

= λλ1g(u1) + λλ2g(u2) + · · ·+ λλmg(um) + g(y)

= λ(λ1g(u1) + λ2g(u2) + · · ·+ λmg(um)) + g(y)

= λ(λ1g(u1) + λ2g(u2) + · · ·+ λm−1g(um−1) + g(λmum)) + g(y)

= λ(λ1g(u1) + λ2g(u2) + · · ·+ g(λm−1um−1 + λmum)) + g(y)

...

= λ(λ1g(u1) + g(λ2u2 + · · ·+ λmum)) + g(y)

= λ(g(λ1u1 + λ2u2 + · · ·+ λm−1um−1 + λmum)) + g(y)

= λg(x) + g(y)

for all λ ∈ C and all y ∈ P . So the mapping g : P → Q is C-linear. 2

Now we prove the Hyers-Ulam stability of the additive functional inequality (0.1) in unital C∗-algebras.

Theorem 2.1 Let φ : P × P → [0,∞) be a function such that

Φ(u, y) :=

∞∑
j=0

2jφ
( u

2j
,
y

2j

)
< ∞ (2.3)

for all u ∈ U(P ) and all y ∈ P . Assume that a mapping g : P → Q satisfies∥∥∥∥2g(λu+ y

2

)
− λg(u)− g(y)

∥∥∥∥ ≤ ∥s(g (λu+ y)− λg(u)− g(y))∥+ φ(u, y) (2.4)

for all λ ∈ C, all u ∈ U(P ) and all y ∈ P . Then there exists a unique C-linear mapping G : P → Q such
that

∥g(x)−G(x)∥ ≤ Φ(u, y) (2.5)

for all u ∈ U(P ) and all y ∈ P .

Proof: Let λ = 0 in (2.4), we get ∥∥∥g(y)− 2g
(y
2

)∥∥∥ ≤ φ (u, y) (2.6)

for all u ∈ U(P ) and all y ∈ P .

Similarly, we can show that∥∥∥2jg ( y

2j

)
− 2j+1g

( y

2j+1

)∥∥∥ ≤ 2jφ
( u

2j
,
y

2j

)
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for all u ∈ U(P ), all y ∈ P and each positive integer j. Thus

∥∥∥2lg ( y

2l

)
− 2mg

( y

2m

)∥∥∥ ≤
m−1∑
j=l

∥∥∥2jg ( y

2j

)
− 2j+1g

( y

2j+1

)∥∥∥ (2.7)

≤
m−1∑
j=l

2jφ
( u

2j
,
y

2j

)
for all nonnegative integers m and l with m > l, all u ∈ U(P ) and all y ∈ P . It follows from (2.7) that
the sequence {2kg( y

2k
)} is Cauchy for all y ∈ P . Since Q is complete, the sequence {2kg( y

2k
)} converges.

So one can define the mapping G : P → Q by

G(y) := lim
k→∞

2kg
( y

2k

)
for all y ∈ P . Moreover, letting l = 0 and passing to the limit m → ∞ in (2.7), we get (2.5).

It folllows from (2.3) and (2.4) that∥∥∥∥2G(
λu+ y

2

)
− λG(u)−G(y)

∥∥∥∥ = lim
n→∞

2n
∥∥∥∥2g(λu+ y

2n+1

)
− λg

( u

2n

)
− g

( y

2n

)∥∥∥∥
≤ lim

n→∞
2n

∥∥∥∥s(g(λu+ y

2n

)
− λg

( u

2n

)
− g

( y

2n

))∥∥∥∥+ lim
n→∞

2nφ
( u

2n
,
y

2n

)
= ∥s(G (λu+ y)− λG(u)−G(y))∥

for all λ ∈ C, all u ∈ U(P ) and all y ∈ P . So∥∥∥∥2G(
λu+ y

2

)
− λG(u)−G(y)

∥∥∥∥ ≤ ∥s(G (λu+ y)− λG(u)−G(y))∥

for all λ ∈ C, all u ∈ U(P ) and all y ∈ P . By Lemma 2.1, the mapping G : P → Q is C-linear.
The proof of the uniqueness of the mapping G is similar to the proof of [14, Theorem 2.3]. 2

Theorem 2.2 Let φ : P × P → [0,∞) be a function such that

Ψ(u, y) :=

∞∑
j=1

1

2j
φ
(
2ju, 2jy

)
< ∞ (2.8)

for all u ∈ U(P ) and all y ∈ P . Let g : P → Q be a mapping satisfying (2.4). Then there exists a unique
C-linear mapping G : P → Q such that

∥g(x)−G(x)∥ ≤ Ψ(u, y) (2.9)

for all u ∈ U(P ) and all y ∈ P .

Proof: Let λ = 0 and replacing u by 2u in (2.4), we get∥∥∥g(y)− 2g
(y
2

)∥∥∥ ≤ φ (2u, y)

and so ∥∥∥∥g(y)− 1

2
g(2y)

∥∥∥∥ ≤ 1

2
φ(2u, 2y)

for all u ∈ U(P ) and all y ∈ P .
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Similarly, we can show that∥∥∥∥ 1

2j
g
(
2jy

)
− 1

2j+1
g
(
2j+1y

)∥∥∥∥ ≤ 1

2j+1
φ
(
2j+1u, 2j+1y

)
for all u ∈ U(P ), all y ∈ P and each positive integer j. Thus

∥ 1

2l
g(2ly)− 1

2m
g(2my)∥ ≤

m−1∑
j=l

∥∥∥∥ 1

2j
g
(
2jy

)
− 1

2j+1
g
(
2j+1y

)∥∥∥∥ (2.10)

≤
m∑

j=l+1

1

2j
φ
(
2ju, 2jy

)
for all nonnegative integers m and l with m > l, all u ∈ U(P ) and all y ∈ P . It follows from (2.10)
that the sequence { 1

2k
g(2ky)} is Cauchy for all y ∈ P . Since Q is complete, the sequence { 1

2k
g(2ky)}

converges. So one can define the mapping G : P → Q by

G(y) := lim
k→∞

1

2k
g
(
2ky

)
for all y ∈ P . Moreover, letting l = 0 and passing to the limit m → ∞ in (2.10), we get (2.9).

It folllows from (2.4) and (2.8) that∥∥∥∥2G(
λu+ y

2

)
− λG(u)−G(y)

∥∥∥∥ = lim
n→∞

1

2n
∥∥2g (2n−1(λu+ y)

)
− λg (2nu)− g (2ny)

∥∥
≤ lim

n→∞

1

2n
∥s (g (2n(λu+ y))− λg (2nu)− g (2ny))∥+ lim

n→∞

1

2n
φ (2nu, 2ny)

= ∥s(G (λu+ y)− λG(u)−G(y))∥

for all λ ∈ C, all u ∈ U(P ) and all y ∈ P . So∥∥∥∥2G(
λu+ y

2

)
− λG(u)−G(y)

∥∥∥∥ ≤ ∥s(G (λu+ y)− λG(u)−G(y))∥

for all λ ∈ C, all u ∈ U(P ) and all y ∈ P . By Lemma 2.1, the mapping G : P → Q is C-linear.
The proof of the uniqueness of the mapping G is similar to the proof of [14, Theorem 2.3]. 2

3. Hyers-Ulam stability of C∗-algebra derivations and C∗-algebra homomorphisms in
C∗-algebras: direct method

Using the direct method, we prove the Hyers-Ulam stability of C∗-algebra homomorphisms in unital
C∗-algebras associated to the additive functional inequality (2.1).

Theorem 3.1 Let φ : P 2 → [0,∞) be a function such that

∞∑
j=0

4jφ
( u

2j
,
y

2j

)
< ∞ (3.1)

for all u ∈ U(P ) and all y ∈ P . Let g : P → Q be a mapping satisfying (2.4). If the mapping g : P → Q
satisfies

∥g(uv)− g(u)g(v)∥ ≤ φ(u, v), (3.2)

∥g(u∗)− g(u)∗∥ ≤ φ(u, u) (3.3)
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for all u, v ∈ U(P ), then there exists a unique C∗-algebra homomorphism H : P → Q such that

∥g(y)−H(y)∥ ≤
∞∑
j=0

2jφ
( u

2j
,
y

2j

)
(3.4)

for all u ∈ U(P ) and all y ∈ P .

Proof: By Theorem 2.1, there exists a unique C-linear mapping H : P → Q satisfying (3.4). The
mapping H : P → Q is given by

H(y) := lim
k→∞

2kg
( y

2k

)
for all y ∈ P .

It follows from (3.1) and (3.2) that

∥H(uv)−H(u)H(v)∥ = lim
n→∞

4n
∥∥∥g (uv

4n

)
− g

( u

2n

)
g
( v

2n

)∥∥∥
≤ lim

n→∞
4nφ

( u

2n
,
v

2n

)
= 0

and so

H(uv) = H(u)H(v)

for all u, v ∈ U(P ).
Since H : P → Q is C-linear and each x, y ∈ P is a finite linear combination of unitary elements (see

[11]), i.e., x =
∑m

j=1 λjuj , y =
∑l

k=1 µkvk (λj , µk ∈ C, uj , vk ∈ U(P )),

H(xy) = H(

m∑
j=1

l∑
k=1

λjµkujvk) =

m∑
j=1

l∑
k=1

λjµkH(ujvk) =

m∑
j=1

l∑
k=1

λjµkH(uj)H(vk)

= (

m∑
j=1

λjH(uj))(

l∑
k=1

µkH(vk)) = H(

m∑
j=1

λjuj)H(

l∑
k=1

µkvk) = H(x)H(y)

for all x, y ∈ P . So the C-linear mapping H : P → Q is multiplicative.
It follows from (3.1) and (3.3) that

∥H(u∗)−H(u)∗∥ = lim
n→∞

2n
∥∥∥∥g(u∗

2n

)
− g

( u

2n

)∗
∥∥∥∥

≤ lim
n→∞

2nφ
( u

2n
,
u

2n

)
≤ lim

n→∞
4nφ

( u

2n
,
u

2n

)
= 0

and so

H(u∗) = H(u)∗

for all u ∈ U(P ).
Since H : P → Q is C-linear and each x ∈ P is a finite linear combination of unitary elements (see

[11]), i.e., x =
∑m

j=1 λjuj (λj ∈ C, uj ∈ U(P )),

H(x∗) = H(

m∑
j=1

λju
∗
j ) =

m∑
j=1

λjH(u∗
j ) =

m∑
j=1

λjH(uj)
∗ = H(

m∑
j=1

λjuj)
∗

= H(x)∗

for all x ∈ P . So the C-linear mapping H : P → Q is involutive. Thus the C-linear mapping H : P → Q
is a C∗-algebra homomorphism. 2
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Corollary 3.1 Let r > 2 and θ be nonnegative real numbers and g : P → Q be a mapping satisfying∥∥∥∥2g(λu+ y

2

)
− λg(u)− g(y)

∥∥∥∥ ≤ ∥s(g (λu+ y)− λg(u)− g(y))∥+ θ(1 + ∥y∥r) (3.5)

for all λ ∈ C, all u ∈ U(P ) and all y ∈ P . If the mapping g : P → Q satisfies

∥g(uv)− g(u)g(v)∥ ≤ 2θ, (3.6)

∥g(u∗)− g(u)∗∥ ≤ 2θ, (3.7)

for all u, v ∈ U(P ), then there exists a unique C∗-algebra homomorphism H : P → Q such that

∥g(y)−H(y)∥ ≤ 2rθ

2r − 2
(1 + ∥y∥r) (3.8)

for all y ∈ P .

Proof: The result follows from Theorem 3.1 by taking φ
(

u
2j ,

y
2j

)
= θ

2rj (1 + ∥y∥r) for all u ∈ U(P ) and
all y ∈ P . 2

Theorem 3.2 Let φ : P 2 → [0,∞) be a function and g : P → Q be a mapping satisfying (2.8), (3.2) and
(3.3). Then there exists a unique C∗-algebra homomorphism H : P → Q satisfying satisfying

∥g(x)−D(x)∥ ≤ Ψ(u, y) (3.9)

for all y ∈ P and all u ∈ U(P ).

Proof: By Theorem 2.2, there exists a unique C-linear mapping H : P → Q satisfying (3.9). The
mapping H : P → Q is given by

H(y) := lim
k→∞

1

2k
g
(
2ky

)
for all y ∈ P .

It follows from (2.8) and (3.2) that

∥H(uv)−H(u)H(v)∥ = lim
n→∞

1

4n
∥g (4nuv)− g (2nu) g(2nv)∥

≤ lim
n→∞

1

4n
φ (2nu, 2nv) ≤ lim

n→∞

1

2n
φ (2nu, 2nv) = 0

and so H(uv) = H(u)H(v) for all u, v ∈ U(P ).
The rest of the proof is similar to the proof of Theorem 3.1. 2

Corollary 3.2 Let r < 1 and θ be nonnegative real numbers and g : P → Q be a mapping satisfying
(3.5), (3.6) and (3.7). Then there exists a unique C∗-algebra homomorphism H : P → Q such that

∥g(x)−H(x)∥ ≤ 2rθ

2− 2r
(1 + ∥y∥r) (3.10)

for all y ∈ P .

Proof: The result follows from Theorem 3.2 by taking φ(2ju, 2jy) = 2rjθ(1+∥y∥r) for all u ∈ U(P ) and
all y ∈ P . 2

Now, we prove the Hyers-Ulam stability of C∗-algebra derivations in unital C∗-algebras associated to
the additive functional inequality (2.1) by using the direct method.
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Theorem 3.3 Let φ : P 2 → [0,∞) be a function satisfying (3.1). If the mapping g : P → P satisfies
(3.3) and

∥g(uv)− g(u)v − ug(v)∥ ≤ φ(u, v), (3.11)

then there exists a unique C∗-algebra derivation D : P → P such that

∥g(y)−D(y)∥ ≤
∞∑
j=0

2jφ
( u

2j
,
y

2j

)
(3.12)

for all u ∈ U(P ) and all y ∈ P .

Proof: By Theorem 2.1, there exists a unique C-linear mapping D : P → P satisfying (3.12). The
mapping D : P → P is given by

D(y) := lim
k→∞

2kg
( y

2k

)
for all y ∈ P .

It follows from (3.1) and (3.11) that

∥D(uv)−D(u)v − uD(v)∥ = lim
n→∞

4n
∥∥∥g (uv

4n

)
− g

( u

2n

) v

2n
− u

2n
g
( v

2n

)∥∥∥
≤ lim

n→∞
4nφ

( u

2n
,
v

2n

)
= 0

and so

D(uv) = D(u)v + uD(v)

for all u, v ∈ U(P ).
Since D : P → P is C-linear and each x, y ∈ P is a finite linear combination of unitary elements (see

[11]), i.e., x =
∑m

j=1 λjuj , y =
∑l

k=1 µkvk (λj , µk ∈ C, uj , vk ∈ U(P )),

D(xy) = D(

m∑
j=1

l∑
k=1

λjµkujvk) =

m∑
j=1

l∑
k=1

λjµkD(ujvk) =

m∑
j=1

l∑
k=1

λjµk(D(uj)vk + ujD(vk))

= (

m∑
j=1

λjD(uj))(

l∑
k=1

µkvk) + (

m∑
j=1

λjuj)(

l∑
k=1

µkD(vk))

= D(

m∑
j=1

λjuj)y + xD(

l∑
k=1

µkvk) = D(x)y + xD(y)

for all x, y ∈ P .
It follows from (3.1) and (3.3) that

∥D(u∗)−D(u)∗∥ = lim
n→∞

2n
∥∥∥∥g(u∗

2n

)
− g

( u

2n

)∗
∥∥∥∥

≤ lim
n→∞

2nφ
( u

2n
,
u

2n

)
≤ lim

n→∞
4nφ

( u

2n
,
u

2n

)
= 0

and so

D(u∗) = D(u)∗

for all u ∈ U(P ).
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Since D : P → P is C-linear and each x ∈ P is a finite linear combination of unitary elements (see
[11]), i.e., x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(P )),

H(x∗) = H(

m∑
j=1

λju
∗
j ) =

m∑
j=1

λjH(u∗
j ) =

m∑
j=1

λjH(uj)
∗ = H(

m∑
j=1

λjuj)
∗

= H(x)∗

for all x ∈ P . So the C-linear mapping D : P → P is involutive. Thus the C-linear mapping D : P → P
is a C∗-algebra derivation. 2

Corollary 3.3 Let r > 2 and θ be nonnegative real numbers and g : P → P be a mapping satisfying
(3.5). If the mapping g : P → P satisfies (3.7) and

∥g(uv)− g(u)v − ug(v)∥ ≤ 2θ, (3.13)

for all u, v ∈ U(P ), then there exists a unique C∗-algebra derivation D : P → P such that

∥g(y)−D(y)∥ ≤ 2rθ

2r − 2
(1 + ∥y∥r) (3.14)

for all y ∈ P .

Proof: The result follows from Theorem 3.3 by taking φ
(

u
2j ,

y
2j

)
= θ

2rj (1 + ∥y∥r) for all u ∈ U(P ) and
all y ∈ P . 2

Theorem 3.4 Let φ : P 2 → [0,∞) be a function and g : P → P be a mapping satisfying (2.8), (3.11)
and (3.3). Then there exists a unique C∗-algebra derivation D : P → P satisfying

∥g(x)−D(x)∥ ≤ Ψ(u, y) (3.15)

for all u ∈ U(P ) and all y ∈ P , where Ψ(u, y) is given in the statement of Theorem 2.2.

Proof: By Theorem 2.2, there exists a unique C-linear mapping D : P → P satisfying (3.15). The
mapping D : P → P is given by

D(y) := lim
k→∞

1

2k
g
(
2ky

)
for all y ∈ P .

It follows from (2.8) and (3.11) that

∥D(uv)−D(u)v − uD(v)∥ = lim
n→∞

1

4n
∥g (4nuv)− g (2nu) (2nv)− (2nu)g(2nv)∥

≤ lim
n→∞

1

4n
φ (2nu, 2nv) ≤ lim

n→∞

1

2n
φ (2nu, 2nv) = 0

and so D(uv) = D(u)v + uD(v) for all u, v ∈ U(P ).
The rest of the proof is similar to the proof of Theorem 3.3. 2

Corollary 3.4 Let r < 1 and θ be nonnegative real numbers and g : P → P be a mapping satisfying
(3.5), (3.7) and (3.13). Then there exists a unique C∗-algebra derivation D : P → P such that

∥g(x)−D(x)∥ ≤ 2rθ

2− 2r
(1 + ∥y∥r) (3.16)

for all y ∈ P .

Proof: The result follows from Theorem 3.4 by taking φ(2ju, 2jy) = 2rjθ(1+∥y∥r) for all u ∈ U(P ) and
all y ∈ P . 2
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4. Hyers-Ulam stability of the functional inequality (0.1): fixed point method

Using the fixed point method, we prove the Hyers-Ulam stability of the additive functional inequality
(0.1) in unital C∗-algebras.

Theorem 4.1 Let φ : P 2 → [0,∞) be a function such that there exists an L < 1 with

φ
(u
2
,
y

2

)
≤ L

2
φ (u, y)

for all u ∈ U(P ) and all y ∈ P . Let g : P → Q be a mapping satisfying (2.4). Then there exists a unique
C-linear mapping H : P → Q such that

∥g(y)−H(y)∥ ≤ 1

1− L
φ (u, y) (4.1)

for all u ∈ U(P ) and all y ∈ P .

Proof: Consider the set
S := {g : P → Q}

and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ∥g(y)− h(y)∥ ≤ µφ (u, y) , ∀u ∈ U(P ), ∀y ∈ P} ,

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see [13]).
Now we consider the linear mapping J : S → S such that

Jg(y) := 2g
(y
2

)
for all y ∈ P .

Let g, h ∈ S be given such that d(g, h) = ε. Then

∥g(y)− h(y)∥ ≤ εφ (u, y)

for all u ∈ U(P ) and all y ∈ P . Since∥∥∥2g (y
2

)
− 2h

(y
2

)∥∥∥ ≤ 2εφ
(u
2
,
y

2

)
≤ 2ε

L

2
φ (u, y) = Lεφ (u, y)

for all u ∈ U(P ) and all y ∈ P , d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.6) that ∥∥∥g(y)− 2g

(y
2

)∥∥∥ ≤ φ (u, y)

for all u ∈ U(P ) and all y ∈ P . So d(g, Jg) ≤ 1.
By Theorem 1.1, there exists a mapping H : P → P satisfying the following:
(1) H is a fixed point of J , i.e.,

H (y) = 2H
(y
2

)
(4.2)

for all y ∈ P . The mapping H is a unique fixed point of J . This implies that H is a unique mapping
satisfying (4.2) such that there exists a µ ∈ (0,∞) satisfying

∥g(y)−H(y)∥ ≤ µφ (u, y)
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for all u ∈ U(P ) and all y ∈ P ;
(2) d(J lg,H) → 0 as l → ∞. This implies the equality

lim
l→∞

2lg
( y

2l

)
= H(y)

for all u ∈ U(P ) and all y ∈ P ;
(3) d(g,H) ≤ 1

1−Ld(g, Jg), which implies

∥g(x)−H(x)∥ ≤ 1

1− L
φ (u, y)

for all u ∈ U(P ) and all y ∈ P . Thus we get the inequality (4.1).
The rest of the proof is the same as in the proof of Theorem 2.1. 2

Theorem 4.2 Let φ : P 2 → [0,∞) be a function such that there exists an L < 1 with

φ (u, y) ≤ 2Lφ
(u
2
,
y

2

)
(4.3)

for all u ∈ U(P ) and all y ∈ P . Let g : P → Q be a mapping satisfying (2.4). Then there exists a unique
C-linear mapping H : P → Q such that

∥g(y)−H(y)∥ ≤ L

1− L
φ (u, y) (4.4)

for all u ∈ U(P ) and all y ∈ P .

Proof: Let S and d be given in the proof of Theorem 4.1.
Now we consider the linear mapping J : S → S such that

Jg(y) :=
1

2
g (2y)

for all y ∈ P .
Let λ = 0 and replacing u and y by 2u and 2y in (2.4), we get∥∥∥∥g(y)− 1

2
g (2y)

∥∥∥∥ ≤ 1

2
φ (2u, 2y) ≤ 2L

2
φ (u, y) = Lφ (u, y)

for all u ∈ U(P ) and all y ∈ P . So d(g, Jg) ≤ L.
The rest of the proof is simialr to the proofs of Theorems 2.2 and 4.1. 2

5. Hyers-Ulam stability of C∗-algebra derivations and C∗-algebra homomorphisms in
C∗-algebras: fixed point method

Using the fixed point method, we prove the Hyers-Ulam stability of C∗-algebra homomorphisms in
unital C∗-algebras associated to the additive functional inequality (2.1).

Theorem 5.1 Let φ : P 2 → [0,∞) be a function such that

φ
(u
2
,
y

2

)
≤ L

4
φ (u, y) ≤ L

2
φ (u, y) (5.1)

for all u ∈ U(P ) and all y ∈ P . Let g : P → Q be a mapping satisfying (2.4). If the mapping g : P → Q
satisfies (3.2) and (3.3), then there exists a unique homomorphism H : P → Q satisfying (4.1).
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Proof: It follows from (5.1) and (3.2) that

∥H(uv)−H(u)H(v)∥ = lim
n→∞

4n
∥∥∥g (uv

4n

)
− g

( u

2n

)
g
( v

2n

)∥∥∥
≤ lim

n→∞
4nφ

( u

2n
,
v

2n

)
≤ lim

n→∞
4n

Ln

4n
φ (u, v) = 0

and so

H(uv) = H(u)H(v)

for all u, v ∈ U(P ).
The rest of the proof is similar to the proofs of Theorems 2.1, 3.1 and 4.1. 2

Corollary 5.1 Let r > 2 and θ be nonnegative real numbers and g : P → Q be a mapping satisfying
(3.5), (3.6) and (3.7). Then there exists a unique C∗-algebra homomorphism H : P → Q satisfying (3.8).

Proof: The result follows from Theorem 5.1 by taking L = 21−r and φ
(
u
2 ,

y
2

)
= θ

2r (1 + ∥y∥r) for all
u ∈ U(P ) and all y ∈ P . 2

Theorem 5.2 Let φ : P 2 → [0,∞) be a function and g : P → Q be a mapping satisfying (2.4), (3.2),
(3.3) and (4.3). Then there exists a unique C∗-algebra homomorphism H : P → Q satisfying (4.4).

Proof: It follows from (4.3) and (3.2) that

∥H(uv)−H(u)H(v)∥ = lim
n→∞

1

4n
∥g (4nuv)− g (2nu) g(2nv)∥

≤ lim
n→∞

1

4n
φ (2nu, 2nv) ≤ lim

n→∞

2nLn

4n
φ (u, v) = 0

and so H(uv) = H(u)H(v) for all u, v ∈ U(P ).
The rest of the proof is similar to the proofs of Theorems 3.1, 3.2 and 5.1. 2

Corollary 5.2 Let r < 1 and θ be nonnegative real numbers and g : P → Q be a mapping satisfying
(3.5), (3.6) and (3.7). Then there exists a unique C∗-algebra homomorphism H : P → Q satisfying (3.10).

Proof: The result follows from Theorem 5.2 by taking L = 2r−1 and φ(2u, 2y) = 2rθ(1 + ∥y∥r) for all
u ∈ U(P ) and all y ∈ P . 2

Now, we prove the Hyers-Ulam stability of C∗-algebra derivations in unital C∗-algebras associated to
the additive functional inequality (2.1) by using the fixed point method.

Theorem 5.3 Let φ : P 2 → [0,∞) be a function satisfying (5.1). If the mapping g : P → P satisfies
(2.4), (3.3) and (3.11), then there exists a unique C∗-algebra derivation D : P → P such that

∥g(y)−D(y)∥ ≤ 1

1− L
φ (u, y)

for all u ∈ U(P ) and all y ∈ P .

Proof: It follows from (5.1) and (3.11) that

∥D(uv)−D(u)v − uD(v)∥ = lim
n→∞

4n
∥∥∥g (uv

4n

)
− g

( u

2n

) v

2n
− u

2n
g
( v

2n

)∥∥∥
≤ lim

n→∞
4nφ

( u

2n
,
v

2n

)
≤ lim

n→∞
4n

Ln

4n
φ (u, y) = 0
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and so

D(uv) = D(u)v + uD(v)

for all u, v ∈ U(P ).
The rest of the proof is similar to the proofs of Theorems 3.3 and 4.1. 2

Corollary 5.3 Let r > 2 and θ be nonnegative real numbers and g : P → P be a mapping satisfying
(3.5), (3.7) and (3.13). Then there exists a unique C∗-algebra derivation D : P → P satisfying (3.14).

Proof: The result follows from Theorem 5.3 by taking L = 21−r and φ
(
u
2 ,

y
2

)
= θ

2r (1 + ∥y∥r) for all
u ∈ U(P ) and all y ∈ P . 2

Theorem 5.4 Let φ : P 2 → [0,∞) be a function and g : P → P be a mapping satisfying (2.4), (3.3),
(3.11) and (4.3). Then there exists a unique C∗-algebra derivation D : P → P such that

∥g(y)−D(y)∥ ≤ L

1− L
φ (u, y)

for all u ∈ U(P ) and all y ∈ P .

Proof: It follows from (3.11) and (4.3) that

∥D(uv)−D(u)v − uD(v)∥ = lim
n→∞

1

4n
∥g (4nuv)− g (2nu) (2nv)− (2nu)g(2nv)∥

≤ lim
n→∞

1

4n
φ (2nu, 2nv) ≤ lim

n→∞

2nLn

4n
φ (u, v) = 0

and so D(uv) = D(u)v + uD(v) for all u, v ∈ U(P ).
The rest of the proof is similar to the proofs of Theorems 3.3 and 4.2. 2

Corollary 5.4 Let r < 1 and θ be nonnegative real numbers and g : P → P be a mapping satisfying
(3.5), (3.13) and (3.7). Then there exists a unique C∗-algebra derivation D : P → P satisfying (3.16).

Proof: The result follows from Theorem 5.4 by taking L = 2r−1 and φ(2u, 2y) = 2rθ(1 + ∥y∥r) for all
u ∈ U(P ) and all y ∈ P . 2

6. Conclusion

We introduced the additive functional inequality (0.1)and, using both the direct method and the
fixed point method, proved its Hyers-Ulam stability in unital C∗-algebras. Furthermore, we applied
these results to the study of C∗-algebra homomorphisms and derivations in unital C∗-algebras.
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