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A Study of Semilinear Elliptic Triharmonic Equations Involving Singular Potentials

Abdessamad El Katit*, Abdelrachid El Amrouss and Fouad Kissi

ABSTRACT: The purpose of this work is to investigate the existence and nonexistence of solutions for the
following semilinear sixth-order elliptic problem with a singular potential

—A3y — u&v = g(v) + Ah(z) in Q,
v>01in Q,
v=Av =A% =0 on d9Q,

where Q@ ¢ RN(N > 7) is a smooth bounded domain. A3y = A(AZ?v) , h,g are nonnegative functions.
h € L?(Q), h Z 0. u, \ are positive parameters.
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1. Introduction

In the present work, we study the following semilinear sixth-order elliptic problem with singular
potential,

— A3y — u%v = g(v) + Ah(x) in Q,
x
v>0 inQ, (1.1)
v=Av =A% =0 on 990,
where Q € RV (N > 6) is a smooth bounded domain. A%y = A(A?v), h,g are nonnegative functions.
h € L?(Q), h # 0. u, \ are positive parameters. We assume that
g:RT = RT is a convex C! function with g(0) = 0 = g (0). (1.2)

and satisfying the following growth conditions

/OO f(s)ds < oo and sf(s) <1 for s > 1, (1.4)
1
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where, for s > 1, we define

g(t)
s) := sup . 1.5
f(s) D ) (1.5)
Thus, it can be easily verified that f is a nonincreasing nonnegative function.
Since by convexity t — %t) is increasing and ¢g(0) = 0, it follows that s — sf(s) is nonincreasing.

Assume that « is a nonnegative constant satisfying

a<(N—2)(N;2)(N—6)' L6)

Thanks to Theorem 2.2, there exists a positive constant v > 0 such that

2
/ (|VAU|2 — a2v> dr > fy/ vidr v e Wg"Q(Q). (1.7)
Q Q

|

We also assume that
0<p<+/M7. (1.8)

In recent years, there is an extensive literature exploring the case p = 0 (see [1,3,7,11,13]). The differ-
ential equation —A3v = h models complex bending of beams, plates and shells that involve higher-order
interactions and constraints. Moreover, in the study of viscoelastic fluids, the triharmonic equation for
the streamfunction describes flow patterns and stress distributions [13].

Similar type of problem with the Laplace operator in much more generalized sense was extensively
studied by Dupaigne and Nedev in [10]. In [10], the authors proved a necessary and sufficient condition
for the existence of L! solution and they have also established an estimate from above and below for the
solution. We also refer to [5,6,9] (and the references therein) for the related problems in the second order
case.

Higher order problems are distinct from the second and forth order case. In this case a possible failure
of the maximum principle which plays a crucial role in proving existence results causes several technical
difficulties. Possibly because of this reason the knowledge on higher order nonlinear problems is far from
being reasonably complete, as it is in the second-order case.

We will state that the problem (1.1) blows up if the solutions to the truncated problems (where the
weight p(|z|% + 2)~1 in place of the Hardy type term p|z|~=%) tend to infinity for all z € Q as n — oco.

The main purpose of this paper is to illustrate the impact of the Hardy type term on the existence
or nonexistence of solutions. The related elliptic semilinear case with the Laplacian and Biharmonic
operators were studied in [5,9,15].

This paper is structured as follows:

In Section 2 we briefly provide the functional framework for our problem and the embeddings theorem
that will be useful in this paper.

Section 3 is related to certain definitions and preliminary results. First, we characterize the radial
solutions to the homogeneous problem that enable us to know the singularity of our supersolutions near
the origin and prove nonexistence results. The notion of solution we will treat in the nonexistence results
is local, we just ask the regularity required to provide distributional sense to the equation.

In Section 4 we prove our main existence result. More precisely, under some hypothesis on g, we
prove that there exists A\, > 0 such that if A € (0, A,), the problem (1.1) has a minimal solution uy in
the Sobolev space H := W '%(Q). Moreover, if A > A,, then (1.1) does not have any solution.

In section 5, deals with the case for which (1.1) does not have any solution even in the very weak
sense. In this case we establish complete blow-up phenomenon.

2. Functional Framework

We briefly describe the natural framework to treat the solutions to the problem considered. Let
Q c RY denote a smooth domain. We define the Sobolev space

WHEP(Q) = {v € LP(Q), Dv € LP(Q) for all 1 < |B] < k},
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equipped with the norm

1/p

[v]lwrr ) = /Q|v|pd:c+/9 > IDPol da . (2.1)

1<|6I<k

Taking the closure of C§ () in W¥*P(Q) gives rise to the Sobolev space W(f’p(Q), with the norm

1/p

e W AD DT I

1<IBI<k

equivalent to (2.1).
Indeed, using interpolation theory one can dispose of the intermediate derivatives and get that

1/p
e YA 22

defines a norm which is equivalent to (2.1), see for example [2].

Theorem 2.1 (Rellich-Kondrachov’s Theorem)([15])Let k € N and 1 < p < co. Suppose that  C RV
is a Lipschitz domain. Then,

*

b,

, , N
WHEIR(Q) < WIP(Q) and WHP(Q) < L(Q), for all 1 < q < pk =
— kp

Let us briefly discuss that for certain domains, H := Wg 2 (Q) is a Hilbert space, endowed with the
following scalar product

< v, U S>Sy= / < VAv,VAu > dzx,
Q

which induces the norm
[v]l2 = [VAV|L2(0),

equivalent to (2.2) with k = p = 2.
Theorem 2.2 ([14]) For any v € H and N > 6, it holds that

[P
M/QW dx </Q|VAU|2 dx, (2.3)

where 1 = ((N_Q)Z(N;E)Q(N_G)Q) is optimal.

Proposition 2.1 Let u € H. Then, there exist unique uy,us € H such that u = uy + us, satisfying
uy >0, and ug <0 in Q and [, < VAui, VAuy > dx = 0.

Proof: Consider the cone of the a.e. positive functions defined in §2,
C:={veH: v(x)>0aein Q}

the corresponding dual cone with respect to the scalar product above is defined as
Cr={weH: / < VAw,VAu > dz <0, for all u € C}.
Q

Let us take as u; the orthogonal projection of u € H on C, namely, let u; be such that

/ IVA(u —uy)|*de = min/ IVA(u —v)|?d.
Q veC Q
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Letting uo = u — uq, for all t > 0 and v € C, it holds that

/ VAU — w)[2dz < / VAU — (u1 — t0))2dz
Q Q
= / IVA(u — uy)[2de + 27,‘/ < VA(u—uy),VAv > dx + t2/ |V Av|2dz.
Q Q Q

Therefore
2t/ < VA(u—u1), VAv > dx < t2/ |V Av|?d. (2.4)
Q Q

Choosing t > 0, simplifying and making then ¢ — 0, we obtain that
/ < VAui,VAv > dx <0, for any v € C, hence us € C*.
Q
In particular, we can put v = uq, thus

/ < VAuq,VAuy > dr <0.
Q

Arguing analogously, for some ¢ € [—1,0) in (2.4), and letting t tend to 0, we get the reverse inequality,
and hence

/ < VAuy,VAuy > dr = 0.
Q

Let us show next the uniqueness. Assume that u = u; + us = v1 + vo with uy,v1 € C and us,v9 € C*.
Then

0= H’U,l — V1 + U2 —’Ug”2 = Hu1 —’U1|| + H’U,g —UQH —2< U, v >y —2 < v1,U2 >y

> |lug — v1]| + |Jug — va]|.

This implies that u; = v; and us = vy as desired. To conclude the proof we show that every function
w € C* is nonpositive and, in particular, us < 0. For every arbitrary nonnegative h € C5°(£2), consider
the solution to the following problem

~A%v=h inQ,
(2.5)

v=0, —Av =0, A%v =0 on 99,

By the Maximum Principle v € C. But then,
OZ/ <VAv,VAw>dz:/hwdx,
Q Q

for every nonnegative function h € C§°(§2). By density, we conclude that w(z) < 0 a.e. z € Q as we
wanted to prove. O

3. Some Definitions and Auxiliary Results

Definition 3.1 We state that v € H is a supersolution (subsolution) to (1.1) if v > 0 a.e. in €,
g(v) € L*(Q) and

/Q << VAv,VA¢ > —u&)vgb) dx > (<) / (g(v) + Ah(x))p dx Vo € H.

Q

We say that v € H is a solution to (1.1) if v is both a supersolution and subsolution to (1.1).
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Definition 3.2 We state that v € L'(2) is a very weak solution to problem (1.1) if v > 0 a.e. in €,
nrEv +g(v) € L} () and v satisfies (1.1) in the distributional sense, i.e.,

/Qv (A% - "ﬁ ) do = /Q(g(v) ()b dz Ve € C5(Q).

Lemma 3.1 (Strong Maximum Principle) Let v to be a nontrivial supersolution to the problem

—A%v=0 in Q,
) (3.1)
v=—Av =A% =0 on 91,
then A%y >0, —Av >0 and v > 0 in Q.
Proof: Set —Av = u, if v is a supersolution to (3.1), then u is a supersolution to the problem
A%y =0 in Q,
(3.2)
u = —Au =0 on 09,

Utilizing the Strong Maximum Principle to the Biharmonic operator (see [15]) yields that —Au > 0,
u>01in Q, as a result A%y >0, —Av >0 and v > 0 in Q. O

Lemma 3.2 (Comparison Principle) Let u and v fulfill the following

~A%u > —A3%in Q,

v on 012,
—Au > —Av on 99,
A?u > A0 on o0,

u 2

(3.3)

Then, A%v < A%y, —Av < —Au and v < w in Q.

Proof: Consider the change of variables w = u — v, thus w is a supersolution to (3.1). So it suffices to
apply to w the Strong Maximum Principle 3.1. |

Note that from the corresponding system (3.2), we can also get a weak Harnack’s type inequality.

Lemma 3.3 (Weak Harnack inequality)([15]) Let v be a positive distributional supersolution to the
problem (3.1), then for each Bgr(zg) CC €2, there is a constant C = C(0,p,q,R) > 0,0 < g < % and
0 <0 < p<1,such that

i(Byn(eo)) < Cess inf v,
[Vlza(B,ne)) < Cess | inf v

Lemma 3.4 Let h € L*(Q), h > 0 a.e. in Q, h # 0; a be a positive constant verifying (1.6) and u
satisfy (1.8). Then the problem

—A3y — ,uisv =h inQ,
|| (3.4)
v=Av=A%=0 on 09,
admits a positive solution v € H.
Proof: Given h € L?(Q2), h > 0, we know that there exists unique solution v; € H to the problem
—A3v, =h in Q,
) (3.5)
v1 = Avy = A%vy = 0 on 91,
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Applying the Strong Maximum Principle 3.1, it follows that v; > 0 in Q. Recursively, for n > 1 we define
—A3y,, = u%vn_l +h in Q,

|| (3.6)
vn, = Av,, = A0, = 0 on 99,

Thanks to (1.7) we have HTsUn-1 € L?(€2), which in turn yields the existence of unique solution v,, € H
o (3.6). Moreover, invoking the Comparison Principle 3.2 we arrive at

O<vr < - <vp1 SV <00

Claim: {v,} is a Cauchy sequence in H. Indeed, notice that

(67

—A3(vpp1 —vp) — MW(% —Up—1)=0 in Q, (3.7)

and vy 41 — vy = A(vpr1 — vn) = A%(v41 — v,) = 0 on 9. By taking v,41 — v, as a test function in
(3.7), then using (1.7) and Holder’s inequality we have

/ VA g1 — va)|* dz = p / (0~ vn1) (V1 — vp) d
Q q |z

<p ( / (&,)anvn_m dx> ([ (s = wn? do:)w

Iz
< 7 VA (v, — Un—1)|L2(Q) IVA(vpt1 — Un)|L2(Q) :

v

1/2

i.e.

M K \n—
IVA(vn41 — Un)|L2(Q) < —= VA, — ’Unfl)lL?(Q) << () VA - v1)|r2(9)-

el VY

As j1 < /7, the previous estimate yields that {v,} is a Cauchy sequence in H. Hence, there exists v € H
such that v,, — v in ‘H. Moreover, v > 0 since v,, > 0 for all n > 1.
Since v,, € H solves (3.6), passing to the limit, we conclude that v is a solution to (3.4). O

Lemma 3.5 Let h € L?(2), h > 0 and let (1.2) be satisfied. Let X\, u and o be positive constants with
satisfies (1.6) and p fulfills (1.8). Suppose that there exists a nonnegative supersolution v € H to (1.1)
(respectively for (3.4)). Then, there exists a unique positive minimal solution v € H to the problem (1.1)
(which satisfies v < W for any positive supersolution @ to (1.1)) (respectively for (3.4)).

Proof: Let v € H be a nonnegative supersolution to (1.1) and vy € H be a positive solution to the
problem

(3.8)

—A%vy = \h in Q,
vo = Avg = A%p5 = 0 on 99N

Applying the Comparison Principle 3.2 we infer that 0 < vg < ¥ in Q. Then, by means of iteration we
will show the existence of v, € H for n =1,2,--- solving the problem

~A3y, = ﬂ%vn—l + g(vn—1) + Ah(x) in Q,
@ (3.9)
U = Av, = A0, =0 on 0f).

Since © is a weak supersolution to (1.1), we have g(v) € L?(€2). Thanks to the fact that 0 < vy < ¥ and g is
convex (thus g is nondecreasing), we obtain g(vg) < g(v). Therefore g(vo) + Ah € L2(£2). Also, by (1.7) it
follows that ‘x%vo € L2(Q). Therefore v; is well defined and by comparison principle 0 < vg < v; < v. By
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induction method, identically one can show that v,, is well defined and 0 < vg < v

N

vy < - < 0.
O

Claim: {v,} is uniformly bounded in H. In fact, since v,, verifies (3.9) we can write

VAvn|2L2(Q)_/< | |3vn 1+ g(vp_1) + A(z )) Un dz</< ‘ |3v+g( )—|—/\h(x))f)dx

< )
i

I

+19(9)|L2(0) + )‘|h|L2(Q)‘| 10|12
12(9)

<C.

As a consequence there exists v € H such that, up to a subsequence, v, — v in H and v,, — v in L?(Q).
By means of (3.9) we have,

/<VAvn,VA¢>dx:/( |a‘3vn 1+ g(vn— 1)+h>¢dw Vo € H.
Q

Using Vitaly’s Convergence Theorem we can pass to the limit on the right-hand side and get v is a
solution to (1.1). Also v > 0 since v, > 0 for all n > 1.

Let w be another supersolution to (1.1), then the comparison principle 3.2 yields that vy < w and
v, < w for any n > 1. Passing to the limit, we infer that v < w. This concludes the proof.

Remark 3.1 In what follows, we denote the minimal positive solution to (3.4) by &1 and denote & = L(h)
-1
where L = (—A3 - u‘g%) )

4. Existence and Nonexistence Results

Theorem 4.1 Assume that h € L*(2), h > 0 a.e. in Q, h # 0; o, u be nonnegative constants satisfying
(1.6) and (1.8) respectively and g be a nonnegative function fulfilling (1.2)-(1.5).
Suppose there exists two constants € > 0 and C' > 0 such that

g(e&1) € L*(Q) and L(g(et1)) < C&y ae. in Q. (4.1)

Then there exists 0 < \*

= N (N;a; h(z); g; 1) such that if X < A*, the problem (1.1) has a minimal
L . 3.2(()
positive solution vy € W7 ()

satisfying
A <oy <20 ace in S

In order to prove this theorem, we first need to prove the next proposition.

Proposition 4.1 Assume that g,h, « and p fulfill the prior assumptions of Theorem /.1, then there
exists \* > 0 such that

g(20&) € LA(Q) and L(g(2)\&1)) < A&y ave. in 9, (4.2)

for any A € (0, \*).

Proof: By (1.5) we get f(55) > g(( )) for any t > 0. In particular, take t = 2A&y, it follows that

y\

g(2X&1) < f(2)\) g(€&1) in . (4.3)

Combining (4.1) with (4.3) yields that g(2A¢1) € L?(Q2) and £(g(2)&1)) is well defined. By the minimality
of £(g(2X&1)), (4.1) and (4.3) we obtain

L(9(2061)) < f(55)L(g(e&r)) < f( 3 )6 ae. in Q.

2
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To achieve the proof, it suffices to show that

)ﬁo )\f( ) = 0 or equivalently Tlgrolo Tf(r) = 0.
Since s — sf(s) is nonincreasing, the above limit is well defined, i.e., there exists ¢ > 0 such that
lim, oo 7f(7) =cC.

If ¢ >0, then f(1) ~ < near oo and this contradicts (1.4). Hence ¢ =0 and (4.2) holds for A > 0
small. 0

Proof of Theorem 4.1

Let A € (0,A*) and define w := £(g(2X&1)) + A& Clearly w > 0 and w € H since & and L£(g(2)\&1)) are
in ‘H by Lemma 3.1. Moreover, in view of Proposition 4.1 we know that w < 2A&; a.e. in 2 and hence
g(w) € L%(2). Thus we have

CA3(w— M) — |a|3(w A1) = g(206) in Q.

As a result o
A3 — p—w
|[3
and w = Aw = A?w = 0 on 0. Hence, w is a positive supersolution to (1.1). By applying Lemma 3.5,
we obtain the existence of a minimal positive solution vy € H to (1.1). This necessarily implies

g(2A&1) + Ah > g(w) + Ah o in Q,

vy < w < 226 ae. in Q. (4.4)

On the other hand, from L£(h) = &, one can easily check that £(Ah) = A&;. Then it is not difficult to
establish that vy is a supersolution to the equation satisfied by A&;. By minimality of A\{;, we arrive at

A= A& in Q, (4.5)
which completes the proof.

5. Nonexistence and Complete Blow-Up Results
Define

A* =sup{\ > 0: the problem (1.1) has a very weak solution}.

One can easilty check that if v € H is a solution to (1.1) in the sense of Definition 3.1, then v is a very
weak solution to (1.1) as well. As a result \* > \*.

Lemma 5.1 \* defined above is finite.

Proof: Assume that the problem (1.1) has a very weak solution v € L*(2), that is to say,
/Qv ( A3p — u&)gp) dx = /Q(g(v) + A(x))p dx Yo € C§°(Q). (5.1)

Let Q cc Qand ¢ € C§°(2), ¥ = 0 such that supp(v) C Q. Choose ¢ to verify the problem

—N3p =1 in Q,
¢ =Ap =A% =0on 0.

Clearly ¢ € C*>°(€2). By invoking the Strong Maximum Principle 3.1, it immediately follows that ¢ > 0
in Q. Thus we derive that ¢ > ¢ > 0 in Q. Substituting this ¢ in (5.1) we obtain

u/ |Oisvg0dx+/ (v)gpd:v—ﬁ—k/ﬂh(x)godm:/Qvgodm:/ﬂvcpdx. (5.2)
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By (1.3), given any e > 0, there exists a constant C, > 0 such that
v < Ce + eg(v).

Substituting the last inequality in (5.2) we infer

u/Q;lgvso+/Qg(v)s&+A/Qh(r)¢/Qw <Ce/ﬂw +6/ﬁg(v)¢

(
< Ce = : 5.3
<o forelg]  fowe 6

Choosing € > 0 such that e\%ho@(m < 1/2in (5.3), we conclude that

u/ %vgpdm—kl/g(v)cpd;v+)\/h(m)gpdméC’/wd:ngl.
o || 2 Ja Q 0

This necessarily implies that M < oo, In particular there are no solutions to the problem (1.1) when
A > A" even in the very weak sense. O

Theorem 5.1 Let v, € H be the minimal nonnegative solution to the problem

_A?)Un - ,Ufan(x)vn = gn(vn) + Ahy, in €,
2 (5.4)
v, = Av, = A“v, =0 on 0N,

where A > X, o, (x) = of|z]® + LYy=1and {hn(2)}, {gn}n>1 be increasing sequence of bounded functions

converging pointwise respectively to h(xz) and g. Then
vp(x) = 00 Vo €,

i.e., there is a complete blow-up in the problem (1.1) when \ > 2*

Proof: The existence of minimal solution v,, € H to (5.4) results from Theorem 6.1. By the monotonicity
property of {ay}, {hn(z)}n>1 and {g,}, one can notice that v,y is a supersolution to the equation
satisfied by v,. Then by minimality of v, we obtain v, < v,41 for any n > 1.

So, to derive the blow-up result, it suffices to establish it for the family of minimal solutions {wv, }.

Reasoning by contradiction, we suppose there exists xo € Q and C > 0 such that v, (zg) < C. Invoking
Lemma 3.3, we know that for each Br(xo) CC €, there exists C = CI(G,,O7 R)>0with0<6<p<l,
such that ) )

[Vn| L1 (B, r(zo)) < C ess inf v, < Cwy(x) <d, d>0.
Bor(zo)

Then following the similar argument as in [15], one can prove that there exist > 0 and a positive

constant d = d(r) such that
vy, dx < d, uniformly in n € N.
Br(0)

Therefore, applying the monotone convergence theorem we see that, there exists v > 0 such that v,, — v
in L1(B,(0)).

Let ¢ be the solution to the problem

—ABQS = ]-B,«(O) il’l Q,
¢ =A¢ =A% =0 on 9.

Clearly ¢ € W3P(€2) since 1p (o) € LP(Q) for all p > 1. Taking ¢ as a test function in (5.4) we get

g('Un) _
/Q <an(x)vn¢ + %qﬁ + Ahnqb) de = /BT v, dz < C.
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Utilizing Monotone Convergence Theorem and Fatou’s lemma, it results that
a . :
an(z)vn T wpl Lioe(Br(0)), gn(va) = g(v) in Lige(B,(0)) and hn(x) T h(z) in Lige(Br(0)).

Thus, we conclude that v is a very weak solution to (1.1) in B, (0) CC B,(0) and this contradicts with
A>T O

6. Appendix

Theorem 6.1 Assume that the assumption (1.8) is fulfilled, then the problem (5.4) admits a nonnegative
minimal solution for any positive \.

Proof: We will first establish that there exists a nonnegative minimal solution v, € H to the following
problem
A3, — |013 gn (Un) + Map(z) in Q
v = Av, = A0, =0 on 0.

Indeed, let v € H be a positive solution to the problem

— A% = Ahy, in Q,
(6.1)

= Av? = A%? =0 on 9.

Slnce Ahy, € L®(Q) C L?(Q2) we obtain v2 € H. Then, using iteration we will show that there exists
vyt € H for m =1,2,... such that v]* solves the problem

A3 = p—v™ 4 g, (V) 4 Ay () in Q,
| |3 () (6.2)
=Av™ = A%W™ =0 on 0f.

Thanks to (1.7) and the fact that h,, g, € L>°(Q) yields that uﬁvg—i— gn (v3) + Ahy(x) € L*(Q) which
in turn implies that v} is well defined. Moreover, by comparison principle 0 < v2 < v.}.

Using the induction method, one can show via the same manner that v/ is well defined and 0 < v9 <
v}lg Lot <L

Claim: {v]7"} is uniformly bounded in #. To see this, note that from (6.2) we have

|VA,U:LYL|%2(Q) = / (Ml O‘|3 ml g, (v )\hn(m)> v dz. (6.3)
Q

Using Holder’s inequality, Young’s inequality and (1.7), the terms on the right-hand side can be reduced
as follows

)\/thv < Ml o @[22 [077] 1y < f'h alio (@) IV AV 2
< e|VAy |L2(Q) +¢(6)| T (1)
/an (o) opt dae < |gnl o (@) 1912 [0 L2y < \7 Inlr=(@) VAV 12(q)

-1 2 @
A szl oy dr < H/Q W(U:ﬁ) de < #‘JJP’U:{L [V Av |L2(Q)-

07|22 () < f
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Since 11/,/y < 1, we can choose € > 0 such that 2e4 2= < 1. Substituting this € in above three inequalities

Val

and combining them with (6.3) , we have

m|2
VA 720y < C (Jhalrse(o) + 9nl () -

This proves the claim. As a consequence there exists v, € H such that up to a subsequence u,* — v,, in
H as m — oo and v — v, in L?(Q). Therefore we can conclude the theorem as we did in Lemma 3.5.

10.
11.

12.

13.

14.

15.

16.

Since v, is a nonnegative supersolution to (5.4), the theorem results from Lemma 3.5.
O
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