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Existence of Solutions of an infinite Mixed Volterra-Fredholm integral system in ℓ1 space

Ruprekha Devia and Bipan Hazarikab

abstract: Applying the FPT, we offer an existence result for an infinite mixed Volterra-Fredholm type
nonlinear integral system in the sequence space ℓ1. Here Meir-Keeler FPT is used and we use the concept of
measure of noncompactness. To further demonstrate the given existence result, we provide some examples.
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1. Introduction

Mixed Volterra-Fredholm integral equations is broad field and it contains various sectors, with bene-
faction from sectors of mathematicians, physicists, engineers, and researchers from other fields. This
mixed integral equations are typically occur across a wide range of fields and sectors including modeling,
mathematical and physical dynamics, electrodynamics and biology. The term Mixed Volterra-Fredholm
integral equations uses in the study of parabolic boundary value problems and is popularly used in math-
ematical models that describes the spatio-temporal dynamics of epidemics, as well as in various physical
and biological systems. There are two versions of the mixed Volterra-Fredholm integral equations, namely:

w(x) = f(x) + λ1

∫ x

a

k1(x, t)w(t)dt+ λ2

∫ b

a

k2(x, t)w(t)dt (1.1)

and the mixed form

w(x) = f(x) + λ

∫ x

a

∫ b

a

k(r, t)w(t)dtdr. (1.2)

Equation (1.1) is of the form of disjoint Volterra and Fredholm integrals, whereas equation (1.2) is of the
form of mixed Volterra and Fredholm integrals. Detailed discussions of these types of integral equations
can be found in [20]. In this article, we will discuss (1.2) type of equation. In recent times, many
research papers have been published to study these type of equations and understand their properties.
Researchers are showing interest in exploring how these equations work and what characteristics they
have. This implies the fact that these equations are topic of active study. Many generalizations of
the same have been given by many researchers, which includes the collocation method in [9], Taylor
expansion methods [6], block-pulse functions [18], spectral methods [8] etc. Numerous techniques have
been used for computation of nonlinear two dimensional Volterra-Fredholm integral equations, we have
given following reference for better understanding [11,19]. Solvability of linear mixed Volterra- Fredholm
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integral equations by applying Banach fixed point theorem discussed in the article [10]. In [18] authors
studied nonlinear mixed Volterra-Fredholm type integral equation by using generalized Banach FPT.

In 1930 Kuratowski [16] first proposed the idea of MNC. An entirely new FPT was created by Darbo
[8] connecting the concept of MNC. Later it referred by Darbo FPT. By generalization of Banach principle
of contraction [4], Meir and Keeler [15] proved a new FPT, which is very interesting. There are lots of
works have been done by using fixed point theorems in the field of integral equations. We have referred
some recent works on application of fixed point theorems in integral equations for better understanding
[12,13,14].

We found that there are lots of works have been done in sequence spaces by many authors.
M.Mursaleen and S.A. Mohiuddine [17] established results in lp space for infinite differential system
of equations by using Meir Keeler FPT. Later, A.R. Arab et al. [3] proved results regarding system of
integral equations containing two variables. The result of an infinite integral system in sequence spaces
c0 and ℓ1 discussed by A. Das et al. [7].

Solution existence of infinite mixed Volterra–Fredholm integral system have already done in sequence
space. But study of infinite mixed Volterra–Fredholm integral system in sequence space is still an in-
novative research area. This fact motivate us to approach this study to fill this research gap. In this
manuscript, we try to illustrate the existence of solutions of an infinite mixed Volterra-Fredholm integral
system by using Meir Keeler FPT in the sequence space ℓ1 and clarified our result with some examples.

The manuscript is systematically structured as: In Section 2 we have stated some notations and
supporting facts which will be helpful for our main finding. The Section 3 is devoted to prove our main
result. Next in the section 4 we have given some examples to support of our main result and also verified
the examples.

2. Definitions and results

Before going next part, Consider E is a Banach space whose norm is ||.|| and a closed ball D(y0, d) is
defined in the Banach space E whose centre y0,radius d.
If χ is a nonempty subset of E, then:-
χ denotes Closure of the set χ,
Convχ denotes Convex closure of χ,
ME represents collection of all bounded subset of E which are nonempty,
NE represents sub-collection of E containing all relatively compact sets.

Definition 2.1 [5]MNC is a function ν : ME → [0,∞) that satisfies following properties:

(i) ker ν = {χ ∈ ME : ν(χ) = 0} ̸= ∅ and ker ν is a subset of NE.

(ii) If χ is a subset of Y then it implies ν(χ) ≤ ν(Y) .

(iii) ν(χ) = ν(χ).

(iv) ν(Convχ) = ν(χ).

(v) ν(λχ+ (1− λ)Y) ≤ λν(χ) + (1− λ)ν(Y) for λ ∈ [0, 1].

(vi) if Xi is a sequence of closed sets from ME, such that χi+1 ⊂ χi for i = 1, 2, 3, ...and if

lim
i→∞

ν(χi) = 0, then χ∞ :=
∞⋂
i=1

χi is nonempty.

The family ker ν is known as kernel of measure ν.
Measures ν to be sublinear, if it holds the conditions

(i) νn(λχ) = |λ|νn(χ), for λ ∈ R, n ∈ N .

(ii) νn(χ+Y) ≤ νn(χ) + νn(Y).

A sublinear MNC ν holds the following property

ν(χ ∪Y) = max{ν(χ), ν(Y)}
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following the condition ker ν = NE is known as regular. If S ⊂ X , where S is bounded subset and X is
a metric space then we define Kuratowski MNC as :

α(S) = inf{ϱ > 0 : S =

n⋃
i=1

Si, diamSi ≤ ϱ for 1 ≤ i ≤ n ≤ ∞},

Here diamS = diameter of Si, means

diamSi = sup{d(x, y) : x, y ∈ Si}.

Taking bounded set, Hausdorff MNC S is denoted as

ψ(S) = inf{ε > 0 : There exist a finite ε− net for S in χ}.

Let us recollect some basic assets of Hausdorff MNC. For a metric space (χ, d), we take F, F1 and F2 as
bounded subsets. Then we have

(i) ψ(F) = 0 iff F is totally bounded;

(ii) ψ(F) = ψ(F), here F is the closure of F;

(iii) If F1 is a subset of F2 =⇒ ψ(F1) ≤ ψ(F2);

(iv) ψ(F1 ∪ F2) = max{ψ(F1), ψ(F2);

(v) ψ(F1 ∩ F2) ≤ min{ψ(F1), ψ(F2)};
By taking normed space (X, ||.||), we have some additional properties for the function ψ which is linked
with the linearity. Thus, we have

(i) ψ(F1 + F2) ≤ ψ(F1) + ψ(F2);

(ii) ψ(F+ x) = ψ(F), ∀ x ∈ χ;

(iii) ψ(αF) = |α|ψ(F), ∀ α ∈ C.

Definition 2.2 [2] Consider two Banach spaces E1 and E2 and two arbitrary MNC ν1 and ν2 on E1

and E2 accordingly. T : E1 → E2 is an operator known as (ν1, ν2)-condensing operator if satisfies
continuity and the property ν2(T (D1)) < ν1(D1) for each set D1 ⊂ E1 with compact closure.

Remark 2.1 An operator T is known as ν-condensing operator if it satisfies E1 = E2 and ν1 = ν2 = ν.

Theorem 2.1 [3] Let E be a Banach space and ω be a nonempty, closed, bounded and convex subset of
E. For the continuous mapping T : ω → ω, a constant k ∈ [0, 1) such that ν2(T (ω)) < kν1(T (ω)).Then
T has a fixed point in ω.

Definition 2.3 [15] For a metric space “(χ, d)”, the mapping T is on χ is called Meir-Keeler contrac-
tion if for each ε > 0, ∃ ϱ > 0 which satisfies,

ε ≤ d(x, y) < ε+ ϱ =⇒ d(T x, T y) < ε, ∀ x, y ∈ χ.

Theorem 2.2 [15] For a complete metric space (χ, d), if the mapping T : χ → χ is a Meir-Keeler
contraction; then T has a unique fixed point.

Definition 2.4 [1] Let ν be an arbitrary MNC on the Banach space E and C be a nonempty subset
of E. The operator T : C → C is called Meir-Keeler condensing operator if for each ε > 0, ∃ ϱ > 0
satisfies the condition

ε ≤ ν(χ) < ε+ ϱ =⇒ ν(T (χ)) < ε

holds for any bounded subset χ of the set C.

Theorem 2.3 [1] Consider E is a Banach space and consider it’s closed convex bounded subset C which
is nonempty. Let ν be an arbitrary MNC on E. If the operator T : C → C satisfies continuity along
with properties of Meir-Keeler condensing operator, then there exist at least one fixed point of T and the
family of all fixed points in C is compact.
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3. Main Finding

In this part, we are discussed the existence of solutions of infinite mixed Volterra-Fredholm integral
system using the Meir-Keeler condensing operators in the sequence space ℓ1.

In the Banach space (ℓ1, ||.||), the Hausdorff MNC ψ can be expressed as

ψ(D1) = lim
n→∞

[
sup

w(t)∈D1

( ∞∑
l=n

|wl(t)|
)]

,

here we define w(t) = (wi(t))
∞
i ∈ ℓ1 for all t is in the positive real number R+ and D1 ∈ Mℓ1 .

Let us assume the infinite mixed Volterra-Fredholm type integral system

wn(t) = fn

(
t,

∫ x

0

∫ a

0

bn(t, v, w(v))dvdt, w(t)

)
, (3.1)

where w(t) = (wi(t))
∞
i ,t is in the positive real number R+, n is in the natural number N and (wi(t)) ∈

C(R+,R), ∀i ∈ N .

3.1. Result of existence of the system (3.1):

Consider the assumptions

1. The variable, x : R+ → [0,∞) is continuous.

2. Infinite system of functions fn : R+ ×R×R∞ → R (n ∈ N ) are continuous with∑
n≥1

|fn(t, 0, w0(t)| : t ∈ R+


converges to zero, where w0(t) = (w0

n(t))
∞
n=1 ∈ R∞ and w0

n(t) = 0, ∀ n ∈ N , t ∈ R+. Also, there
exist rn, gn :R+ → R+(n ∈ N ) are continuous functions such that

|fn(t, p(t), w(t))− fn(t, q(t), w(t))| ≤ rn(t)|wi(t)− wi(t)|+ gn(t)|p(t)− q(t)|,

where w(t) = (wi(t))
∞
i=1, w(t) = (wi(t))

∞
i=1 ∈ R∞

3. bn : R+ ×R×R∞ → R (n ∈ N ) are continuous. Here we define

bn = sup

∑
n≥k

[gn(t)|
∫ x

0

∫ a

0

bn(t, v, w(v))dvdt|] : t, v ∈ R+

 .

Also

lim
t→∞

∑
n

∣∣∣∣gn(t) ∫ x

0

∫ a

0

[bn(t, v, w(v))− bn(t, v, w(v))]dvdt

∣∣∣∣ = 0.

4. Let us assume an operator W from R+ × ℓ1 to ℓ1 as follows
(t, w(t)) → (Ww)(t), where

(Ww)(t) = (f1(t, v1, w(t)), f2(t, v2, w(t)), f3(t, v3, w(t)), ...),

and

vn(w) =

∫ x

0

∫ a

0

bn(t, v, w(v))dvdt.

5. sup bn = G; bn → 0 when n → ∞; sup {rn(t) : t ∈ R+} = U < ∞ such that 0 < U < 1. Also,
M = sup

n
{
∑
n
gn(t)} ∀ t ∈ R+.
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Theorem 3.1 By considering conditions (1)−(5) we can say at least one solution w(t) = (wi(t))
∞
i=0 ∈ ℓ1,

t ∈ R+, n ∈ N of the system (3.1) exists where (wi(t)) ∈ C(R+,R) ∀ i ∈ N .

Proof: We have

||w(t)||ℓ1 =
∑
n≥1

|fn(t,
∫ x

0

∫ a

0

bn(t, v, w(v))dvdt, w(t))|

=
∑
n≥1

|fn(t,
∫ x

0

∫ a

0

bn(t, v, w(v))dvdt, w(t))

− fn(t, 0, w
0(t)) + fn(t, 0, w

0(t))|

≤
∑
n≥1

|fn(t,
∫ x

0

∫ a

0

bn(t, v, w(v))dvdt, w(t))

− fn(t, 0, w
0(t))|+

∑
n≥

|fn(t, 0, w0(t))|

≤
∑
n≥1

{rn(t)|w(t)− w0(t)|}

+ gn(t)|
∫ x

0

∫ a

0

bn(t, v, w(v))dvdt|

≤ U ||w(t)||ℓ1 +G

i.e.,

=⇒ ||w(t)||ℓ1 ≤ U ||w(t)||ℓ1 +G

=⇒ (1− U)||w(t)||ℓ1 ≤ G

=⇒ ||w(t)||ℓ1 ≤ G

1− U
= d(say).

Assume that D = D(w0(t), d) is a radius d closed ball with center w0(t), which concludes that D is a
convex subset of ℓ1 along with closed and nonempty. Let us take the operator W = (Wi) on C(R+,D)
stated as bellow. For each t ∈ R+

(Ww)(t) = (Wiw)(t) = {fi(t, vi(w), w(t)},

here w(t) = (wi(t)) ∈ D and wi(t) is in C(R+ ×R+,R) , ∀i ∈ N .
Since all t ∈ R+,Then by the assumption (4) we have∑

i≥1

|(Wiw)(t)| =
∑
i≥1

fi(t, vi(w), w(t))| <∞.

Therefore (Ww)(t) ∈ ℓ1. It follows from the fact ||(Ww)(t) − w0(t)||ℓ1 ≤ d, w is a self mapping on D.
Next we check the continuity of w on C(R+,D).
Consider arbitrary c(t) = (cj(t))

∞
j=1 , e(t) = (ej(t))

∞
j=1 ∈ ℓ1 and ε > 0 which fulfills the inequality

||c− e||ℓ1 <
ε

2U
.

Now ∀ t ∈ R+, we have

|(wnc(t))− (wne(t))|
= |fn(t, vn(c), c(t))− fn(t, vn(e), e(t))|
≤ rn(t)|ci(t)− ei(t)|+ gn(t)|vn(c)− vn(e)|
≤ U |ci(t)− ei(t)|+ gn(t)|vn(c)− vn(e)|

<
ε

2
+ gn(t)|

∫ x

0

∫ a

0

[bn(t, v, c(v))− bn(t, v, e(v))]dvdt|.
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By using pre-defined condition (3), we can choose T1 > 0 for which max(t) > T1∑
n

|gn(t)
∫ x

0

∫ a

0

[bn(t, v, c(v))− bn(t, v, e(v))]dvdt| <
ε

2
.

Hence |(Wnc(t))− (Wne(t))| < ε.
For t ∈ [0, T1] let X = sup{x(t) : t ∈ [0, T1]}; M = sup{gn(t) : t ∈ [0, T1]} and
g = supn{|bn(t, v, c(v))− bn(t, v, e(v))| : t ∈ [0, T1], v ∈ [0, X]}.
Then

∑
n |(Wnc(t))− (Wne(t))| <

ε

2
+MgXa.

Since bn is continuous on [0, T1]× [0, X]× ℓ1, when ε → 0 we have bn → 0 . Therefore,
∑

n |(Wnc(t))−
(Wne(t))| → 0 as ||c(t)− e(t)||ℓ1 → 0. Which defines continuity of W on D ⊂ ℓ1.
Next we show that W is a condensing operator of Meir-Keeler. Given any ε > 0 we can choose ϱ > 0
satisfying ε ≤ ψ(D) < ε+ ϱ =⇒ ψ(W (D)) < ε.
We have,

ψ(W (D)) = lim
n→∞

[ sup
w(t)∈D

{
∑
k≥n

|fn(t, vn(w), w(t))|}]

= lim
n→∞

[ sup
w(t)∈D

{
∑
k≥n

|fn(t, vn(w), w(t)) + fn(t, 0, w
0)− fn(t, 0, w

0)|}]

= lim
n→∞

[ sup
w(t)∈D

{
∑
k≥n

(rn(t)|wi(t)|+ gn(t)|
∫ x

0

∫ a

0

bn(t, v, w(v))dvdt|)}

≤ lim
n→∞

sup
w(t)∈D

[U
∑
k≥n

|wk(t)|+ bn]

≤ Uψ(D).

It can be seen that
ψ(W (D)) ≤ Uψ(D) < ε =⇒ ψ(D) <

ε

U
.

Now taking ϱ =
ε(1− U)

U
, we get ε ≤ ψ(D) ≤ ε

U
= ε+ ϱ.

Thus we can say the operator W is a condensing Meir-Keeler operator on the set D ⊂ ℓ1. Consequently,
the operator W satisfies all the assumptions of the Theorem 2.3 implying the fact that there is a fixed
point of W in D. Thus in ℓ1 space there exist a solution of the system (3.1) . 2

4. Problems

Problem 1 For mixed integral system

wn(t) =

∞∑
i=n

|wi(t)|
3i2

+
1

n2et

∫ x

0

∫ π

0

sin(wi(v))

2 + cos(
∞∑
i=1

wi(v))
dvdt. (4.1)

Examine the solution existency of the system (4.1) in ℓ1 space.

Solution: Here fn(t, vn(w(t)), w(t)) =
∞∑
i=n

|wi(t)|
3i2

+
1

n2et
vn(w(t)),

where vn(w(t)) =
∫ x

0

∫ π

0
bn(t, v, w(v))dvdt and bn =

sin(wi(v))

2 + cos(
∞∑
i=1

wi(v))
.

By checking |vn(w(t))|

|
∫ x

0

∫ π

0

sin(wi(v))

2 + cos(
∞∑
i=1

wi(v))
dvdt| ≤ 2|

∫ x

0

∫ π

0

dvdw| = 2πx. (4.2)
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If w(t) ∈ ℓ1, then

∞∑
n=1

|fn(t, vn(w(t)), w(t))|

≤
∞∑
i=n

∞∑
n=1

|wi(t)|
3i2

+
1

et

∞∑
i=n

|vn(w(t))|
n2

≤ (

∞∑
i=n

∞∑
i=n

|wi(t)|
3i2

+
1

e

∞∑
i=n

|vn(w(t))|
n2

≤ π2

18
|wi(t)|ℓ1 +

xπ3

3e
<∞.

Therefore (fn(t, vn(w(t)), w(t))) ∈ ℓ1. Considering γ(t) = (γi(t)) ∈ ℓ1 we get

|fn(t, vn(w(t)), w(t))− fn(t, vn(γ(t)), γ(t))|

≤
∞∑
i=n

1

3i2
|wi(t)− γi(t)|+

1

n2et
|vn(w(t))− vn(γ(t))|

≤ (

∞∑
i=n

1

3i2
)|wi(t)− γi(t)|+

1

n2et
|vn(w(t))− vn(γ(t))|

≤ π2

18
|wi(t)− γi(t)|+

1

n2et
|vn(w(t))− vn(γ(t))|.

Here rn(t) =
π2

18
, gn(t) =

1

n2et
.

Here we find 0 < U < 1 and
∑

n≥1 |fn(t, 0, w0(t))| → 0 for each t ∈ R+. And

∑
n≥k

gn(t)|vnw(t)| ≤
2πx

et

∑
n≥k

1

n2

As well as,

bn ≤ sup{2πx
et

∑
n≥k

1

n2
: t, v ∈ R+}.

Therefore n→ ∞ we get
∑
n≥k

1

n2
→ 0. Thus bn → 0 as n→ ∞ and G =

xπ3

3e
.

Now, ∑
n

∣∣∣∣ 1

n2et

∫ x

0

∫ a

0

[bn(t, v, w(v))− bn(t, v, w(v))]dvdt

∣∣∣∣
≤

∑
n

(
2πx

n2et

)
=
xπ3

3et
.

We have as t→ ∞,
x

et
→ 0. Therefore,

lim
t→∞

∑
n

∣∣∣∣gn(t) ∫ x

0

∫ a

0

[bn(t, v, w(v))− bn(t, v, w(v))]dvdt

∣∣∣∣ = 0.
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We can show that M = sup
t

{∑
n
gn(t)

}
=
π2

6
. Moreover fn and bn are continuous functions. Hence the

equation (4.1) satisfies all the assumptions (1)-(5). Hence the system (4.1) has a solution in ℓ1.

Problem 2 For mixed integral system

wn(t) =

∞∑
i=n

sin t cos twi(t)

2i2
+

1

n4et

∫ x

0

∫ π

0

cos(wi(v)) + sin(
∞∑
i=1

wi(v))

3 + sin(wi(v))
dvdt. (4.3)

examine the solution existency in ℓ1 space.
Solution: From (4.3), we have

wn(t) =

∞∑
i=n

sin t cos twi(t)

2i2
+

1

n4et

∫ x

0

∫ π

0

cos(wi(v)) + sin(
∞∑
i=1

wi(v))

3 + sin(wi(v))
dvdt

=

∞∑
i=n

sin(2t)wi(t)

4i2
+

1

n4et

∫ x

0

∫ π

0

cos(wi(v)) + sin(
∞∑
i=1

wi(v))

3 + sin(wi(v))
dvdt.

Here fn(t, vn(w(t)), w(t)) =
∞∑
i=n

sin(2t)wi(t)

4i2
+

1

n4et
vn(w(t)), where vn(w(t)) =

∫ x

0

∫ π

0
bn(t, v, w(v))dvdt

and bn(t) =

cos(wi(v)) + sin

( ∞∑
i=1

wi(v)

)
3 + sin(wi(v))

.

By checking |vn(w(t))|,∣∣∣∣∣∣∣∣
∫ x

0

∫ π

0

cos(wi(v)) + sin

( ∞∑
i=1

wi(v)

)
3 + sin(wi(v))

dvdt

∣∣∣∣∣∣∣∣ ≤ 2

∣∣∣∣∫ x

0

∫ π

0

dvdw

∣∣∣∣ = 2πx. (4.4)

If w(t) ∈ ℓ1 then we have

∞∑
n=1

|fn(t, vn(w(t)), w(t))|

≤
∞∑

n=1

∞∑
i=n

| sin 2t|
4i2

|wi(t)|+
1

et

∞∑
n=1

|vn(w(t))|
n4

≤
∞∑

n=1

∞∑
i=n

1

4i2
|wi(t)|+

1

e

∞∑
n=1

|vn(w(t))|
n4

≤ π2

24
|wi(t)|ℓ1 +

xπ5

45e
<∞.

Therefore, (fn(t, vn(w(t)), w(t))) ∈ ℓ1. By taking γ(t) = (γi(t)) ∈ ℓ1 we get

|fn(t, vn(w(t)), w(t))− fn(t, vn(γ(t)), γ(t))|

≤
∞∑
i=n

| sin 2t|
4i2

|wi(t)− γi(t)|+
1

n4et
|vn(w(t))− vn(γ(t))|

≤ (

∞∑
i=n

1

4i2
)|wi(t)− γi(t)|+

1

n4et
|vn(w(t))− vn(γ(t))|

≤ π2

24
|wi(t)− γi(t)|+

1

n4et
|vn(w(t))− vn(γ(t))|.
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Here rn(t) =
π2

24
, gn(t) =

1

n4et
. Here we get 0 < U < 1 and

∑
n≥1

|fn(t, 0, w0(t))| converging to zero ∀

t ∈ R+. And ∑
n≥k

gn(t)|vn(w(t))| ≤
2πx

et

∑
n≥k

1

n4

As well as,

bn ≤ sup

2πx

et

∑
n≥k

1

n4
: t, x ∈ R+

 .

For, n→ ∞ we get
∑
n≥k

1

n4
→ 0. Thus bn → 0 as n→ ∞ and G =

xπ5

45e
.

Now, ∑
n

∣∣∣∣ 1

n4et

∫ x

0

∫ a

0

[bn(t, v, w(v))− bn(t, v, w(v))]dvdt

∣∣∣∣
≤

∑
n

(
2πx

n4et
)

=
xπ5

45et
.

As, t→ ∞, We have
x

et
→ 0. Therefore,

lim
t→∞

∑
n

∣∣∣∣gn(t) ∫ x

0

∫ a

0

[bn(t, v, w(v))− bn(t, v, w(v))]dvdt

∣∣∣∣ = 0.

We can show that M = sup
t

∑
n
gn(t) =

π4

90
. Moreover fn and bn are continuous functions. Hence, the

equation (4.3) satisfies all the assumptions (1)-(5). Thus the system (4.3) has a solution in ℓ1.

5. Conclusion

There are lots of works have been done in sequence spaces, but study of an infinite mixed Volterra–Fredholm
integral system in sequence spaces is still a research area where we can explore more results. In our present
work, we have solved theoretically an infinite mixed Volterra–Fredholm integral system in the sequence
space ℓ1. In our future work we can explore numerical methods and it’s application by taking this type
of an infinite mixed Volterra–Fredholm integral system. Another future work of our paper is that we can
try to solved mixed integral equations in other sequence spaces.
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