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A system of functional equations and its stability using fixed point method
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abstract: This paper introduces and analyzes the concept of (g, h)-derivations in complex Banach al-
gebras, extending the classical notion of g-derivations. We consider a nonlinear system of three functional
equations that models approximate (g, h)-derivations and examine its Hyers-Ulam stability. Using a fixed
point framework in generalized metric spaces, we derive the existence, uniqueness, and error bounds for the
corresponding exact solutions. The results not only unify and extend previous stability results for derivations
and homomorphisms but also offer a novel analytical method for treating operator equations with asymmetric
structure.
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1. Introduction

Let X be a complex Banach algebra. A mapping g : X → X is called a derivation if it is C-linear
and satisfies the Leibniz identity

g(xy) = g(x)y + xg(y)

for all x, y ∈ X. This condition reflects the core property of differentiation within an algebraic setting
and has been studied extensively in various contexts, including operator algebras and functional analysis.
In contrast, a C-linear mapping h : X → X is called a homomorphism if it satisfies

h(xy) = h(x)h(y), ∀x, y ∈ X,

thus preserving the multiplicative structure of the algebra. While derivations model infinitesimal defor-
mations, homomorphisms maintain structural invariance and are fundamental to representation theory
and algebraic dynamics. To bridge these two perspectives, Mirzavaziri and Moslehian introduced the
concept of a g-derivation [12], which generalizes both derivations and homomorphisms. Given a fixed
C-linear mapping g : X → X, a mapping f : X → X is called a g-derivation if it satisfies

f(xy) = f(x)g(y) + g(x)f(y), ∀x, y ∈ X.

When g = idX , this definition reduces to that of an ordinary derivation. On the other hand, it can be
shown that every homomorphism f is a f

2 -derivation, thereby placing both classical notions within a
unified framework. This concept has been further explored and extended to various settings, including
Jordan algebras, module homomorphisms, and C*-algebra structures (see, e.g., [6,7,13]).
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Motivated by this interplay and the desire to incorporate more flexible structural interactions, we
introduce in this work the notion of a (g, h)-derivation. Let g, h : X → X be two given C-linear
mappings. Then a mapping f : X → X is called a (g, h)-derivation if it satisfies the functional equation

f(xy) = f(x)g(y) + h(x)f(y), ∀x, y ∈ X.

This formulation allows the left and right multiplication behaviors to be governed independently by g and
h, respectively. Such generalization opens up new avenues for examining operator identities, derivation-
like structures, and stability properties under nonlinear constraints. It also provides a fertile framework
for analyzing Hyers-Ulam stability of generalized derivation mappings in complex Banach algebras, as we
explore in this paper.

In the context of functional equations, the notion of stability plays a fundamental role. Informally, a
functional equation is said to be stable if any function that approximately satisfies the equation must
be close to an exact solution. This concept was first introduced by S. M. Ulam in 1940 [17], in the
framework of group theory, where he posed a question regarding the stability of homomorphisms under
perturbations. Ulam’s question was partially answered by D. H. Hyers [9], who demonstrated that every
approximately additive function between Banach spaces is near a true additive function. This result laid
the foundation for what is now known as Hyers-Ulam stability.

Since then, the theory has been considerably developed and generalized by many researchers. Various
forms of stability—such as Hyers-Ulam-Rassias, generalized, and fuzzy stability—have been studied across
different algebraic and analytical settings (see [1,2,8,18]). These advancements have significantly relaxed
the original constraints of Hyers’ theorem, extending the applicability of stability methods to broader
classes of functional equations.

Two principal techniques have been employed to establish stability results: the direct method
and the fixed point method. The direct method, originally introduced by Hyers [9], involves explicitly
constructing an exact solution as the limit of a convergent sequence, derived from an approximate solution.
This approach has been further refined in several works, including [4,16], and remains a fundamental
tool for studying linear and nonlinear functional equations. On the other hand, the fixed point method
has emerged as a powerful alternative, in which the desired exact solution is obtained as a fixed point of
a suitably defined self-mapping on a complete metric or generalized metric space. This method not only
ensures the existence and uniqueness of solutions but also often yields quantitative estimates of stability
(see [3,10,14]). The use of fixed point theory has proven particularly effective in analyzing systems of
functional equations under weaker regularity assumptions. We remember a fundamental result in fixed
point theorem.

Theorem 1.1 [5] Assume that (X, d) is a complete generalized metric space and J : X → X is a strictly
contractive mapping, that is,

d(J u,Iv) ≤ Ld(u, v)

for all u, v ∈ X and a Lipschitz constant L < 1. Then for each given element u ∈ X, either

d(J nu,J n+1u) = +∞, ∀n ≥ 0,

or

d(J nu,J n+1u) < +∞, ∀n ≥ n0,

for some positive integer n0. Furthermore, if the second alternative holds, then

(i) the sequence (J nu) is convergent to a fixed point p of J ;

(ii) p is the unique fixed point of J in the set V := {v ∈ X, d(J n0u, v) < +∞};

(iii) d(v, p) ≤ 1
1−Ld(v,J v) for all u, v ∈ V .
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Throughout this paper, suppose that X is a complex Banach algebra and k,m, n are fixed positive
real numbers. Taking ideas from the definition of approximate g-derivation, we motivate to introduce
the notion of approximate (g, h)-derivation, which is related to the following system of three functional
equations 

kf(2x) + kf(2y)− nh(−z) = mg(x+ y + z)

2kf(x+ y + z)−mg(x+ z) = mg(x− z) + nh(y − x+ z)

nh
(
x+y
2 + z

)
+mg

(
x−y
2

)
= nh(x) + 2kf(z)

(1.1)

for all x, y, z ∈ X.
This paper is motivated by the growing interest in the stability of functional equations in Banach alge-

bras, particularly those involving generalized derivations beyond classical forms. While g-derivations unify
derivations and homomorphisms, the more recent (g, h)-derivations further generalize this framework by
introducing asymmetric operator actions on algebraic products, enriching both theoretical structure and
application scope. Our main objective is to solve a specific system of three nonlinear functional equa-
tions, given in (1.1), that characterizes approximate (g, h)-derivations, and to establish their Hyers-Ulam
stability via the fixed point method. This technique ensures existence, uniqueness, and error bounds
for the exact solutions, providing a rigorous foundation for stability under perturbation. The key con-
tributions lie in formulating a unified fixed point approach to study the stability of (g, h)-derivations,
extending previous results on g-derivations, and addressing functional systems with dual operator inter-
actions. The findings enhance ongoing developments in applying fixed point theory to stability problems
within generalized metric spaces.

The paper is structured as follows. Section 2 analyzes the functional system and derives necessary
properties of the involved mappings. Section 3 presents the main stability results using fixed point
techniques, including quantitative estimates and corollaries for special cases. Section 4 concludes the
study and outlines potential directions for future research.

2. Solution and stability of the system of functional equations (1.1)

We solve and investigate the system of additive functional equations (1.1) in complex Banach algebras.

Lemma 2.1 [15] Let X be a complex Banach algebra and F : X → X be an additive mapping such that
F(αx) = αF(x) for all α ∈ T1 := {ζ ∈ C : |ζ| = 1} and all x ∈ X. Then F is C-linear.

Lemma 2.2 Let f, g, h : X → X be mappings satisfying (1.1) for all x, y, z ∈ X. Then the mappings
f, g, h : X → X are additive.

Proof: Letting x = y = z = 0 in (1.1), we obtain
2kf(0)− nh(0) = mg(0)

2kf(0)− nh(0) = 2mg(0)

mg(0) = 2kf(0)

for all x, y, z ∈ X. Thus

f(0) = g(0) = h(0) = 0.

Putting x = y = 0 in (1.1), we have
−nh(−z) = mg(z)

2kf(z)−mg(z) = mg(−z) + nh(z)

nh(z) = 2kf(z)

(2.1)

for all z ∈ X. It follows from (1.1) and (2.1) that

f(2x) + f(2y)− 2f(−z) = −2f(−x− y − z) (2.2)
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for all x, y, z ∈ X.
Taking z = 0 and replacing y by −x in (2.2), we get f(2x) = −f(−2x) for all x ∈ X. Hence

f(−x) = −f(x) for all x ∈ X.
Letting y = z = 0 in (2.2), we have f(2x) = −2f(−x) = 2f(x) for all x ∈ X.
Setting z = 0 in (2.2), we obtain

f(2x) + f(2y) = f(2x+ 2y)

for all x, y ∈ X. Therefore the mapping f : X → X is additive and so by (2.1) the mappings g, h : X → X
are additive 2

Using the fixed point method, we prove the Hyers-Ulam stability of the system of functional equations
(1.1) in complex Banach algebras.

Theorem 2.3 Suppose that ψi : X
3 → [0,∞) are functions such that there exists an L < 1 with

ψi

(x
2
,
y

2
,
z

2

)
≤ L

2
ψi(x, y, z) (2.3)

for all x, y, z ∈ X and all i = 1, 2, 3. Let f, g, h : X → X be mappings satisfying
∥kf(2x) + kf(2y)− nh(−z)−mg(x+ y + z)∥ ≤ ψ1(x, y, z)

∥2kf(x+ y + z)−mg(x+ z)−mg(x− z)− nh(y − x+ z)∥ ≤ ψ2(x, y, z)∥∥nh (x+y
2 + z

)
+mg

(
x−y
2

)
− nh(x)− 2kf(z)

∥∥ ≤ ψ3(x, y, z)

(2.4)

for all x, y, z ∈ X. Then there exist unique additive mappings F,G,H : X → X such that

∥F (x)− f(x)∥ ≤ L

2k(1− L)

[
ψ1

(x
2
,
x

2
, 0
)
+

1

2
ψ2(x, x, 0)

]
, (2.5)

∥G(x)− g(x)∥ ≤ L

2m(1− L)
[ψ1(x, x, 0) + ψ2(x, x, 0)], (2.6)

∥H(x)− h(x)∥ ≤ L

2n(1− L)

[
ψ1

(x
2
,
x

2
,−x

)
+ ψ3(x, x, x)

]
, (2.7)

for all x ∈ X.

Proof: Taking x = y = z = 0 in (2.4), we get
2kf(0)− nh(0)−mg(0) = 0

2kf(0)− 2mg(0)− nh(0) = 0

mg(0)− 2kf(0) = 0

since ψ1(0, 0, 0) = ψ2(0, 0, 0) = ψ3(0, 0, 0) = 0. So f(0) = g(0) = h(0) = 0.
Let us take y = x and z = 0 in the first and second equations of (2.4). Then we have

∥2kf(2x)−mg(2x)∥ ≤ ψ1(x, x, 0), (2.8)

∥2kf(2x)− 2mg(x)∥ ≤ ψ2(x, x, 0) (2.9)

for all x ∈ X. From (2.8) and (2.9), we obtain

∥g(2x)− 2g(x)∥ ≤ 1

m
[ψ1(x, x, 0) + ψ2(x, x, 0)] (2.10)

for all x ∈ X. Replacing x by x
2 in (2.8), we get

∥2kf(x)−mg(x)∥ ≤ ψ1

(x
2
,
x

2
, 0
)

(2.11)
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for all x ∈ X. It follows from (2.9) and (2.11) that

∥f(2x)− 2f(x)∥ ≤ 1

k

[
ψ1

(x
2
,
x

2
, 0
)
+

1

2
ψ2(x, x, 0)

]
(2.12)

for all x ∈ X. Letting y = z = x in (2.4), we have

∥nh(2x)− nh(x)− 2kf(x)∥ ≤ ψ3(x, x, x) (2.13)

for all x ∈ X. Setting z = −x and replacing x and y by x
2 and x

2 in (2.4), we have

∥2kf(x)− nh(x)∥ ≤ ψ1

(x
2
,
x

2
,−x

)
(2.14)

for all x ∈ X. From (2.13) and (2.14), we get

∥h(2x)− 2h(x)∥ ≤ 1

n

[
ψ3(x, x, x) + ψ1

(x
2
,
x

2
,−x

)]
(2.15)

for all x ∈ X.
Let ∆ = {δ : X → X : δ(0) = 0}. We define generalized metrics on ∆ as follows: d1, d2, d3 : ∆×∆ −→

[0,∞] by

d1(σ, δ) = inf

{
α ∈ R+ : ∥σ(x)− δ(x)∥ ≤ α

1

k

[
ψ1

(x
2
,
x

2
, 0
)
+

1

2
ψ2(x, x, 0)

]
, ∀x ∈ X

}
,

d2(σ, δ) = inf

{
β ∈ R+ : ∥σ(x)− δ(x)∥ ≤ β

1

m
[ψ1(x, x, 0) + ψ2(x, x, 0)], ∀x ∈ X

}
,

d3(σ, δ) = inf

{
γ ∈ R+ : ∥σ(x)− δ(x)∥ ≤ γ

1

n

[
ψ1

(x
2
,
x

2
,−x

)
+ ψ3(x, x, x)

]
, ∀x ∈ X

}
and we consider inf ∅ = +∞. Then it is easy to show that d1, d2 and d3 are complete generalized metrics
on ∆ (see [11]).

Now, we define the mappings J1 : (∆, d1) → (∆, d1),J2 : (∆, d2) → (∆, d2) and J3 : (∆, d3) → (∆, d3)
such that

J1δ1(x) := 2δ1

(x
2

)
, J2δ2(x) := 2δ2

(x
2

)
, J3δ3(x) := 2δ3

(x
2

)
for all x ∈ X.

Actually, let δ1, σ1 ∈ (∆, d1), δ2, σ2 ∈ (∆, d2) and δ3, σ3 ∈ (∆, d3) be given such that d1(δ1, σ1) =
α, d2(δ2, σ2) = β and d3(δ3, σ3) = γ. Then

∥δ1(x)− σ1(x)∥ ≤ α
1

k

[
ψ1

(x
2
,
x

2
, 0
)
+

1

2
ψ2(x, x, 0)

]
,

∥δ2(x)− σ2(x)∥ ≤ β
1

m
[ψ1(x, x, 0) + ψ2(x, x, 0)],

∥δ3(x)− σ3(x)∥ ≤ γ
1

n

[
ψ1

(x
2
,
x

2
,−x

)
+ ψ3(x, x, x)

]
for all x ∈ X. Hence

∥J1δ1(x)− J1σ1(x)∥ =
∥∥∥2δ1 (x

2

)
− 2σ1

(x
2

)∥∥∥
≤ 2α

1

k

[
ψ1

(x
4
,
x

4
, 0
)
+

1

2
ψ2

(x
2
,
x

2
, 0
)]

≤ Lα
1

k

[
ψ1

(x
2
,
x

2
, 0
)
+

1

2
ψ2(x, x, 0)

]
,
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∥J2δ2(x)− J2σ2(x)∥ =
∥∥∥2δ2 (x

2

)
− 2σ2

(x
2

)∥∥∥
≤ 2β

1

m

[
ψ1

(x
2
,
x

2
, 0
)
+ ψ2

(x
2
,
x

2
, 0
)]

≤ Lβ
1

m
[ψ1(x, x, 0) + ψ2(x, x, 0)],

∥J3δ3(x)− J3σ3(x)∥ =
∥∥∥2δ3 (x

2

)
− 2σ3

(x
2

)∥∥∥
≤ 2γ

1

n

[
ψ1

(x
4
,
x

4
,−x

2

)
+ ψ3

(x
2
,
x

2
,
x

2

)]
≤ Lγ

1

n

[
ψ1

(x
2
,
x

2
,−x

)
+ ψ3(x, x, x)

]
for all x ∈ X. Since d1(δ1, σ1) = α, d2(δ2, σ2) = β and d3(δ3, σ3) = γ, it follows that
d1(J1δ1(x),J1σ1(x)) ≤ Lα, d2(J2δ2(x),J2σ2(x)) ≤ Lβ and d3(J3δ3(x),J3σ3(x)) ≤ Lγ for all x ∈ X,
respectively.

So 
d1(J1δ1(x),J1σ1(x)) ≤ Ld1(δ1, σ1)

d2(J2δ2(x),J2σ2(x)) ≤ Ld2(δ2, σ2)

d3(J3δ3(x),J3σ3(x)) ≤ Ld3(δ3, σ3)

for all x ∈ X and all δi, σi ∈ ∆, where i = 1, 2, 3.
Using (2.12), (2.10) and (2.15), we obtain that

∥∥f(x)− 2f
(
x
2

)∥∥ ≤ 1
k

[
ψ1

(
x
4 ,

x
4 , 0

)
+ 1

2ψ2

(
x
2 ,

x
2 , 0

)]
≤ L

2
1
k

[
ψ1

(
x
2 ,

x
2 , 0

)
+ 1

2ψ2(x, x, 0)
]∥∥g(x)− 2g

(
x
2

)∥∥ ≤ 1
m

[
ψ1

(
x
2 ,

x
2 , 0

)
+ ψ2

(
x
2 ,

x
2 , 0

)]
≤ L

2
1
m [ψ1(x, x, 0) + ψ2(x, x, 0)]∥∥h(x)− 2h

(
x
2

)∥∥ ≤ 1
n

[
ψ1

(
x
4 ,

x
4 ,−

x
2

)
+ ψ3

(
x
2 ,

x
2 ,

x
2

)]
≤ L

2
1
n

[
ψ1

(
x
2 ,

x
2 ,−x

)
+ ψ3(x, x, x)

]
for all x ∈ X, which implies that d1(f,J1f) ≤ L

2 , d2(g,J2g) ≤ L
2 and d3(h,J3h) ≤ L

2 .
Using the fixed point alternative, we deduce the existence of a unique fixed point of J1, a unique

fixed point of J2 and a unique fixed point of J3, that are, the existence of mappings F,G,H : X → X,
respectively, such that

F (x) = 2F
(x
2

)
, G(x) = 2G

(x
2

)
, H(x) = 2H

(x
2

)
with the following property: there exist α, β, γ ∈ (0,∞) satisfying

∥f(x)− F (x)∥ ≤ α
k

[
ψ1

(
x
2 ,

x
2 , 0

)
+ 1

2ψ2(x, x, 0)
]

∥g(x)−G(x)∥ ≤ β
m [ψ1(x, x, 0) + ψ2(x, x, 0)]

∥h(x)−H(x)∥ ≤ γ
n

[
ψ1

(
x
2 ,

x
2 ,−x

)
+ ψ3(x, x, x)

]
for all x ∈ X.

Since limj→∞ d1(J j
1 f, F ) = 0, limj→∞ d2(J j

2 g,G) = 0 and limj→∞ d3(J j
2 h,H) = 0,

lim
j→∞

2jf
( x
2j

)
= F (x), lim

j→∞
2jg

( x
2j

)
= G(x), lim

j→∞
2jh

( x
2j

)
= H(x)

for all x ∈ X.
Next, d1(f, F ) ≤ 1

1−Ld1(f,J1f), d2(g,G) ≤ 1
1−Ld2(g,J2g) and d3(h,H) ≤ 1

1−Ld3(h,J2h) which
implies 

∥f(x)− F (x)∥ ≤ L
2k(1−L)

[
ψ1

(
x
2 ,

x
2 , 0

)
+ 1

2ψ2(x, x, 0)
]

∥g(x)−G(x)∥ ≤ L
2m(1−L) [ψ1(x, x, 0) + ψ2(x, x, 0)]

∥h(x)−H(x)∥ ≤ L
2n(1−L)

[
ψ1

(
x
2 ,

x
2 ,−x

)
+ ψ3(x, x, x)

]
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for all x ∈ X.
Using (2.3) and (2.4), we conclude that

∥kF (2x) + kF (2y)− nH(−z)−mG(x+ y + z)∥

= lim
j→∞

2j
∥∥∥∥kf (2x

2j

)
+ kf

(
2y

2j

)
− nh

(
−z
2j

)
−mg

(
x+ y + z

2j

)∥∥∥∥
≤ lim

j→∞
2jψ1

( x
2j
,
y

2j
,
z

2j

)
≤ lim

j→∞
Ljψ1(x, y, z),

∥2kF (x+ y + z)−mG(x+ z)−mG(x− z)− nH(y − x+ z)∥

= lim
j→∞

2j
∥∥∥∥2kf (x+ y + z

2j

)
−mg

(
x+ z

2j

)
−mg

(
x− z

2j

)
− nh

(
y − x+ z

2j

)∥∥∥∥
≤ lim

j→∞
2jψ2

( x
2j
,
y

2j
,
z

2j

)
≤ lim

j→∞
Ljψ2(x, y, z)

and ∥∥∥∥nH (
x+ y

2
+ z

)
+mG

(
x− y

2

)
− nH(x)− 2kF (z)

∥∥∥∥
= lim

j→∞
2j

∥∥∥∥nh(x+ y

2j+1
+

z

2j

)
+mg

(
x− y

2j+1

)
− nh

( x
2j

)
− 2kf

( z
2j

)∥∥∥∥
≤ lim

j→∞
2jψ3

( x
2j
,
y

2j
,
z

2j

)
≤ lim

j→∞
Ljψ3(x, y, z)

for all x, y, z ∈ X. Hence
kF (2x) + kF (2y)− nH(−z) = mG(x+ y + z)

2kF (x+ y + z)−mG(x+ z) = mG(x− z) + nH(y − x+ z)

nH
(
x+y
2 + z

)
+mG

(
x−y
2

)
= nH(x) + 2kF (z)

for all x, y, z ∈ X, since L < 1. Therefore by Lemma 2.2, the mappings F,G,H : X → X are additive. 2

3. Hyers-Ulam stability of (g, h)-derivations in Banach algebras

In this section, by using the fixed point technique, we prove the Hyers-Ulam stability of (g, h)-
derivations in complex Banach algebras.

Theorem 3.1 Suppose that ψi : X
3 → [0,∞) are functions such that there exists an L < 1 with

ψi

(x
2
,
y

2
,
z

2

)
≤ L

4
ψi(x, y, z) (3.1)

for all x, y, z ∈ X and all i = 1, 2, 3. Let f, g, h : X → X be mappings satisfying
∥kf(2λx) + kf(2λy)− nλh(−z)−mg(λ(x+ y + z))∥ ≤ ψ1(x, y, z)

∥2kf(λ(x+ y + z))−mλg(x+ z)−mλg(x− z)− nλh(y − x+ z)∥ ≤ ψ2(x, y, z)∥∥∥nh(λ(x+y)
2

+ λz
)
+mg

(
λ(x−y)

2

)
− nλh(x)− 2λkf(z)

∥∥∥ ≤ ψ3(x, y, z)

(3.2)

and

∥f(xy)− f(x)g(y)− h(x)f(y)∥ ≤
3∑

i=1

ψi(x, y, z) (3.3)
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for all x, y, z ∈ X and all λ ∈ T1. Then there exist unique C-linear mappings F,G,H : X → X such that
F is a (G,H)-derivation and

∥F (x)− f(x)∥ ≤ L

2k(1− L)

[
ψ1

(x
2
,
x

2
, 0
)
+

1

2
ψ2(x, x, 0)

]
, (3.4)

∥G(x)− g(x)∥ ≤ L

2m(1− L)
[ψ1(x, x, 0) + ψ2(x, x, 0)], (3.5)

∥H(x)− h(x)∥ ≤ L

2n(1− L)

[
ψ1

(x
2
,
x

2
,−x

)
+ ψ3(x, x, x)

]
, (3.6)

for all x ∈ X.

Proof: Let λ = 1 in (3.2). By the same reasoning as in the proof of Theorem 2.3, there exist unique
additive mappings F,G,H : X → X satisfying (3.4), (3.5) and (3.6), respectively, which are given by

F (x) = lim
j→∞

2jf
( x
2j

)
, G(x) = lim

j→∞
2jg

( x
2j

)
, H(x) = lim

j→∞
2jh

( x
2j

)
for all x ∈ X.

Letting y = x and z = 0 in (3.2), we get

∥2kf(2λx)−mg(2λx)∥ ≤ ψ1(x, x, 0), (3.7)

∥2kf(2λx)− 2mλg(x)∥ ≤ ψ2(x, x, 0) (3.8)

and

∥h(λx)− λh(x)∥ ≤ 1

n
ψ3(x, x, 0) (3.9)

for all x ∈ X. From (3.7) and (3.8), we obtain

∥g(2λx)− 2λg(x)∥ ≤ 1

m
[ψ1(x, x, 0) + ψ2(x, x, 0)] (3.10)

for all x ∈ X. Setting y = 0 and z = −x in the first inequalitie of (3.2), we have

∥kf(2λx)− nλh(x)∥ ≤ ψ1(x, 0,−x) (3.11)

for all x ∈ X. Putting x = y = 0 in the third inequality of (3.2), we get

∥nh(λz)− 2kλf(z)∥ ≤ ψ3(0, 0, z) (3.12)

for all z ∈ X. From (3.9), (3.11) and (3.12), we get

∥f(2λx)− 2λf(x)∥ ≤ 1

k
[ψ1(x, 0,−x) + ψ3(x, x, 0) + ψ3(0, 0, x)] (3.13)

for all x ∈ X. Now, from (3.1) and (3.13), we have

∥2F (λx)− 2λF (x)∥ = ∥F (2λx)− 2λF (x)∥ = lim
j→∞

2j
∥∥∥∥f (2λx

2j

)
− 2λf

( x
2j

)∥∥∥∥
≤ lim

j→∞
2j

1

k

[
ψ1

( x
2j
, 0,− x

2j

)
+ ψ3

( x
2j
,
x

2j
, 0
)
+ ψ3

(
0, 0,

x

2j

)]
≤ lim

j→∞

Lj

k2j
[ψ1(x, 0,−x) + ψ3(x, x, 0) + ψ3(0, 0, x)]

which tends to zero as j → ∞ and so F (λx) = λF (x) for all x ∈ X and all λ ∈ T1. By the same reasoning
as in the proof of [15, Theorem 2.1], the mapping F : X → X is C-linear.
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Similarly, by using (3.1), (3.10) and (3.9), one can show that the additive mappings G,H : X → X
are C-linear.

It follows from (3.1) and (3.3) that

∥F (xy)− F (x)G(y)−H(x)F (y)∥

= lim
j→∞

4j
∥∥∥f (xy

4j

)
− f

( x
2j

)
g
( y
2j

)
− h

( x
2j

)
f
( y
2j

)∥∥∥
≤ lim

j→∞
4j

[
ψ1

( x
2j
,
y

2j
,
z

2j

)
+ ψ2

( x
2j
,
y

2j
,
z

2j

)
+ ψ3

( x
2j
,
y

2j
,
z

2j

)]
≤ lim

j→∞
Lj [ψ1(x, y, z) + ψ2(x, y, z) + ψ3(x, y, z)] = 0

for all x, y, z ∈ X. Therefore the C-linear mapping F : X → X is a (G,H)-derivation. 2

Corollary 3.2 Let r, η be nonnegative real numbers with r > 2 and f, g, h : X → X be mappings
satisfying

∥kf(2λx) + kf(2λy)− nλh(−z)−mg(λ(x+ y + z))∥ ≤ η(∥x∥r + ∥y∥r + ∥z∥r)
∥2kf(λ(x+ y + z))−mλg(x+ z)−mλg(x− z)− nλh(y − x+ z)∥ ≤ η(∥x∥r + ∥y∥r + ∥z∥r)∥∥∥nh(λ(x+y)

2
+ λz

)
+mg

(
λ(x−y)

2

)
− nλh(x)− 2λkf(z)

∥∥∥ ≤ η(∥x∥r + ∥y∥r + ∥z∥r)

and

∥f(xy)− f(x)g(y)− h(x)f(y)∥ ≤ η(∥x∥r + ∥y∥r + ∥z∥r)

for all x, y, z ∈ X and all λ ∈ T1. Then there exist unique C-linear mappings F,G,H : X → X such that
F is a (G,H)-derivation and

∥F (x)− f(x)∥ ≤ η(21−r + 1)

k(2r−1 − 2)
∥x∥r

∥G(x)− g(x)∥ ≤ 4η

m(2r−1 − 2)
∥x∥r

∥H(x)− h(x)∥ ≤ η(21−r + 22)

n(2r−1 − 2)
∥x∥r

for all x ∈ X.

Proof: The proof follows from Theorem 3.1 by taking

ψi(x, y, z) = η(∥x∥r + ∥y∥r + ∥z∥r)

for all x, y, z ∈ X and all i = 1, 2, 3 and L = 22−r. 2

Corollary 3.3 Let p, q, r, η be nonnegative real numbers with p + q + r > 2 and f, g, h : X → X be
mappings satisfying

∥kf(2λx) + kf(2λy)− nλh(−z)−mg(λ(x+ y + z))∥ ≤ η∥x∥p∥y∥q∥z∥r

∥2kf(λ(x+ y + z))−mλg(x+ z)−mλg(x− z)− nλh(y − x+ z)∥ ≤ η∥x∥p∥y∥q∥z∥r∥∥∥nh(λ(x+y)
2

+ λz
)
+mg

(
λ(x−y)

2

)
− nλh(x)− 2λkf(z)

∥∥∥ ≤ η∥x∥p∥y∥q∥z∥r

and

∥h(xy)− h(x)g(y)− f(x)h(y)∥ ≤ η∥x∥p∥y∥q∥z∥r

for all x, y, z ∈ X and all λ ∈ T1. Then there exists a unique C-linear mapping H : X → X such that H
is an (f, g)-derivation and

∥H(x)− h(x)∥ ≤ η(1 + 2−(p+q))

n(2p+q+r−1 − 2)
∥x∥p+q+r

for all x ∈ X.



10 M. Dehghanian, Y. Sayyari, M. Donganont and C. Park

Proof: The proof follows from Theorem 3.1 by taking L = 22−p−q−r and

ψ1(x, y, z) = ψ2(x, y, z) = ψ3(x, y, z) = η∥x∥p∥y∥q∥z∥r

for all x, y, z ∈ X. 2

4. Conclusion

In this paper, we investigated a nonlinear system of functional equations (1.1) characterizing approxi-
mate (g, h)-derivations in complex Banach algebras. We derived the general solution and established the
Hyers-Ulam stability of the associated (g, h)-derivations using the fixed point method. Our approach en-
sures existence, uniqueness, and provides explicit bounds for the approximation error. The results extend
the classical theory of g-derivations by introducing a robust fixed point framework for analyzing general-
ized derivations with asymmetric operator structure. Future work may consider extensions to stochastic
settings, non-Archimedean algebras, or systems involving delays, impulses, or fractional dynamics.
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