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Comparison of Analytical Methods for Solving Fractional Biological Model Via The
(G'/G)-Expansion Method

Shakila Zubair*, Ayyaz Ali*, Nadia Batool

ABSTRACT: This study explores exact traveling wave solutions for a time fractional biological population
model by applying the (G’/G)-expansion method. The model, which incorporates nonlinear diffusion and
memory effects via fractional derivatives, captures the dynamics of population distribution in a spatially ex-
tended biological system. By applying a systematic wave transformation, we reduce the governing partial
differential equation to an ordinary differential form and construct a broad class of analytical solutions, in-
cluding hyperbolic, trigonometric, and rational wave structures. The obtained results not only generalize
known solutions from prior literature but also yield novel solution families such as kink, lump, and peakon
type waves. Comprehensive symbolic computations using Maple validate the derived expressions, and graphical
illustrations demonstrate the physical relevance and diversity of the wave phenomena. The findings highlight
the robustness and versatility of the (G’/G)-expansion method for solving complex nonlinear fractional PDEs
in biological and ecological modeling.
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1. Introduction

Nonlinear partial differential equations (PDEs), especially of fractional order, serve as powerful tools
in modeling various complex physical, biological, and engineering phenomena characterized by mem-
ory effects and spatial heterogeneity [1,2,3,4]. Over the past decades, the growing interest in exact
and approximate solutions to these models has led to the development of numerous analytical methods
that enhance our understanding of wave propagation, diffusion, and reaction mechanisms [5,8,7]. This
study focuses on applying the (G’/G)-expansion method to a time-fractional biological population model
described by the following equation:
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Here, w = w(x,y,t) represents the population density, and f(w) denotes the net population source
due to birth and death processes. This equation captures the essential nonlinear diffusion behavior
in two spatial dimensions, with a memory effect introduced through the fractional time derivative of
order a.Mathematical models like this provide deep insight into population dynamics by simulating
nonlinear interactions in biological systems. The application of such models has proven valuable for
predicting and analyzing ecological and epidemiological patterns. This method and its variants, including
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the improved and generalized (G’/G)-expansion techniques, have been successfully applied to numerous
nonlinear models arising in mathematical physics among these, the (G’/G)-expansion method has gained
considerable attention due to its simplicity, efficiency, and ability to uncover various wave structures,
including solitary, periodic, and kink type solutions [6,9,10,11]. This method has been effectively applied
to fractional order models such as the Klein Gordon equation, gas dynamics, and biological population
equations, providing closed form solutions that capture essential physical behaviors [12,13,14].Fractional
differential equations extend classical models by incorporating derivatives of non integer order, thereby
capturing long term memory and hereditary properties in natural systems [15,16]. These have proven
vital in studying wave patterns in biological media, nonlinear optics, and fluid dynamics, where standard
integer order models fall short [17,18,19,20].To address these systems, researchers have proposed several
enhanced analytical techniques. The exp-function method [21], tanh—coth method [22], sine—cosine
method [23], and extended rational function approaches [24] offer alternative frameworks to derive novel
solutions. Each of these methods contributes to enlarging the set of solvable nonlinear models with precise
wave representations [25,26,27].In parallel, Lie symmetry analysis and transformation techniques have
been instrumental in reducing PDEs to ordinary differential equations (ODEs), aiding in symmetry based
classification and conservation law derivation [28,29,30]. These symmetry techniques, in conjunction with
mapping methods [31].The synergy between these mathematical tools applied to fractional biological
population models, nonlinear optical systems, and generalized evolution equations has facilitated the
discovery of a wide range of exact solutions, validating both the physical insight and computational
effectiveness of each method [32]. This study aims to apply the (G’/G)-expansion method to derive new
solitary wave solutions of a fractional biological population model. The approach provides a systematic
framework to explore the dynamic behavior of population systems influenced by memory effects, which are
effectively captured through fractional calculus. By obtaining exact wave structures, the study contributes
to a deeper understanding of nonlinear biological processes governed by fractional order dynamics.

2. Description of the (G'/G)Expansion Method
Consider the fractional nonlinear partial differential equation (NLPDE) given by:
¢ (w, Dfw, Diw, D)w, D}*w, D2w, DNw,...) =0,

where t > 0, x € R, and 0 < a < 1. Here, ¢ is a polynomial in w = w(x,y,t), the unknown function.
Step 1Apply the wave transformation:

aota
Ia+1)

Using this transformation, the original NLPDE is reduced to an ordinary differential equation:

P (Y kY, pnY' K*Y" kpY"”,...) =0,

w(z,y,t) =w(n), where & =Ilx+ry-+

where primes denote derivatives with respect to . We assume the solution has the form:

m G/ 7
Y(n) = il — , ith a,, # 0,
=30 (&) +a witha,
where ag and a; are constants to be determined. The function G(7) satisfies

’

Step 2 According to the (%)—expansion method, the solution to Equation (1.2) is assumed to take the

i (G
form of a polynomial in (6)

w(¢) = b; (Cé) + bo,
i=1

In this expression, by and b; (for i = 1,2,...,s) are unknown constants that will be calculated later. The
function G = G(¢) follows a second-order linear ordinary differential equation:
d*G(¢) | dG(Q)

a2 +< & +0G(¢) =0,
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where ¢ and o are real constants.
Step 3 The value of the positive integer s is determined by balancing the highest-order derivative with
the most nonlinear term in the equation.
Step 4 After obtaining the constants I, r, ng, ao, <, o, and b;, we substitute them into Equation (1.4)
to solve for the function G(¢). The resulting expression for G(¢) is then substituted into Equation (1.3)
to obtain the solution to Equation (1.1). The type of solution depends on the sign of the discriminant
G2 —4o.
Case 1: ¢2 —40 >0,and 0 # 0

When the discriminant is positive, the solution involves hyperbolic functions. The corresponding
hyperbolic traveling wave solution is given by:

g = V<2 — 40 [ Bjsinh (%Transx/ G2 — 40) + By cosh (%Transx/g2 - 40) <
e 2 B cosh (%Transx/ G2 — 40) + By sinh (%Transv c2 — 40) 2

Case 2: ¢2 — 40 < 0, and 0 # 0 When the discriminant is negative, the solution involves trigonometric
functions and takes the form:

5 —(Z—4o) [ ~Bisin (%Trans —(¢2 — 40)) + Bj cos (%’Hans —(¢2 — 40))
2= _

2 B cos (%Tmns\/—(g2 - 40)) + By sin (%Trans\ /—(¢% — 40))

Case 3: ¢?—40=0,c#0,0#0
When the discriminant is zero, a rational function solution arises:

1 B
S = tvE—i, () -

2 By + By - Trans

DO | N

3. Solution Method

The fractional biological population model
This model, which describes how a biological population evolves over time with memory effects, is
expressed using the following mathematical equation:

wafw_t—wyfwarch:O, 0<a<l (1)
The application of transformation employed on the above partial differential equation (PDE) is:

aota

w=w(), where=Ilx+ry+ T+l

(2)
By applying the above transformation to equation (1), ODE is obtained, i.e.,
(w' v —2(w")? = 2(w")? — 20w ¢* — bw + cw? =0 (3)

The derivatives are taken with respect to the variable “¢”. Upon doing the integration of the ordinary
differential equation (ODE) with respect to the variable &, the resulting expression is as follows:

/ [(w')v —2(w")? = 2(w")? = 20w"¢* — bw + cw?] d¢ (4)

Assuming the solution of eq. (4) is:
n (;/ )
we =Y u () )
i=0
Where G = G(§) is a function that satisfies the linear ordinary differential equation of the second order

in the form:

G"+ MG +6G=0 (6)
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By utilizing equations (5) and (6), it can be readily inferred that:

n G, i+2
" —_— . — DY
w = ;az <G> (7)
G/ n+1
[ R
w' = —nay, (G) (8)

1= ai(w(@)) 9)
=0

Now, by applying the idea of coefficient balancing, it can be observed that N = 2. Therefore, the solution

to equation (9) is given as:
Vel el 2
I=by+b|—= b | = 1
o+ 1(G>+2<G> (10)

Where the constants by, b1, and b are arbitrary and non-zero. By substituting equation (10) into equation
(3), we obtain:

3b
—4¢ <5b§(q2 +1%)y® + 6by (22< + b1> (® +1?)y°

-3

3b3(q* + 12)) 4
9 Y

+ ( (4 +40%)2 + (8¢ + 81%) — £ ) 13

11
Thi A (11)

raa+ %)

bo(boc — b)) 0

+b0> by +

4

By performing the substitution of equation (11) into equation (3) and subsequently gathering all terms
with the same power of (%), a system of simultaneous algebraic equations can be derived. This system

involves the coefficients by, b1, b2, c,b, G and E. To obtain this system, each coefficient of the resulting
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polynomial is set to zero. As follows:

E =-4 (30 (a(q2 + 1)y + bo(q* +1%)s + %) b2 (12)

3 2 4 12y b (a2 - 12)2c2 b b
+b1< ac(q2+ )b1 , bolg J; )’ +f+bo(q2+lg)a+4—gc>>é=0

1 2 2
E2:_4(302(q2+l2)b%+ W+2b0<q2+l2)2§2+V2§+4b0(q2+l2)0+b_boc) b2

( 4 2
3b, 2¢% 2%\ 49> 47 c 9 19 v

= = 4+ = 4+ = Jo—=)b+b l - =0
+2((<3+3§+3+3061+0(q+)§+6 ¢
(%5 %

) 2+ (92 + 91%)o — ;) by + 5bo(q* + 1%)s + ;) by (14)
5b
* (;+bo b1<q2+z2> ¢=0

(13)
o T

Es :—4(70@((] +1?)

Ey = _4( <(4q2 +412)¢2 + (8¢2 + 812)o — g) b2 (15)

7b 3b3 (g% 4 12
+3 <21§ +b0> (@ +12)by + 1(‘12)>< —0

Es = —24 <3b22§ + bl) (@ + 1)l =0 (16)
Es = —20b3(¢> +12)¢ =0 (17)

By employing the software Maple to solve the given algebraic equations, we are able to get the solution
sets. Furthermore, by selecting particular instances, we achieve the subsequent outcomes for the following
three cases that are:

e Case 1: When ¢2 — 40 > 0 and o # 0, the solution takes the form of hyperbolic functions.

e Case 2: When ¢2 — 40 < 0 and ¢ # 0, the solution involves trigonometric functions.

e Case 3: When ¢? — 40 = 0, with ¢ # 0 and ¢ # 0,the solution becomes a rational function.

Solution 1

[b:b, c=6 bl:o’ bO:bOa b2=0,§:§,q:q, l:l, V=V,0=0
Case 1:
( (V<2=40 By — ¢B,) sinh (W) )

+ (V2 — 40 By — ABy) cosh (3 (qy + lz 4 vt)V/s? — 4o)
2By sinh (1 (qy + Iz + vt)V/s2 — 4o) + 2By cosh (3 (qy + lz + vt)V/<s? — do)

(18)

w1 =
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(Vs? — 40 By — ¢By) sinh <(qy+lm+r(a2+l)) =

y+lo4 2t Sy
+ (Vs% =40 By — vBy) cosh ((qy+l +F((12+1))\/g74>

v =

' (qyHiat wttey ) VP —do (ayHlot ri ) VP 4o
2B, sinh < 5 + 2B cosh 5

Case 2:

(7\/m31 - CBQ) sin <(qy+lx+vt2>\/ﬂ)
+(=V=¢¥ +40 By — <By) cos (5(qy + Lz + vt)V'=% + o)

w2

1 vt — 2 p=
(—V=¢% + 40 By — ¢By) sin ((qy+ x+F<a+21>)V it >

z 2t V—s24+40
+ (_\/WBQ — (Bl) cos ((qu +F<a+21)) s?+4 )

- 2By sin (3(qy + L + vt)V/—c% + 40) + 2B cos (5 (qy + lz + vt)V—% + 40)

Vg =

. quHiz+ 7 ) V=<2 +io quHlz+ 7 ) V=<2 +io
2B, sin <( F(‘”Ql)) + 2By cos ( I ”21))

Case 3:

_ \/§2—4032—(<qy+ll‘+l/t)32+31)§
B (2qy + 21z + 2vt)By + 2B
\/(2—40'32 — ((qy—l—lm—&-#jl)) Bg+Bl)§

(20y + 212 + 245 ) By + 2By

w3

U3

Solution 2

12(q%02b3 + 120202 — 4baq? by — 4balaby — 2¢2b3 — 212b3)
b2 ’
_ 4(8¢2aby + 81%0by + 3¢2by 4 31%Dy)
— b2 ,
by =0, bg=by, by=by, =0, g=q, =1, v=0, oc=0

h=—

Case 1:

V=0 (B sinh ((qy + lz)/—0) + Bz cosh ((qy + lz)v/=0))
By cosh ((qy + lz)\/=0c) + By sinh ((qy + lz)y/=0)
V=0 (By sinh ((qy + lz)y/=0) + Ba cosh ((qy + lz)v/=0))
By cosh ((qy + lz)v/=0) + Bz sinh ((qy + lz)y/=0)

wy =

Vg4 =

Case 2:

Vo (Bisin ((gy + lz)y/a) — Bz cos ((qy + 12)1/0))
By cos ((qy + lx)y/0) + By sin ((qy + lz)/0)
Vo (Bisin ((qy + lx)/o) — Ba cos ((qy + 2)/0))

By cos ((qy + lz)y/0) + Basin ((qy + 12)\/0)

Wy = —

(19)

(20)
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Case 3:

We — \/—O'BQ
" @By +lxBy+ By

vV 70’B2
Ve =
6 qy Bo 4+ lx Bs + By

Solution 3

b= (1201)316%%)2&;3 (1026¢°0*b5 + 10261°0*b5 — 81¢°°b7b}
— 8112530265 — 414¢%0%b1bs — 4141%0°b1b5
+29¢°obib3 + 290%abSb3 + 40¢°bT + 400%b}),
B 2(540¢202b3 + 5401202b3 — 150¢%0b3b3 — 150120b2b3 — 89¢%bT — 8912b7)
9(120b% + 7b%)b3 ’
B 12602b3 + 30b2b3 — 31b}
3(12003 + T63)by

by =b1, by =

b2 = b2a

20,
= ——, =4q, l = l’
S 3bs q=4q
3 10b1 (12¢%02b3 + 126120463 + 12¢%0b3b3 + 121200363 — 19¢%b] — 191%b7)

3(120b% + 7b2)b32 ’

vV =

p=p

Case 1:

[—95b2 402 [—90b2 402 19169 (q24+12)  2tob2(g2+12)b3
<7b2 #B2*B1b1) cosh<1260 bg 1(7 11(;16+ )+ ! 2(§1+ )1>)

1080b3+63b7b3

0002102 b5 (02 412 tob2 (02 +12)53 o021 52
sinh(1260 b§+ 1 (7 19tb11(;16 + )+21ab2(21+l )by )) (bz #Bl“”szl)
+ B V3

1080b3+63b703

[—9ob2+b2 19662 (2 +12)  2tob2(g2412)b3
B h 1260 bg s <_ 1126 + 2 21 .
— D1 COS

108063 +636252
3 bo

. —90b24b2 19t6% (g2 +12)  2tob2(g2+12)b3
stmh<1260,/ 3 1(— LG A0 | 2tobyle +1Ob

108053 +63b763

[—95b2+b2 —90b2+b2 19262 (2 +12)  2t%0b2 (g2 +12)b3
(7!72 7}]% 1 BQ*Blln) COSh<1260 hg (- 156 11‘(04—1) -+ 2121—‘((!_'_1) 1

1080b3+63b7b3

. [—90b2 402 1069 (¢24+12)  26%ob2 (q2+12)b3 —90b2+b2
+smh<1260 b§ 1(* 126%(a+1) + 21%(a+1) 1 ba bﬁilBl‘i’Ble

1080b3+63b753

wr =

+

B h 1260 o2 126 T (a+1) IR CESY)
— b1 cos 108063630262

3 ba

. [—90b2+b2 19t960 (2 +12)  2t%0b2(g2412)p3
+B2smh<1260 b§ 1<7 126%‘(a+1) + 2121"((21»1) .

108063 +63b753

—95b3+b7 (7 196965 (¢2412) | 2t% b3 (q24+12)b3 )

(30)

(31)
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Case 2:
9563 +b 4 9562 —b?
sin(1260(tu(q®+1%)b1— L — 12 )ob3) 2 Bibs
2
1080b4+63b2b2
52 2
(1/ 2 v cos 1260 t(r(q +1%)by — ﬁfi)ab‘L) ° b:2 bl)BQbQ
2
1080b3+63b7b3
32
qy 4 (Jo'bz bl ( )
B> :am 1260 tU(q +1? Yo1— &2 — 35 o’b B1by
1080b3+63b3b2
2 4 9563 —b?
—Bj cos 1260(1‘#((1 +1 )bl—?—g ab b2 bo
1085b3+63b7b3
9563 b 1260 %02 +12)by gy 1x bt 9b3 —b3 Bib
b% Sm T(atl) 35 35 )902 v3 102
108003 +63b7b3
95b2 —b? %0 (q2+12)b v il n 95b2 —b?
< 7:% 1 cos(1260<7rga+l) L2y 1z )obs :g 1 ) Babs
- 1080b3+63b2b3
vs = t% (g2 +12)b 4 90b2 b2 (33)
Bs sin(1260<7rzla+l) 1 7%7%%1)2) 2L B1b
2
108503 +63b7b3 .
[e% 2 2 obs —
—B: Cos(l260<7t Ur(faii))bl 7%7%>o’b‘2‘> 2 b:Q 1 ba
2
108003 +63b7b3
Case 3:

(=360 B2b3 — 21B5b303) /5 + 1260 ((to(q? + 12)br — % — &£) By — B2) obhy
W9 =

35
34
W%«w@+ﬂM————ﬂﬁ——pﬁm (34)
(—360Bab — 21 B2b3b8) /2721 + 1260 ((% — 7) By — 7) obib, )
Vg = a
3780 (B — % — &) By — B1) abih,

Solution 4

—2
bz—ﬂﬁ?i@,c—;,m:m,mzm,@za
1
c=¢, g=Vz22+1l, =1, v=v,

(3.2)
Case 1:

(V& =T By — <) cosh (Ll V&7

©sinb (m(zw?ut)m) (V< =40 By — <By)
) 36
W10 2B, sinh <m(ly+lz2+ut)\/m> + 2B cosh (m(1y+l€+ut)m> ( )

(\/ — 40 By — §B1) cosh (ly+lx+2””+1)) 40)

Vz2 T vt? —4o
+sinh( G +2F(a+1)) - > (\/74031 *§B2)

e (37)
2B, sinh (m(l“l“;(am )Vs? Ao ) + 2B, cosh (m(zyﬂﬁ i )V Io )

V10 =

2
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Case 2:

(—x/1271515131_-gBQ)SHI(VGTITany;uwvczf;z;
+ (V=T F 40 By — ABy) cos (YLt lro) ol )
2Bz sin (muyﬂw;w)m) + 2B cos (muyﬂwgut)m)

= (38)

2

—+ — 2241 (ly+lot+ —2t2 Y/ —c2+do
( §2+40B2g31)COS<\/T(y+ +r2(a+1>)\/ﬁ)
V11 = _ ] (39)
22 r —xtr — 2440 221 1(1 Lo 2t ——
2B5 sin (m(ly“ +F2<a+1>)\/T) 9B, cos <\/7+( y+ +1;(a+1))\/T>

22 x vt —c2 o
(V710 B, — <By)sin ( VEF(ly o+ ) V=

Case 3:

+2B; (kx — vt) By + B?
(222 + 2y?)I12 + 4tzvl + 2t2v2) B3 + 4B1 (lx + vt) By + 2B?
-B, <\/,2271y32 + (— - %) By — Bl) N>
¢ (((mQ )2+ B F((a)iﬂ)) B2 +2B, (zx + +1>) By + B%)
((2x2 + 2y2)12 + Ié‘lzcoléiti) %) BQ + 4B, (lm + F(I;til)) By + 23%

2,272 2,2\ p2
—By (V22 + 11lyBs + (~lz — vt) By — By) §2_40_g<(($ +y2)l —|—2txyl+tu)32>
(40)

w12 =

(41)

V12 =

Solution 5

b:O, c=0, b1:b17 [)0:[)07 b2:b2’ =g,
q:mh l:l, v=0, o=o0

Case 1:

(=$Bs + B1v/<? — 40) sinh (lwzzﬂ y;z)@)
— cosh (1LY ) (0B — B, /<7 — o)
2B, sinh (l(my;m)m) + 2B cosh (l(\/ﬁyzz)\/&—ﬁ)

w13 =

(—§Bz + B1M) sinh (l( G y;m) g2_40)
— cosh (l(m“x) <2_4a> (§B1 — Byv¢? — 40)
v =
8 2B cosh (%l(\/z2 + 1y +xz)vs? 740) + 2Bs smh( (V22 + 1y + 2)vs? 740)

Case 2:

(=5B2 = Byy/=? + dg) sin ({HubVEEe )
_ cos (l(\/z2+1 y+2r)\/—g2+4a> (<B) — Byy/—<Z T do)
2B, sin (l( Z2+1 y+2w)\/—q2+4a> 4 2By cos (l(\/z2+1 y+2w)\/—<2+4a)

W14 =
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(—<By — Biv/—<F T 40) sin (“my*;)‘/m)
_ cos (l(\/z2+1 y+2x)\/—<2+4a) (sBy — Byv/—< ¥ 40)

V14 = 45
H 2By cos (31(V22 + 1y + 2)V—c% + 40) + 2By sin (31(V22 + 1y + 2)vV—2 + 40) (45)
Case 3:
e — By (—lyBy + lxBy + B1) V1 + 22V<? — 40 — ¢ (2 + y?)I? B + 2lzB1 By + B}) (46)
v (v2 + y2)212B3 + 4lx B, By + 2B}
B (V22 +1(=lyBs) + lxBy + By) V<2 — 40 — ¢ (2 + y*)I? B} + 2z B, B> + BY) (47)
15 =

(2 + y2)212B2 + 4lz B, By + 2B3

4. Graphical Representation

100001

~10000
=20000f

~30000

Figure 1:
Solution 5 shows solitary wave solution when
By=2 B =2, a=0.01,b =0.0001,y=0.1,0 =—-8,by=5,1=5,g=177

Figure 2:
Interprets the peakon wave in solution 4 when
a=0.12, ¢ =205, B, =12, By =2,0 =900, y =350, l =4, v = 426, ¢ = 10
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Figure 3:
Shows the singular kink profile of solution 5 when
y=10,0=0.04, By =2, B1 =2,b; =05, v=-80,b =54,1=3,¢q=4

07gg 0
6054 0.04 002
,0 02 5 0.06 0/
x

Figure 4:
Solution 2 displays the soliton wave solution when
y=0.01,¢=7 By=4,B1=12,0 =325, «a=0.001, ] =4, v =807, ¢q=3

Figure 5:
Shows singular kink wave solution in solution 3 when
a=0.0001,¢=31,By=2 B; =2,0=288,y=0.1,] =5, v =45, ¢ = 5600

11
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Figure 6:
Solution 3 shows a kink wave solution when
a=09 B,=2 B =2,y=1,¢=1,6 =0.01,0 =-60,0,=52,1=5,¢g=5

Figure 7:
Displays the lump wave with one bright and dark soliton in solution 4 when
a=0.13,¢=207, By =19, B =2,0=—-85,y=180,1=3, v =5, ¢ =12

Figure 8:
In solution 1 shows singular solitary wave solution when
¢=1,By=2 B; =20,0 =95 y=0.1, «a=0.001, l =50, v =700, ¢ = 5
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Figure 9:
Shows the singular periodic type of solution in solution 2 when
y=1,a=0.09,¢=1 By =2, By =2,b =0.01, 0 = —60, by =52, =5,g=5

0.05964425500000001 -

0.05964425500000001 -

0.05964425499999999

0.05964425499999999

Figure 10:
Shows singular solitary wave solution in solution 1 when
¢=10.0,Bs =2, B, =2,0=-0.6,y=0.10, « =0.001, [ = 2.5, v =0.70, ¢ = 4.0

5. Physical Interpretation

Figure 3 displays a kink profile of Solution 5 for

y =10, =0.04,By =2,B; =2,b; = 0.5,v = —80,by = 54,1 = 3,q = 4. The steep transition from one
level to another models a rapid ecological shift or spatial migration front between two equilibrium
population states.The periodic wave solution 2 shown in Figure 4 corresponds to
y=0.01,¢=7,B,=4,B; = 12,0 = 325, = 0.001,] = 4,v = 807,q¢ = 3. The smooth and repetitive
oscillations suggest periodic ecological patterns, such as predator-prey or cyclical growth-decay
interactions.In Figure 5, a singular kink wave solution is observed in Solution 3 for

a=0.0001,¢ =31,B, =2,B, =2,0 =288,y =0.1,l = 5,v = 45,¢q = 5600. The sharp front and high
contrast suggest a nonlinear interface or boundary propagation in a spatially structured population.
Figure 6 shows a kink wave solution with a gentler slope in Solution 3 for
a=09B,=2B,=2y=1,¢=1,bp =0.01,0 = —60,b, = 52,1 = 5,q = 5. This gradual transition
models slow but steady spatial diffusion in ecological systems, possibly influenced by memory effects
and nonlinear damping. In Figure 7, the solution exhibits a lump wave structure with both bright and
dark solitons 4 for « = 0.13,¢ =207,B3 =19, B =2,0 = —85,y = 180, = 3,v = 5,9 = 12. The
symmetric bell-like shape represents localized clustering of species with stable amplitude, relevant to
group formation and population localization. Figure 8 presents a singular solitary wave solution from
Solution 1 for ¢ =1,Bs =2,B; = 20,0 =95,y = 0.1, = 0.001,/ = 50,v = 700, g = 5. The extremely
sharp spike indicates a blow-up type behavior or an explosive population event due to strong nonlinear
and fractional effects. Figure 9 shows a singular periodic wave solution in Solution 2 for the parameters
y=1,a=0.09,¢=1,Bys =2,B; =2,b; =0.01,0 = —60,b: = 52,1l = 5,¢ = 5. The plot reveals a
repeated series of sharp peaks and steep valleys, characteristic of a rogue wave train or breather-type
solution. Such behavior models periodic surges or collapses in biological populations, driven by feedback
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Table 1: Validation of our solutions by comparison with results from Alam, Aktar, and Tunc [13]
Our Derived Solutions Corresponding Solutions from Alam et
al.

i(i) For B, =0, =0, and = = 0 values, our ()Wltha—45 b=0,z2=1,y=0, u=1,
solution gives vi4 = —3 Se = 5,and A = 0 their solutlon become Wo =

IS
2
(ii) For ¢ = 0, and | = 0 values, our solution | (ii) Withz =1, a =0,y =0,y =0, A = 0,

Q/\I

gives vg = %BQ 45, Sy = 7V*CBQ and p = 1 their solution
becomes Wiy = 7@‘1&

(iii) For { =0, ¢ =45, v =0,y = 1.1, 0 = 1, | (iii) Withsz,,u:S,y:O,)\:4,a:—l,
« = 45, and x = 1 values, we obtained vy = | Sy = B and x = 1 values, their solution

B1
B, becomes Ws = —g—;

Table 2: Validation of our solutions by comparison with results from Mohyud-Din and Ali[2]
Our Derived Solutions Corresponding Solutions from Mohyud-
Din and Ali

(i) Using ¢ = 0,1 =0, v = 0,and ¢ = 0 values, | (i) Withz =0, a =0,1=0,a = —b, y
vVao o

our solution gives vy = — b=2By, a2 =1 a1 =0, and a = —

2B, ] ) Vo

values, their solution becomes uy = —

% I
QN H

2B,

(ii) Using = 0, y = 0, v = 0, and ¢ = (i) With 2 = 0, y = 0, a = 0, a; = Bsv4o,

) ) ) _ Bovdo and by = 2B; values, then their solution be-
values, our solution becomes v1; = 5B, Bovio

comes u; =
2B,

(iii) Using o = 1, and ¢ = 2 values, then our | (iii) Withz =0, =0,1=1,a = —y, b =0,
solution v3 = —1 az = —1, by = 1 values, their solution uz = —1

(iv) Using x =0, y =0, v =0,and ¢ =0 | (iv) Withz =0,y =0,a=0,b=1, ap =

8

1 uti _ B Byv4o, and by = 2B; values, their solution
values, our solution vy; = °B, Boio

27 9B,

loops and nonlinear memory effects. These structures are important in understanding spatiotemporal
pattern formation where energy or population density becomes highly concentrated and periodically
redistributed. Figure 10 displays a singular solitary wave solution in Solution 1 for the parameter set
¢=10.0,Bes =2,B; =2,0 = —0.6,y = 0.10,« = 0.001,! = 2.5,» = 0.70, ¢ = 4. The graph presents a
tall, narrow peak centered in space, representing a localized population spike with extreme amplitude
and steep gradients. This blow-up-like behavior indicates a highly nonlinear dynamic, possibly triggered
by memory-driven growth or diffusion-limited aggregation. Such singular solitary waves often arise in
fractional models where time-memory effects amplify localized activity, reflecting intense population
surges in confined spatial regions.

6. Results and Discussions

The (G’/G)-expansion method provides some new exact solutions that are not found in other liter-
ature. By comparing our results, we discovered that some of them are similar to the current literature,
while others solutions are newly discovered and have not been explored elsewhere. As a result, we have
taken specific values of the physical parameters, and some of our obtained solutions, va, vs, vg, v1, and



COMPARISON OF ANALYTICAL METHODS FOR SOLVING FRACTIONAL BIOLOGICAL MODEL 15

v1, coincide with some of the particular solutions obtained by other methods mentioned in the tables and
the references [13,2]
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