

(3s.) v. 2025 (43) : 1-6. ISSN-0037-8712 doi:10.5269/bspm.77868

Nonsplit Pendant Domination In Graphs

Rashmi* and Divya Rashmi S. V.

ABSTRACT: For a graph G, a dominating set S in G is called a pendant dominating set if $\langle S \rangle$ contains at least one pendant vertex. The least cardinality of the pendant dominating set in G is called the pendant domination number of G, denoted by $\gamma_{pe}(G)$. A pendant dominating set S of a graph G is a nonsplit pendant dominating set if the induced graph $\langle V - S \rangle$ is connected. The nonsplit pendant domination number $\gamma_{nsp}(G)$ is the minimum cardinality of a nonsplit pendant dominating set. In this paper many bounds on $\gamma_{nsp}(G)$ are obtained and exact values for some standard graphs are found. Also, its relationship with other parameters has been investigated.

Key Words: Domination, nonsplit domination, pendant domination number, nonsplit pendant domination.

Contents

1	Introduction	1
2	Nonsplit Pendant Domination	2
3	Main Results	3

1. Introduction

Let G=(V,E) be any graph with |V(G)|=n and |E(G)|=m edges. Then n,m are respectively called the order and the size of the graph G. For each vertex $v\in V$, the open neighborhood of v is the set N(v) containing all the vertices u adjacent to v and the closed neighborhood of v is the set N[v] containing v and all the vertices u adjacent to v. Let S be any subset of V, then the open neighborhood of S is $N(S) = \bigcup_{v\in S} N(v)$ and the closed neighborhood of S is $N[S] = N(S) \bigcup S$.

The minimum and maximum of the degree among the vertices of G is denoted by $\delta(G)$ and $\Delta(G)$ respectively. A graph G is said to be regular if $\delta(G) = \Delta(G)$. A vertex v of a graph G is called a *cut vertex* if its removal increases the number of components. A *bridge* or *cut edge* of a graph is an edge whose removal increases the number of components. A vertex of degree zero is called an isolated vertex and a vertex of a degree one is called a pendant vertex. An edge incident to a pendant vertex is called a pendant edge. The corona of two disjoint graphs G_1 and G_2 is defined to be the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and G_2 is defined to be the graph G_3 is adjacent to every vertex in the ith copy of G_3 .

The graph containing no cycle is called a tree. A unicyclic graph is a connected graph that contains exactly one cycle. A spanning subgraph of a graph G is a subgraph that includes all the vertices of G, but may not include all the edges. A complete bi-partite graph $K_{1,3}$ is a tree called as claw. Any graph containing no subgraph isomorphic to $K_{1,3}$ is called a claw-free graph. The n-Pan graph is the graph obtained by joining a cycle graph C_n to a singleton graph K_1 with a bridge. A Barbell graph B(p,s) is the graph obtained by connecting n-copies of a complete graph K_p by a bridge. The Helm graph H_n is the graph with 2n+1 vertices obtained from an n-wheel graph by adjoining a pendant edge at each node of the cycle. The basic terminology of graph theory refer [1], [2] [3].

A subset S of V(G) is a dominating set of G if each vertex $u \in V - S$ is adjacent to a vertex in S. The least cardinality of a dominating set in G is called the domination number of G and is usually

^{*} Corresponding author. 2010 Mathematics Subject Classification: 05C50, 05C69. Submitted July 15, 2025. Published September 01, 2025

denoted by $\gamma(G)$ [4]. A dominating set D is said to be connected dominating set, if the induced sub graph $\langle D \rangle$ is connected. The connected domination number $\gamma_c(G)$ is the minimum cardinality of a connected dominating set.

A dominating set S of a graph G = (V, E) is a nonsplit dominating set if the induced graph < V - S > is connected. The nonsplit domination number $\gamma_{ns}(G)$ is the minimum cardinality of a nonsplit domination set. For more details about nonsplit domination refer [6].

A dominating set S in G is called a pendant dominating set if $\langle S \rangle$ contains at least one pendant vertex. The least cardinality of the pendant dominating set in G is called the pendant domination number of G, denoted by $\gamma_{pe}(G)$. The more details about the pendant domination parameter refer [8], [9], [10].

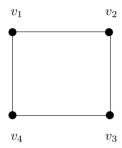


Figure 1. A Cycle Graph C_4

2. Nonsplit Pendant Domination

Definition 2.1 Let G = (V, E) be a graph. A dominating set S in G is called a pendant dominating set if $\langle S \rangle$ contains at least one pendant vertex. The least cardinality of the pendant dominating set in G is called the pendant domination number of G, denoted by $\gamma_{pe}(G)$. A pendant dominating set S of a graph G is a nonsplit pendant dominating set if the induced graph S is connected. The nonsplit pendant domination number S is the minimum cardinality of a nonsplit pendant dominating set.

Remark 2.1 The parameter γ_{nsp} is not defined for a totally disconnected graph. Therefore, throughout this paper, by a graph we assume that G has at least two edges.

Example 2.1 The nonsplit pendant dominating set of cycle graph as shown in the Figure 1 are $\{v_1, v_2\}$, therefore $\gamma_{nsp}(G) = 2$

Remark 2.2

- 1. For any graph G, $\gamma_{nsp}(G) \leq |V(G)|$.
- 2. we observe that $2 \leq \gamma_{nsp}(G) \leq n-1$.

Example 2.2

- 1. $\gamma_{nsp}(K_n) = 2$.
- 2. $\gamma_{nsp}(K_{m,n}) = 2$ where $2 \leq m \leq n$.
- 3. $\gamma_{pe}(K_n) = \gamma_{nsp}(K_n) = 2$.
- 4. $\gamma(K_{m,n}) = \gamma_{pe}(K_{m,n}) = \gamma_{nsp}(K_{m,n}) = 2, \forall m, n \ge 2.$
- 5. $\gamma_{nsp}(K_{1,n}) = n$.
- 6. $\gamma_{nsp}(B_{m,n}) = m + 1$.

3. Main Results

Theorem 3.1 Let C_n be a cycle graph with n vertices. Then $\gamma_{nsp}(C_n) = n-2$, for all $n \geq 3$.

Proof: Let C_n be a cycle graph with n vertices and $V(C_n) = \{v_1, v_2, ..., v_n\}$ such that $deg(v_i) = 2$ for all i = 1, 2, 3, ..., n. Let the set $D = \{v_1, v_2, ..., v_{n-2}\}$ is the minimum pendant dominating set and $\langle V - D \rangle = P_2$. Clearly induced graph of $\langle V - D \rangle$ is connected. This implies that the set D is a nonsplit pendant dominating set. Hence $\gamma_{nsp}(C_n) \leq n-2$. Suppose $\gamma_{nsp}(C_n) < n-2$. Let D be a $\gamma_{nsp}(C_n)$ – set of C_n . Then V - D contains 3 vertices. Let $X = \{r, s, t\}$ such that $\langle V - D \rangle = X$. Clearly $\langle X \rangle = P_3$, then there exist a vertex v in V - D then v can be dominated by no vertex of D. Hence $\gamma_{nsp}(C_n) = n-2$

Proposition 3.1 Let $G \cong C_n$ $(n \ge 4)$ and let H be a spanning subgraph of G such that H > C contains a path of length at least 3. Then $\gamma_{nsp}(G) = \gamma_{nsp}(H)$.

Proof: We have $\gamma_{nsp}(G) = n - 2$ and since H > 0 contains a path of length 3 say $(v_k, v_l, v_m, ..., v_n)$, $V(G) - \{v_l, v_m\}$ is a minimum nonsplit pendant dominating set of H and also $\gamma_{nsp}(H) = n - 2$.

Corollary 3.1 For any cycle C_n and any $v \in V(C_n)$, then

$$\gamma_{nsp}(C_n - v) = \begin{cases} 2, & \text{if } n = 4, \\ 3, & \text{if } n = 5, \\ n - 3, & \text{if } n \ge 6. \end{cases}$$

Proof: Follows from Proposition 3.1

Theorem 3.2 Let P_n be a path graph with n vertices. Then $\gamma_{nsp}(P_n) = n-2$, for all $n \geq 4$.

Theorem 3.3 Let G be a Barbell graph. Then $\gamma_{nsp}(G) = n + 1$.

Theorem 3.4 Let G be a Pan graph. Then $\gamma_{nsp}(G) = n - 1$.

Theorem 3.5 Let W_n be a wheel graph with n vertices. Then $\gamma_{nsv}(W_n) = 2$, for all $n \geq 4$.

Proof: Consider any wheel graph W_n with n vertices formed by sum of complete graph with one vertex v_1 and cycle graph with n-1 vertices are $v_2, v_3, ., v_{n-1}, v_n$ that is the wheel W_n can be defined as the graph $K_1 + C_{n-1}$. Here the vertex v_1 be the apex vertex and degree is n-1 so it is internal vertex to all other vertices and $d_G(v_2) = d_G(v_3) = \dots = d_G(v_n) = 3$. The set $S = \{v_1, v_n\}$ will be the minimum nonsplit pendant dominating set and $V_n = 0$ is connected. This implies that the set $S_n = v_n = 0$ is a minimum nonsplit pendant dominating set. Hence $v_n = 0$ is suppose $v_n = 0$. Suppose $v_n = 0$ is the set $v_n = 0$ is disconnected. Therefore $v_n = 0$ is disconnected. Therefore $v_n = 0$ is disconnected. Therefore $v_n = 0$ is disconnected.

Theorem 3.6 For any helm graph H_n , $n \geq 3$, then $\gamma_{nsp}(H_n) = n + 1$.

Proof: The helm graph H_n is obtained from wheel W_n by attaching a pendant edge of vertex to each of its n-1 rim vertex. So it contains wheel W_n and n-1 pendant vertices, it has 2n+1 vertices. The set $S = \{v_i, u\}$ where v_i is the pendant vertices of helm graph and the vertex u is adjacent to any one of the vertex v_i . Therefore, the set S is minimum nonsplit pendant dominating set. Hence $\gamma_{nsp}(G) = |S| = n+1$.

Theorem 3.7 Let G be a Soifer graph, then $\gamma_{nsp}(G) = n - 6$ if n = 9.

Proof: Let $V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$ be a vertex set of Soifer graph G with 9 vertices and 20 edges. Let a non empty sunset $D = \{v_1, v_2, v_8\}$ is a nonsplit pendant dominating set of G and induced subgraph of D contains a pendant vertex and (V - D) is connected. If the set $|D| \ge 4$ then the set D is not a minimal nonsplit pendant dominating set. Therefore, $\gamma_{nsp} = |D| = n - 6$.

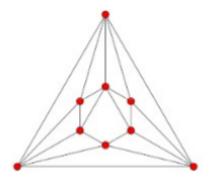


Figure 1: Soifer Graph

Theorem 3.8 For any graph G of order n, we have $2 \le \gamma(G) \le \gamma_{ns}(G) \le \gamma_{pe}(G) \le \gamma_{nsp}(G) \le n$. Equality holds if and only if $G \cong C_4, K_{m,n}$.

Proposition 3.2 For any connected graph G, $\gamma_{nsp}(G) \leq n-1$. Further equality holds if and only if G is a star.

Proof: Every set $S \subseteq V(G)$ with |S| = n - 1 is a nonsplit pendant dominating set of G and so $\gamma_{nsp}(G) \leq n - 1$.

If G is a star, clearly $\gamma_{nsp}(G) = n - 1$. Suppose $\gamma_{nsp}(G) = n - 1$. If G is not a star, the G has an edge say e = uv such that both u and v are non pendant vertices. Now $V(G) - \{u, v\}$ is a nonsplit pendant dominating set of G and so $\gamma_{nsp}(G) \leq n - 2$ which is a contradiction. Hence G is a star.

Corollary 3.2 For any graph G, $\gamma_{nsp}(G) = n - 1$ if and only if G is a star.

Theorem 3.9 Let G be a unicyclic graph with cycle C_n and $\delta(G) = 1$. Then $\gamma_{nsp}(\overline{G}) = \chi(G) = 2$ if and only if n is even.

Proof: If $\chi(G) = 2$ then n is even. Conversely, suppose that n is even. If G has two pendant vertices u, v with two supports u_1, v_1 and $u_1 \neq v_1$, then for any other vertex in C_n , $\{u, x\}$ is a minimum nonsplit pendant dominating of \overline{G} . If $u_1 = v_1$, then $\{u, x\}$ is a minimum nonsplit pendant dominating set of \overline{G} .

Theorem 3.10 Let G be any connected graph and $\chi(G)$ be the chromatic number of G. Then $\gamma_{nsp}(G) + \chi(G) \leq n + \Delta(G)$ and equality holds if $G \cong K_3$

Proof: Since $\gamma_{nsp}(G) \leq n-1$ and $\chi(G) \leq 1+\Delta(G)$ we have $\gamma_{nsp}(G)+\chi(G) \leq n+\Delta(G)$.

Theorem 3.11 For a non trivial tree T, $\gamma_{nsp}(T) \geq \Delta(T)$ and $\gamma_{nsp}(T) = \Delta(T)$ if and only if $T \cong star$.

Proof: Since T is a tree, T has at least $\Delta(T)$ pendant vertices. If $T \cong$ star then $\gamma_{nsp}(T) = \Delta(T)$. If T is not a star the every nonsplit pendant dominating set must contains all the pendent vertices and so $\gamma_{nsp}(T) \geq \Delta(T)$.

Theorem 3.12 For any tree T not isomorphic to P_2 , $\gamma_{nsp}(\overline{T}) = 2$ or 3.

Proof: If diam(T) = 2, then $T = K_{1,n-1}$. If u is the support vertex and $v_1, v_2, ..., v_{n-1}$ are the pendant vertices then $\{u, v_1, v_2\}$ are nonsplit pendant dominating sets in \overline{T} .

If diam(T)=3 and if u,v are the supports and v_1 is the pendant vertex and adjacent to any one of the support vertex then $\{u,v,v_1\}$ is a nonsplit pendant dominating set in \overline{T} . If the graph \overline{T} doesnot contain a pendant vertex then $\{v_1,v_2\}$ where the vertices v_1 are v_2 are the adjacent to support vertices in T, then $\{v_1,v_2\}$ is a nonsplit pendant dominating set in \overline{T} . If diam(T)=4, let $P=\{u_1,u_2,u_3,u_4,u_5\}$ be the diametrical path in T. Then $\{u_2,u_5\}$ is a nonsplit pendant dominating set in \overline{T} . If $diam(T)\geq 5$, let $P=\{u_1,u_2,...,u_n\}$ $(n\geq 6)$ be the diametrical path in T. Then $\{v_1,v_4\}$ is a nonsplit pendant dominating set in \overline{T} . Thus $\gamma_{nsp}(\overline{T})=2$ or 3.

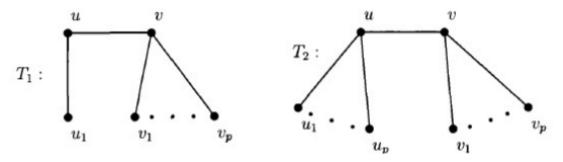


Figure 2: A Simple Graph

Theorem 3.13 If G is a connected graph with $diam(G) \geq 5$ such that \overline{G} is connected the $\gamma_{nsp}(G) + \gamma_{nsp}(\overline{G}) \leq n+1$ and the bound is sharp.

Proof: Since $diam(G) \geq 5$, there exist 2 vertices u and v such that $d(u,v) = diam(G) \geq 5$. Let $P = \{u, v_1, ..., v_{n-1}, v\}$ be a diametrical path in G. Every vertex in $V - \{v_1, v_{n-1}\}$ is adjacent to at least one of $\{v_1, v_{n-1}\}$ and at least one of $\{u, v\}$ in \overline{G} so that $\{v_1, v_{n-1}\}$ is a minimum nonsplit pendant dominating set of \overline{G} . Thus $\gamma_{nsp}(\overline{G}) = 2$. Also we have $\gamma_{nsp}(G) \leq n-1$. Hence $\gamma_{nsp}(G) + \gamma_{nsp}(\overline{G}) \leq n+1$. If $G \cong C_n$ $(n \geq 4)$, $\gamma_{nsp}(G) = n-2$, $\gamma_{nsp}(\overline{G}) = 3$ so that $\gamma_{nsp}(G) + \gamma_{nsp}(\overline{G}) = n+1$.

Proposition 3.3 For any tree T,

$$\gamma_{nsp}(T) = \begin{cases} n-1, & \text{if } diam(T) = 3, \\ n-2, & \text{if } diam(T) \ge 4. \end{cases}$$

Theorem 3.14 Let T be any tree such that \overline{T} is connected. Then

$$\gamma_{nsp}(T) + \gamma_{nsp}(\overline{T}) = \begin{cases} n+2, & \text{if and only if } T \cong P_4, T_1, \\ n, & \text{if otherwise.} \end{cases}$$

Proof: By Proposition 3.3, $\gamma_{nsp}(T) = n - 1$ if diam(T) = 3. Since \overline{T} is connected.

Case(i): diam(T) = 3.

If $T \cong P_4$ then $\gamma_{nsp}(\overline{T}) = 3$ and so $\gamma_{nsp}(T) + \gamma_{nsp}(\overline{T}) = n+2$. If $T \cong T_1$ then $\{v, u_1, v_i\} (1 \leq i \leq n)$ is a minimum nonsplit pendant dominating set of $\overline{T_1}$ and so $\gamma_{nsp}(\overline{T_1}) = 3$. Thus $\gamma_{nsp}(T) + \gamma_{nsp}(\overline{T}) = n+2$. If $T \cong T_2$ then $\{u, u_i, v_j\}$ $(1 \leq i \leq k, 1 \leq j \leq m)$ is a minimum nonsplit pendant dominating set in \overline{T} and so $\gamma_{nsp}(\overline{T}) = 2$. Now $\gamma_{nsp}(T) + \gamma_{nsp}(\overline{T}) = n+1$.

Case(ii): diam(T) = 4

Let $(v_1, v_2, v_3, v_4, v_5)$ be the diametrical path $\{v_2, v_5\}$ is a minimum nonsplit pendant dominating set of \overline{T} and so $\gamma_{nsp}(\overline{T}) = 2$. Hence $\gamma_{nsp}(T) + \gamma_{nsp}(\overline{T}) = n$.

Case(iii): $diam(T) \geq 5$.

By the Theorem, $\gamma_{nsp}(\overline{T}) = 2$. Hence $\gamma_{nsp}(T) + \gamma_{nsp}(\overline{T}) = n$. Converse is obvious.

Proposition 3.4 If $G \cong C_n \circ K_1$ $(n \geq 4)$, then $\gamma_{nsp}(G) = n + 2$.

Proposition 3.5 For any connected graph G, $\gamma_{nsp}(G) + diam(G) \leq 2n - 2$ and equality holds if and only if G is a path with 4 vertices.

Proof: For any connected graph G, $\gamma_{nsp}(G) \leq n-1$ and $diam(G) \leq n-1$ so that $\gamma_{nsp}(G) + diam(G) \leq 2n-2$. Moreover, diam(G) = n-1 if and only if G is a path and hence the theorem follows.

References

- 1. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Domination in Graphs: Advanced Topics* (Marcel Dekker, New York, 1998).
- 2. J.A.Bondy, U.S.R Murty, Graph theory with application, Elsevier science Publishing Co, Sixth printing, 1984.
- 3. T.W.Haynes, S.T.Hedetniemi, P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New york, 1998.
- 4. S.T. Hedetniemi and R.C. Laskar, Topics on Domination, Discrete Math. 86 (1990).
- 5. Kulli, V.R., Theory of domination in graphs, Vishwa International publications (2010).
- V R Kulli and B. Janakiran, The Nonsplit Domination Number of a Graph, Indian Journal pure appl, Math., 31(4): 441-447, April 2000.
- 7. Kulli, V.R., Janakiram, B., *The split domination number of a graph*, graph theory notes of NewYork, New York Academy of Science (1997) XXXII, 16-19.
- 8. Nayaka S.R, Puttaswamy and Purushothama S, Pendant Domination in Some Generalized Graphs, International Journal of Scientific Engineering and Science, Volume 1, Issue 7, (2017), pp. 13-15.
- 9. Nayaka S.R, Puttaswamy and Purushothama S, *Pendant Domination in Graphs*. The Journal of Combinatorial Mathematics and Combinatorial computing.pp. 219-230 (2020).
- 10. Purushothama S, Puttaswamy and Nayaka S.R. *Pendant Domination in Double Graphs*. Proceedings of the Jangjeon Mathematical Society, Volume 23(2), 2020 (April).

Rashmi,

Research Scholar

Department of Mathematics,

Vidyavardhaka College of Engineering, Mysuru-570002, India.

Affiliated to Visvesvaraya Technological University, Belagavi, India-590018.

Department of Mathematics,

Sri Jayachamarajendra College of Engineering,

JSS Science and Technology University, Mysuru, India- 570006.

E-mail address: rashminagesh1990@gmail.com, rashmi@jssstuniv.in

and

Divya Rashmi S V,

Department of Mathematics,

Vidyavardhaka College of Engineering, Mysuru-570002,

Affiliated to Visvesvaraya Technological University, Belagavi, India- 590018.

 $E\text{-}mail\ address: \verb|rashmi.divya@vvce.ac.in|$