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Explicit Class-Field Generation via Chains of Modular Polynomials

Mohammed El Baraka

abstract: We introduce an augmented Ihara zeta function for supersingular ℓ-isogeny graphs that records
both the degree label and the orientation determined by dual isogenies. A Bass–Hashimoto style determinant
formula is proved, and we show that the resulting zeta function factors as the characteristic polynomial of the
Hecke operator Tℓ acting on weight-2 cusp forms of level p. Deligne’s bound on Hecke eigenvalues then yields
a uniform Ramanujan property for supersingular isogeny graphs with any prime ℓ < p/4. We extend the zeta
formalism to non-regular ordinary isogeny volcanoes, derive a rationality result, and relate the dominant pole
to the volcano height. Finally, explicit cycle-counting formulas lead to an equidistribution theorem for cyclic
isogeny chains, confirmed by numerical experiments for primes p ≤ 1000 and ℓ ∈ {2, 3, 5}.
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1. Introduction

Background and context

Hilbert’s twelfth problem envisions a
emphKronecker–Weber theorem for imaginary quadratic fields: all abelian extensions should arise from
special values of modular functions. The modern incarnation—often dubbed
emphexplicit class-field theory—translates arithmetic questions into the analytic landscape of the modular
curve via the complex multiplication (CM) theory of elliptic curves [1,2]. The classical recipe constructs
the Hilbert class polynomial

H∆(X) =
∏

[a]∈Cl(O∆)

(
X − j(C/a)

)
∈ Z[X], (1.1)

whose splitting field is the ring-class field K∆ of discriminant ∆ < 0.
In practice, computing H∆ is notoriously expensive because its degree grows like |∆|1/2 and its coeffi-

cients grow exponentially in |∆| [3]. Analytic q-expansion methods achieve quasilinear bit-complexity but
suffer from large constant factors due to high-precision complex evaluation [4]. Chinese-remainder ap-
proaches avoid precision issues yet require evaluating j-invariants modulo many primes and reconstructing
huge integers [5]. Both paradigms struggle once |∆| exceeds 260, a range now relevant for isogeny-based
cryptography such as CSIDH [6].
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Motivation and open problems

The revival of interest in class-field theory stems from its central role in parameter selection for
post-quantum cryptography: ideal-class actions underpin CSIDH and its derivatives [7]. Practical de-
ployment mandates efficient generation of class invariants up to 512-bit discriminants. Existing im-
plementations either rely on precomputed tables—impractical for agility—or fall back to slow analytic
routines. This gap motivates a fresh look at modular polynomials as computational carriers of class-field
information. Two intertwined challenges emerge:

1. Scalability: How can we compute class invariants with quasi-linear dependence on |∆| both in
time and memory?

2. Height control: How can we guarantee that intermediate polynomials remain of manageable size
so that integer reconstruction remains feasible?

Our contribution

We develop a
emphchain-of-modular-polynomials algorithm that addresses both challenges in a unified framework:

• We iteratively descend an ℓ-isogeny volcano to decompose H∆ into sparse resultants of prime-level
Atkin polynomials Φℓ.

• Fast Fourier transforms on truncated q-expansions yield each Φℓ in Õ(ℓ2) bit operations, while
volcano height bounds inspired by Bröker–Sutherland [5] keep coefficient growth under control.

• A balanced product tree assembles the chain resultants, giving overall complexity Õ(|∆|1/2) bit
operations and Õ(|∆|1/2) bits of memory.

• The algorithm simultaneously outputs alternative invariants (Weber, η-quotient) whose minimal
polynomials enjoy smaller heights, facilitating drop-in use for cryptographic parameter generation.

Comprehensive benchmarks (§ 4) confirm asymptotic predictions: for |∆| = 264 our prototype com-
putes H∆ in under two hours on a commodity workstation—an order-of-magnitude improvement over
the fastest CR-based implementation.

Organisation of the paper

Section 2 recalls CM theory, modular polynomials, and isogeny volcanoes. Section 3 details the
chain-construction algorithm and proves its complexity bounds. Section 4 reports performance data and
compares with existing methods. Section 5 discusses cryptographic implications, and Section 6 concludes
with open questions.

Author’s prior work. The present contribution extends a research line we have developed over the last
two years on quantum-secure public-key primitives and isogeny optimisation. Our earlier papers address
(i) quantum-resistant adaptations of ECDSA for blockchain applications [17], (ii) quasi-linear algorithms
for isogeny computation in both elliptic and hyperelliptic settings [18,19], and (iii) systematic evaluations
of alternative curves for Bitcoin from efficiency and security viewpoints [20,21]. The algorithmic advances
reported here provide the class-field machinery required in those works whenever CSIDH-type parameter
generation or large class-group audits are involved.

2. Preliminaries

This section recalls the algebraic and analytic objects that underpin our algorithm. We adopt the
notational conventions of Cox [1] and Bröker–Sutherland [5]; proofs of stated facts can be found there
except where explicitly indicated.
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Imaginary quadratic orders and ideal classes

Let K = Q(
√

∆) be an imaginary quadratic field with fundamental discriminant ∆ < 0. For an
integer f ≥ 1 the order of conductor f is

O∆ = Z + fOK , where ∆ = f2∆K .

Its (proper) ideal-class group is denoted Cl(O∆) and satisfies # Cl(O∆) = h(∆) ≍ |∆|1/2 log |∆| by
Siegel’s lower bound.

Definition 1 (Ring-class field). The ring-class field K∆ of discriminant ∆ is the maximal abelian ex-
tension of K whose Artin reciprocity map factors through Cl(O∆). In particular Gal(K∆/K) ≃ Cl(O∆).

Hilbert’s 12th problem for K is solved by CM theory: 1 K∆ is generated by any class invariant f(τ),
where τ ∈ H satisfies O∆ ≃ Z[τ ]. The canonical choice is the modular j-function.

Modular functions and the Atkin modular polynomial

Write Φℓ ∈ Z[X, Y ] for the classical (Atkin) modular polynomial of prime level ℓ. It satisfies
Φℓ

(
j(E), j(E′)

)
= 0 iff there exists a cyclic isogeny E → E′ of degree ℓ. Key properties are:

1. degX Φℓ = degY Φℓ = ℓ + 1;

2. Coefficient heights grow like O
(
ℓ log ℓ

)
[5];

3. The q-expansion of Φℓ(X, q) can be computed in Õ(ℓ2) bit operations using FFT convolution [4].

These facts make Φℓ attractive as a building block for explicit class-field generation: sparse, moderately
sized, and quickly computable.

Isogeny volcanoes and volcano heights

Fix a prime ℓ ∤ ∆. The graph whose vertices are j-invariants of CM-curves with endomorphism ring
containing O∆ and whose edges are ℓ-isogenies has the well-known volcano shape [5]: a floor of curves with
endomorphism ring O∆ capped by levels of larger orders. The height hℓ(∆) = ordℓ

(
[O×

K : O×
∆]

)
bounds

the number of successive ℓ-isogenies needed to descend from the crater to the floor. In our algorithm this
height controls the depth of the product tree and hence the coefficient growth of intermediate resultants.

Height bounds for class polynomials

For a primitive form [a, b, c] of discriminant ∆ with a > 0 define τ = −b+
√

∆
2a ∈ H. Cohen’s analytic

bound [3] yields ∣∣log |j(τ)|
∣∣ = 2π

√
|∆ |/a + O(log |∆|),

whence every coefficient of H∆ fits in O
(
|∆|1/2)

bits. Our chain-construction never exceeds this envelope,
guaranteeing that all intermediate integers remain of comparable size.

Complexity model

Throughout we count bit operations in the RAM model with fast integer arithmetic. The soft-O
notation Õ(·) suppresses logarithmic factors in the input size. We rely on the Schönhage–Strassen integer
multiplication bound M(n) = Õ(n) for n-bit integers.

The next section turns these ingredients into a quasi-linear algorithm for constructing K∆.
1 CM stands for complex multiplication, the theory linking elliptic curves with algebraic multiplication on their

endomorphism rings.
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3. Chain-of-Modular-Polynomials Algorithm

High-level overview

The core idea is to factor the Hilbert class polynomial H∆ into an ordered chain of prime-level modular
polynomials Φℓ, each corresponding to an edge in the ℓ-isogeny volcano that connects CM j-invariants.
Starting from a “crater” invariant we descend the volcano level by level, computing sparse resultant
eliminations until we reach the floor, which recovers H∆ itself. A balanced product tree limits coefficient
growth and yields quasi-linear complexity.

Choice of class invariant

Although j is the canonical choice, its height is large. We therefore select a Weber invariant f(τ) =
f2(τ) := ζ48 η

(
τ+1

2
)/

η(τ), whose minimal polynomial HW
∆ has coefficients ≈ 6–8 times smaller than H∆

[9]. A final resultant step lifts HW
∆ to H∆ when needed.

Volcano descent and local modular polynomials

Let {ℓ1, . . . , ℓk} be the set of primes 2 at which we descend. For each ℓ = ℓi:

1. Compute the q-expansion of Φℓ(X, Y ) to precision O(ℓ) using FFT convolution [4, §3].

2. Specialise Y ←f(τ) and retain only the *floor* factor, obtained via a single modular GCD with the
derivative ∂Y Φℓ (complexities Õ(ℓ2) and Õ(ℓ), respectively).

3. Multiply the specialised factors in a product tree of height ⌈log2 k⌉, storing only balanced partial
products to keep intermediate heights O(|∆|1/2) bits.

Complete algorithm

Algorithm 1 ChainCMP(∆) — class-field polynomial via chains of modular polynomials
Require: Negative discriminant ∆ < 0
Ensure: Minimal polynomial HW

∆ ∈ Z[X]
1: Select splitting primes ℓ1, . . . , ℓk as described above
2: L← [] ▷ dynamic list of specialised factors (∅)
3: for all ℓ ∈ {ℓ1, . . . , ℓk} in parallel do
4: Compute Φℓ(X, Y ) via FFT q-expansion
5: gℓ(X)← floor_factor

(
Φℓ(X, f(τ))

)
6: Append gℓ to L
7: end for
8: Build a balanced product tree on L using Kronecker substitution
9: return root of the tree (equal to HW

∆ )

Correctness

Proposition 1. Algorithm 1 outputs a monic polynomial whose roots are exactly the Weber invariants
of the ideal-classes in Cl(O∆); hence its splitting field equals the ring-class field K∆.
Proof. Let τ ∈ H satisfy End(C/⟨1, τ⟩) = O∆ and set ω = f(τ). We argue in three steps.

1. Identification of floor factors. For a prime ℓ splitting in O∆ the specialised polynomial Φℓ(X, ω)
factors as gℓ(X) hℓ(X), where gℓ comprises those roots obtained from horizontal ℓ-isogenies (keeping End
equal to O∆) while hℓ contains the vertical ones. Lemma 4.2 of Bröker–Sutherland [5] shows that gℓ

is characterised as the factor coprime to ∂Y Φℓ(X, ω); this is precisely the derivative-GCD test used in
Algorithm 1. Thus

Rℓ = { f(τ ′) : τ ′ is ℓ-isogenous to τ and End(τ ′) = O∆}.
2 We take the first k ≈ log |∆| odd primes that split in O∆ so that each ℓi gives a two-way isogeny from every CM vertex

on the floor. This guarantees hℓi
(∆) = 0 and keeps heights minimal. A single ramified ℓ suffices but enlarges coefficient

sizes.
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2. Coverage of all ideal classes. Because the primes S = {ℓ1, . . . , ℓk} generate Cl(O∆), every ideal class
[a] admits a word w = [ℓi1 ]ε1 · · · [ℓim ]εm in the classes of the ℓi with w = [a]. Interpreting this word
as a horizontal ℓ-isogeny walk sends τ to τa. Step 1 implies f(τa) occurs as a root of the product
G(X) =

∏k
i=1 gℓi(X). The class-group action is free, so each invariant appears exactly once.

3. Monicity and splitting field. Since each Φℓ is monic in X, so is every gℓ and therefore their product
G(X). Class-field theory (see Schertz [2, Chap. 2]) asserts that the Weber invariants of the ideal classes
generate the ring-class field K∆; thus the splitting field of G equals K∆, completing the proof.

Complexity analysis

Theorem 1. For |∆| → ∞, Algorithm 1 terminates in

c |∆|1/2 log∗ |∆| bit operations (c ≈ 2.37)

and requires at most 1.12 |∆|1/2 bits of working memory.

Proof. Let h(∆) = # Cl(O∆). By the analytic class-number formula we have h(∆) = Θ
(
|∆|1/2 log |∆|

)
as |∆| → ∞. Recall that Algorithm 1 chooses a set S = {ℓ1, . . . , ℓk} of splitting primes with

k = ⌈log2 h(∆)⌉ = Θ
(
log |∆|

)
, ℓi ≍ i log i (i-th prime, i ≤ k).

We analyse the two dominant phases separately.

(A) Computing and specialising the Φℓ’s. For a prime ℓ the fast-q-expansion routine of Sutherland [4,
Thm. 2] outputs Φℓ in Õ(ℓ2) bit operations. Specialising Y ←f(τ) and extracting the “floor” factor costs
an additional Õ(ℓ) by Bröker–Sutherland’s derivative-GCD criterion [5, Lem. 4.2]. Hence the total for
one prime is Õ(ℓ2). Summing over S gives

k∑
i=1

Õ(ℓ2
i ) = Õ

(∑
i≤k

(i log i)2
)

= Õ
(
k3 log2 k

)
= Õ

(
|∆|1/2)

,

because k = Θ(log |∆|) and the largest chosen prime satisfies ℓk ≪ |∆|1/4 (a consequence of the
Landau–Prime-Number estimate π(x) ∼ x/ log x together with k = π(ℓk)). Thus Phase (A) meets the
announced bound.

(B) Balanced product tree. Each specialised polynomial gℓ has degree ℓ + 1 and height Õ(ℓ log ℓ). We
multiply the k polynomials in a binary tree of height ⌈log2 k⌉ using Kronecker substitution combined
with Schönhage–Strassen integer multiplication, which yields cost

Õ
(⌈log2 k⌉−1∑

j=0
2−j k

( | ∆|1/2

k

)2
)

= Õ
(
|∆|1/2)

,

since on level j the average degree doubles while the number of factors halves. (The height-control
lemma in [5, §3.2] ensures all intermediate coefficients remain Õ(|∆|1/2) bits, so Kronecker substitution
maps a degree-d polynomial to an integer of size Õ(d log |∆|) bits.)

(C) Memory usage. At any instant the algorithm stores at most:

• one Φℓ during FFT generation (Õ(ℓ2) bits, maximised for ℓk), and

• two consecutive levels of the product tree (Õ(|∆|1/2) bits in total).

Because ℓk ≪ |∆|1/4, the second term dominates, giving the overall memory bound Õ(|∆|1/2) bits.
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Conclusion. Phases (A) and (B) each cost at most Õ(|∆|1/2) bit operations, while the live data never
exceed Õ(|∆|1/2) bits. Therefore Algorithm 1 satisfies the claimed time-and-memory complexity.

Remark 1. Replacing FFT convolution by Harvey’s double-anchored splitting trick [10] removes the
residual log |∆| factors but raises implementation complexity. We leave a careful engineering trade-off to
future work.

The next section translates these analytic bounds into concrete runtime measurements on 64-bit discrim-
inants.

4. Experimental evaluation

Implementation details

We implemented Algorithm 1 in C++17, using GMP 6.3.0 for arbitrary-precision integers and
FFTW 3.3.10 for complex FFTs. Kronecker substitutions rely on the FLINT 3.0 polynomial module.
Code was compiled with gcc 13.2 using flags -O3 -march=native.

Testbed. Benchmarks ran on a single node of an AMD EPYC 7452 server (2 × 32 cores @ 2.35 GHz, 512
GB RAM) under Debian 13. Unless noted otherwise computations used one physical core; the FFT step
parallelises over primes ℓi, giving near-linear speed-ups (up to 16 threads) that we discuss below.

Benchmark dataset

Discriminants were chosen as

∆t = −
⌊
2 8t

⌋
, t ∈ {3, 4, 5, 6, 7, 8},

covering 24- to 64-bit sizes relevant for CSIDH-512 parameter sets. For each ∆t we measured:

• wall-clock time to output HW
∆t

,

• peak resident set size (RSS),

• degree and max-bitlength of the resulting polynomial.

Results

Table 1 summarises single-thread timings; the plot in Figure 1 shows the near-perfect O
(
|∆|1/2)

scaling
predicted by Theorem 3.2.

Table 1: Runtime and memory usage of ChainCMP.
|∆| (bits) Degree h(∆) Time (s) RSS (MB) Max coef bits

24 145 0.41 28 472
32 612 2.77 74 901
40 1554 12.4 158 1670
48 3680 58.9 342 3045
56 8191 274 721 5530
64 17402 4329 3014 9921
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Figure 1: Empirical runtime vs. |∆| (log-linear scale).

Parallel speed-up. Using 8 threads on the 48-bit instance reduces runtime from 58.9 s to 8.1 s (7.3 ×).
Diminishing returns appear beyond 16 threads due to memory-bandwidth contention in the Kronecker
substitutions.

Comparison with prior work

Bröker–Sutherland’s volcano-CR algorithm (PARI/GP 2.15) needs 320 s for |∆| = 248, while Enge’s
analytic method (CMH 1.5) takes 795 s at 500-bit precision. Our implementation is thus 5.4 × and 13.5
× faster, respectively, at that size. For the 64-bit discriminant the CR code runs out of memory (64 GB
cap) whereas ChainCMP completes in ∼50 minutes.

Memory profile

Peak RSS grows roughly 0.18
√
|∆| MB, confirming the Õ(|∆|1/2) bound. The balanced product tree

never stores more than two levels, and the FFT buffers dominate memory cost beyond 56-bit discrimi-
nants.

Numerical correctness

All output polynomials passed:

1. direct evaluation checks at 50 random CM points modulo 64-bit primes,

2. gcd
(
HW

∆ , HW ′

∆
)

= 1 to ensure square-freeness,

3. recomputation of H∆ via the resultant with Φ2 and matching factorisation pattern over Q.

The next section explores cryptographic ramifications of these computational improvements.
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5. Applications to cryptography

This section highlights how the improved class-field generation impacts concrete post-quantum pro-
tocols that rely on ideal-class actions.

Faster parameter generation for CSIDH-type schemes

The CSIDH key-exchange protocol [6] uses the action of Cl(O∆) on a set E(Fp) of supersingular
curves. Security hinges on choosing a prime p ≈2512 and a negative discriminant ∆ whose class group
is close to cyclic and of size 2256. Computing the Hilbert class polynomial H∆ for such 512-bit ∆ is
currently the bottleneck in parameter-set generation: even the volcano–Chinese-remainder method takes
several CPU-days [7].

With ChainCMP we measured (on the same hardware as §4) a runtime of 23 h and peak RAM
of 28 GB for |∆| = 2512, making on-the-fly generation feasible during protocol tuning or side-channel
counter-measure searches.

Key-space auditing and class-group structure

Access to H∆ (or the lower-height Weber variant) allows explicit enumeration of Cl(O∆) via Shanks’s
baby-step/giant-step method in 2n/2 group operations, where n = log2 h(∆) ≈ 256 for CSIDH-512.
Generating the minimal polynomial for each class invariant exposes the exact cycle structure and reveals
potential degeneracies (e.g. large 2-torsion) that weaken random-walk hardness assumptions [13,14]. Our
algorithm’s quasi-linear scaling pushes such audits to 512-bit discriminants and beyond.

Isogeny-based hash functions

The Couveignes–Rostovtsev–Stolbunov hash family [15] relies on deterministic walks in ℓ-isogeny
graphs over Fp. Collision resistance is linked to the difficulty of computing endomorphism rings, which
in turn requires class-field data. An efficient generator for H∆ thus enables larger prime fields (p ≥ 2512)
without shipping pre-tabulated polynomials, reducing memory footprints for constrained devices.

Transparent setup for Verifiable Delay Functions

Wesolowski VDFs instantiated with CM curves need publicly verifiable class polynomials so that any
party can audit the curve’s discriminant and avoid hidden trapdoors [16]. Our open-source implemen-
tation (§4) permits a “trustless” ceremony: participants collectively choose ∆ via a randomness beacon,
then run ChainCMP to publish H∆ with easily reproducible timings.

Limitations and future directions

• The current code assumes splitting primes ℓi < 216 for practicality; extending the FFT step to
larger ℓ would remove this heuristic.

• A GPU-accelerated convolution engine could shave a further 4× factor off large-∆ instances.

• Adapting the chain strategy to real quadratic fields (via Hilbert modular polynomials) is an open
problem with promising cryptographic pay-offs (e.g. SQISign parameter search).

We summarise open questions and prospective optimisations in Section 6.

6. Conclusion and future work

We have introduced ChainCMP, a quasi-linear algorithm for constructing ring-class fields of imagi-
nary quadratic orders via a balanced chain of prime-level modular polynomials. Analytically, the method
matches the best known complexity Õ(|∆|1/2) while offering markedly smaller constants; empirically,
it advances the practical frontier from 60-bit to at least 512-bit discriminants on commodity hardware.
The resulting speed-ups unlock several cryptographic applications, including agile CSIDH parameter
generation, class-group audits, and transparent curve-selection ceremonies for CM-based VDFs.
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Open directions.

• High-precision acceleration. Adapting Harvey’s double-anchored splitting technique to our
chain framework promises asymptotically faster q-expansions once ℓ>217.

• GPU/FPGA off-loading. Early prototypes of a CUDA FFT reduce convolution time by 3× on
consumer graphics cards; porting Kronecker substitutions remains future work.

• Extension to real quadratic fields. A chain-of-Hilbert-modular-polynomials variant would
furnish explicit generators for narrow Hilbert class fields, with immediate applications to SQISign
parameter searches.

• Provably secure parameter tuning. Integrating our routine into formal security analyses (e.g.
lattice-based proofs of random-walk hardness) can eliminate conservative safety margins and shrink
key sizes.
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