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Approximate Solutions of Second Kind of Nonlinear Volterra Integral Equations
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ABSTRACT: In this article we find out the analytical solutions of some nonlinear problems of second kind of
Volterra integral equations (VIE) by Optimal Homotopy asymptotic method (OHAM) and Adomian decom-
position method (ADM). From the comparative assessment of both solutions, it is concluded that OHAM is
operative, simple and unambiguous as like ADM. To show the effectiveness of these approaches, we showed
the quick convergence of OHAM and ADM, also listed a few models to verify the exactness and correctness of
these methods. The exactness, precision, and convergence of both methods are evident in graphical analysis.
These techniques have mechanized steps which can be easily attained by means of Mathematica.
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1. Introduction

The majorities of problems are nonlinear, particularly in the fields of engineering and applied sci-
ences. Volterra integral equations have many applications in applied fields, including fluid mechanics,
biomechanics, demography and the study of viscoelastic materials. Italian mathematician and physicist
Vito Volterra invented them in 1908 in his research of mathematical physics [1].The scientists introduced
some approaches to deals such type of problems and also for calculating analytical solution of these prob-
lems. These method include [2], Variational Iterative method [3], Differential Transform Method [4],
Group Analysis Method [5], and Glowinski in [6] used wavelets to approximate some Volterra integral
equations. In this research article we deliberate some nonlinear VIE. Volterra integral equation have the
general form which is given below;

h
E(h) = F(R) + A / K(h,t)G(E(t))dt (L1)

The function G(£(h)) in (1.1) is nonlinear in &(h) like £2(h), €3(h), €™ in(&(h)) and several others.
The symbol A (lambda), is a parameter in above equation, while K (h,t) is called integration kernel [7].

The limit of integration of the Volterra integral equation is functions of “A ” but not a constant
number similar in the Fredholm integral equations. In eq. (1.1) the kernel K(h,t) will be assuming a
separable kernel.
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2. The Existence of Solutions for Nonlinear Volterra integral Equations

Suppose, we have a general nonlinear Volterra integral equations of the second kind, [7].

h
«mzﬂm+[;mmuamﬁ (2.1)

Following are some explicit conditions for nonlinear Volterra integral equations under which solution
exist;

i. The solution is exist in a < h < 8, if f(h) is bounded and integrable.

ii. The then solution is exist, if f(h) satisfy the Lipchitz condition in the interval («, ) it means that
F(h) = £(y)] < Kl — g,

iii.The solution is exist, when function G(h,t,£(¢)) can be integrated and constrained |G(h,t,&(t)) < k,
ina<h,t<p.

iv. The solution must be occur, but if Lipchitz condition |G(h,t, z) — G(h,t,2') < M|z — 2’|, satisfied by
function G(h,t,£(t)).

If all of the above conditions are exist, then solutions of the nonlinear VIE will also exists.

3. The Optimal Homotopy Asymptotic Method

Scientists and engineers have recently known OHAM'’s applications in linear and nonlinear problems
[8] and [9], since this technique always distort difficult problems into very simple problems that are easy
to solve. This technique provides an instant method for estimating the sequence and high potential
convergence in the scientific and engineering fields to solve nonlinear problems.The method of OHAM
was first of all proposed by Marinca and Herisanu [10].
3.1. OHAM analysis of nonlinear Volterra integral equations.
Many researchers have extensively studied several arithmetic methods for integral equations, such as [11]
and [12]. Let us consider the general nonlinear problem [13].

£g(h) + f(h) + p(q(h)) = 0 (3-1)

£, is called linear operator which is a function, f(h) is also function which is given, u is said to be
nonlinear operator, and ¢(h) is unidentified function.

Conferring to rules of OHAM [13], we will make a Homotopy:

Q x [0,1] — R for (3.1) which satisfy,

(1= p)[£q(h, p) + f(W)] = H(p)[£q(h, p) + f(h) + p(q(h, p))] (3-2)

in eq (3.2) H(p) represents a non-zero auxiliary function for p # 0 and H(0) = 0 obviously, When, p=0
then it holds that

q(h,0) = qo(h) (3.3)
But when p =1 then it holds that
q(h,1) = q(h) (3.4)

Consider the auxiliary function H(p) can be expressed as,
H(p) = Ci(p)’ (3.5)
j=1

In above eqn, Cj,j = 1,2, 3... are constant.
By introducing p = 0 in eq. (3.2), it holds that

£(qo(h)) + f(h) =0 (3.6)

Through the sequence of Taylor, OHAM solution can be considered as follows;

m

Q(hv Ps cj) = QO(h) + Z Qk(h7 cj)pm7 (3‘7)
k=1
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Also, 7 =1,2,3, ...
When p=1, then eq. (3.7) converts

m

q(h. p.c;) = qo(h) + > qi(h,c;) (3.8)
k=1
j=1,2,3,...
When we Substitute eq. (3.8) into eq. (3.2) and equate coefficient of the same power of p, we get,
£(q1(h)) = c1p(qo(h)) (3.9)
m—1
£(gm(h) = gm-1(h)) = cmp(do(h) + Y &;[£(@m—;(h) + pm—;(g0(h) + @1 (h) + .. + gm-1(R)))] (3.10)
j=1

Where, m = 2,3,... and pm(qo(h),q1(h),...,qm)(R)) are the coefficient of p™ in extension of u(gq(h,p))
about p.

wa(h, p,c)) = polao() + Y pm(go(h); 1 (), g (h))p™ (3.11)

The m!" order approximations result are;

m

q"(hycij) = qo(h) + Y qr(h,c;) (3.12)
k=1

j=1,2,..m.
Replacing equation (3.12) into (3.1), we acquire residual equation as;

R(h, ¢;) = £(q™(h, ;) + f(h) + (g™ (h, ¢;)) (3.13)

If R(h,c;) = 0 then ¢™(h,c;), will be an exact solution. Using Least squares method for outcome the
constants, Cj,j = 1,2,3, .. first of all suppose,

b
J(Cy) = / R2(H, C,)dh (3.14)

Where Cj,j7 =1,2,3,... are the constants and it is known as follow;

oJ oJ oJ oJ
— e = .= — = .1
oCc, 0Cy, 0Cs oCp, 0 (8:15)

If we know the values of, C},j = 1,2,3, ..., then solution is obtained.

4. Adomian Decomposition Method (ADM)

This method is actually introduce by Adomian in his latest work [15], that is why it is called Adomian
Decomposition Method or just Decomposition method. It is a stable and efficient method for a variety
of equations, differential and integral equations, linear and nonlinear equations. The method is usually
decomposes the unknown ¢ into addition of uncountable components that can be easily calculate through
various iterations.

This is called the Adomian Polynomial A,,,n >= 0 Adomian provides an appropriate process to find
a reliable representation for all form of nonlinear terms [7].
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4.1.The Adomian Polynomials Calculation [7]

Let suppose the unknown non-linear function £(h) can be denoted by an boundless decomposition series
such as;

§(h) = &(h) (4.1)
n=0

The term G(&(h)), is expressed by as infinite series which is called Adomian Polynomials A,,,
1 d’ L
An = g1 g C iy 78, L, (42)

Where, 9 =1,2,3, ...

A completely nonlinear form of the so-called Adomian polynomials A,, can be deliberate. The general
formula of eq. (4.2) can be used very simply as follow. Assuming that the nonlinear function is, G(£(h))
therefore, by using (4.2), Adomian polynomial is given by;

AO = G(§0)7
Al = ElG,(é.O)a

Ay = £C' () + EC (&), (43)
Az = &G (&) + &16G" (&) + %fi?’Gm(ﬁo)

Here, we can made two very important observations. Firstly, Ay depends only on &y, A; depends only
on & and &1, As depends only on &, & and &3, and son on.Secondly, substituting eq. (4.3) into eq. (4.2)
gives;

G)=Ao+ A1+ A+ As + ...
G(&o) + (&1 + &+ &+ ...)G (&)

(€ 426060+ 206 + 6+ )G (E) + .
+%(£%+3£%€2+3£%€3+6£1€2§3+._.)G///(§O)+...
= Gl&0) + (€~ €0)G(€0) + (€ — €0)°G"(60) + .

The last expansion approved the fact that the sequence in A,,, the polynomial is about the Taylor series
of the function &, not the point in the standard series. The few Adomian polynomials given in (4.3)
above clearly show that the sum of the subscripts of the components of &, in each term of A,, is equal to
n.

5. Numerical Examples

Here we use the Optimal Homotopy asymptotic method and Adomian Decomposition method for
solving some nonlinear Volterra integral equations. Also the exact solutions of the problems are known
to us. We find the solution of the problems by two methods i.e. OHAM and ADM.

Let see which method have the best solution of the given problems.

Model 1. Let consider a nonlinear Volterra integral equation with exact solution £(h) = tan(h) [7].

h
g(h):h+/0 £2(t)dt (5.1)
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Let find out the OHAM Solution;
Used OHAM for finding solution. First we find zero order solution;

—h + &(h) = 0. (5.2)
§o(h) = h. (5.3)
& (h) =—h—hcy +& + c1& — hclfg. (5.4)
Similarly we proceed,
&(h) = —h3cy. (5.5)
&a(h) = —hey + ca€o — heakl + &1 + 161 — 2her o (5.6)
&(h) = —h3cy — h3¢3 + 2h°c2 — hicy. (5.7)
&3(h) = —hes + cs(€o) — hes& + ca(61) — 2heaéo(§r) — h(er)(€F) + &2 + 1 (&) — 2her(§0)62 (5.8)
&(h) = —h® ((2 = 4R%) & + (1 — 4h® +5h") (c}) + c2 + e1 (14 (2 — 4h?) 2) + ¢3) (5.9)

The series solution is given by;

§(h) = &o(h) + & (h) + &2(h) + &5(R). (5.10)
€(h) = —h (=1 + (3h* — 6h*) ¢} + (h* — 4h* + 5h°) ¢} + 2h%co + hPcy (3 + (2 — 4h?) c2) + hPcs) (5.11)
Used least square method for finding the values of Cj,

c1 = —0.3042906945, c; = 0.3071758553, c3 = —0.1105674314

£(h) = h + 0.346426h> + 0.0689734h° + 0.140876h" . (5.12)

Now let solve the same problem by Adomian Decomposition Method

Now we find out the solution by ADM;

h
(h) = h+ / (1) dt. (5.13)
0
f(h) = hy A =1,k(h,t) = 1. For finding solution £(h) by ADM, we have to find &y(h), &1 (h),&2(R), Es(h), ...

Select the function for zeroth component &y(h) as;

&(h) = h. (5.14)
h
ev(h) = /0 2(t)dt. (5.15)
By solving &;(h), we get
& (h) = %hi’). (5.16)
h
&) = [ 26 (5.17)
0

By solving & (h), we get )

&(h) = Bhf’. (5.18)

h
wmzlpmmmnﬁ@w. (5.19)
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By solving &3(h), we get
17 BT

h)=— 5.20
() = s (5.20)
Thus the series solution is;
§(h) =& +& + & +&. (5.21)
h3  2hr>  17R7
hy=h+ —+ — . 5.22
§(h) + 3 + 15 + 315 (5:22)
Table 1: Comparison of Results of the eq. 5.1.
[ b [[ OHAM solution || ADM solution [7] || Exact solution [ v* [
0.0 || 0.0 0.0 0.0 0.0 0.0
0.1 || 0.100347 0.100335 0.100335 0.0000124577 || 2.19585x10~ 11
0.2 || 0.202795 0.20271 0.20271 0.0000852469 || 1.13817x10~8
0.3 || 0.309552 0.309336 0.309336 0.000215666 4.46752 x10~7
0.4 || 0.423108 0.422787 0.422793 0.000315142 6.13048x10~6
0.5 || 0.546559 0.546255 0.546302 0.000256766 0.0000475295
0.6 || 0.684135 0.683879 0.684137 1.81018x 6 0.000258043
0.7 || 0.842018 0.841187 0.842288 0.000270196 0.0011012
0.8 || 1.02952 1.02568 1.02964 0.000123486 0.00396326
0.9 || 1.26065 1.24754 1.26016 0.000494817 0.0126134
1.0 || 1.55628 1.52063 1.55741 0.00113268 0.0367728

From table 1. We can see that the error in the OHAM solution is very less as compared to ADM
solution for the eq.5.1. Thus from table 1. We can say that OHAM have best solution and very near to
exact solution. In the last row of table, we see that OHAM solution is very near approaching to exact
solution of the problem.

(1]

Lo OHAM Solution
ADM Soluticn :
—  Exact Solution b

dlh}

Figure 1: Comparison of OHAM, ADM and the exact solution of eq. 5.1.
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Figure 3: Show orders of solution i.e. zero, first, second and third order of the eq. 5.1.

Model 2. Let consider we have a nonlinear VIE with exact solution £(h) = h [16].

_ h’5 " 3
§(h) =h+ = —/0 te3(t)dt

OHAM Solution;
By using OHAM,the solution of the given problem is determined as;

h5
—h =% +&(h) =0
h5
§O(h) =h+ g
—hb h® 1
&(h) =—h— 5 her — a + & + 1o + §h201§8

(5.23)

(5.24)

(5.25)

(5.26)
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1
£1(h) = ﬁh% +h*)3e, (5.27)
hc 1 3
§2(h) = —hea — TQ + 2o + §h20258 +& + e+ §h201§§§1 (5.28)
15 (54 h)® (50¢1 + (50 + 75h% + 30h% + 3h'2) &2 + 50¢,)
&o(h) = 5500 (5.29)
hoc: 1 3 3

§3(h) = —heg — Td +c36o + §h203§8 + 281 + §h202f§§1 + ihzclfoéf

(5.30)

3
+& +c1és + §h201fg§2

1 3
h) = R® (5 + h*)7 (25 (50 + 75h* + 30h8 + 3h'%) 2 + T'(h)c3
§(h) = 5505h" (5 17)7 (25 (50 + T5h™ 4+ 30R% + 30 %) e + T(h)er + (5.31)
25¢1 (25 + (50 4 75h* + 30h® + 3h'?) ¢2) + 625 (c2 + ¢3))
Where, T'(h) = 625 4 1875h* + 2625h% + 1575h'2 4 450h'6 4 60h20 + 3h2*
Hence, series solution can be written as;
§(h) = &o(h) + &1(h) + &2(h) + &3 (h) (5.32)
h) = 92500h5 + h* + 1250h°5 + h*°
£(h) 312500(6 500h5 4 h* 4 1250h°5 + h* ey +
25h°5 + hA°50¢; + T(h)c2 + 50ca+
(5.33)

215 (5 + h*)? (25T (h)c? + (625 + 1875h* + 2625h° + 1575h'2
4450 4 60h2° 4+ 323+
25¢1 (25 + T(h)CQ) + 625(02 + 63)
While, T'(h) = 50 + 75h* + 30h® + 3h'2
By using Least Square Method, we can calculate values of C;, where, i =1,2,3, ...

c1 = —0.2375324889, ¢, = 0.0684463364, c5 = 0.0657098256
By putting values ofC; in eq. (5.33), we obtained;
£(h) = h + 0.00667582h° — 0.033536R° + 0.03915662% + 0.00329263h'7

—0.0102898h2 — 0.00496917h%5 — 0.00109938h%° — 0.000135092h>3 (5.34)
—9.00613 x 107°n37 — 2.57318 x 10~ "h*!

Now the same problem is done by Adomian decomposition method.

Solution by ADM:
h
€(h)=h+ 2 / (€3 ()t (5.35)
f(h) = h+ %5,)\ = —1,k(h,t) = t. For finding solution &(h)by ADM, we have to find, & (h),&1(h),

Select the function for zeroth component &y(h) as;
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h5
o(h) =h+ = (5.36)
First order problem with its solution.
h
& =- [ g (5.37)
0
h? (16575 + 5525h* 4+ T65h% + 39h12)

&1(h) = — e (5.38)

Second order problem with its solution.

h
&) =- [ ddmamy (5.39)
0

R 1R 214R 566h%1 | 231h%  3p%

€2(h) = 15 + 325 + 27625 + 580125 * 3453125 + 1540625 (5.40)
Third order problem with its solution.
h
éalh) = — / [H3(€2(1)2(1)) + B(€o(B)EX(D)) Ydt (5.41)
£3(h) = _8h13 B 464n'7 B 9304h2! B 73744h%° B 1130088h29_
S DY 27625 1740375 72515625 9112796875 (5.42)
14490704h33 691224137 48h41 ’
1503611484375 1574711328125 5369078125
Thus the series solution is;
§h) =% +& +&+& (5.43)
€(h) = h— 263h17 B 7606h21 B 68893h2° B 1112343n2° B
27625 1740375 72515625 9112796875 (5.44)
14490704h33 691224437 48p*
1503611484375 1574711328125 5369078125
Table 2: Comparison of Results of the eq. 5.23
’ h H OHAM solution H ADM solution H Exact solution H y* H **
0.0 || 0.0 0.0 0.0 0.0 0.0
0.1 | 0.1 0.1 0.1 6.67247x1078 || 0.0
0.2 || 0.200002 0.200001 0.2 2.11912x1076 || 1.249x10~ 14
0.3 || 0.300016 0.300015 0.3 0.0000155684 1.23404x10—-11
0.4 || 0.40006 0.400005 04 0.0000598324 1.65491x10—9
0.5 || 0.500148 0.500147 0.5 0.000147919 7.47471x1078
0.6 || 0.600233 0.599998 0.6 0.000232604 1.7101x1076
0.7 || 0.700149 0.699975 0.7 0.000149299 0.0000247197
0.8 || 0.799798 0.799742 0.8 0.000202267 0.000258473
0.9 || 0.899913 0.89786 0.9 0.0000871239 || 0.00214018
1.0 || 0.999086 0.985027 1.0 0.000913713 0.0149729

From table 2. We can see that the error in the OHAM solution is very less as compared to ADM
solution for the eq. 5.23. Thus from table 2. We can say that OHAM have best solution and very near
to exact solution. In the last row of table, it is found that OHAM solution is very near to approaching
the exact solution of the problem.
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OHAM Solution
ADM Solution
Exact Scluticn

Figure 4: Comparison of OHAM, ADM and the exact solution
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Model 3. Consider a nonlinear Volterra integral equation with exact solution {(h) = tanh(h) [7].

h
£(h) = h—/o E2(t)dt (5.45)

OHAM Solution:

The solution of the problem can be obtained as;

§o(h) =h (5.46)
So(h) =h (5.47)
€1(h) = —h — her + &o(h) + c1é&o(h) + her &5 (h) (5.48)
&i(h) = ke (5.49)
&2(h) = —hecg + 2o + heakl + & + 1€ + 2her&o&y (5.50)
o) = 517 (<2 4+ ¢ (24 12)) (der + (44 12) & + des) (5.51)
&5(h) = —hes + e3€o + hes&l + 2t + 2heaoés + herél + & + e1&o + 2her §oéo (5.52)
&(h) =h* ((2+4h%) & + (1 +4R% +5h*) ¢} + co + c1 (1+ (24 4h%) ¢2) + ¢3) (5.53)

Hence, series solution can be written as;
§(h) = &o(h) + &i(h) + &2(h) + &3(h) (5.54)

That is;

€(h) = h+3 (h3 +2h°) el + (h® + 4h° + 507) ¢ + 2h3co + h3eq (3 + (2+4h?) c2) + hPc;  (5.55)

We can calculate values of C;, where ¢ = 1,2,3.... using (LSM). ¢; = —0.1762025556,
co = 0.0630065766, cg = 0.0059538249

By putting values of C; in eq. (5.55), we obtained;
¢(h) = h —0.331173Rh% + 0.119994h° — 0.0273531h7 (5.56)

Now the same problem is done by Adomian decomposition method.

Solution by ADM:

&h)=h— / E2(t)dt (5.57)
0
F(h) = hA = —1,k(h,t) = 1.
For finding solution £(h) by ADM, we have to find, {y(h), &1 (h), &2(h), E5(R), ......
Select the function for zeroth component &;(h)as;

éolh) = h (5.58)
First order problem with solution.
h
&) =- [ G (5.59)
0
3
§i1(h) = M (5.60)

3
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Second order problem with solution.

h
&) = - [ 26O (5.61)
0
2h5
fh) = 1 (562)
Third order problem with solution.
h
&) = - [ Rla0&0} + &l (5.63
0
1707
h)= ——— 5.64
o(h) = ——2 (564
Thus the series solution is:
§(h) =& +& + & +¢&3 (5.65)
h®  2nd  17AT
hy=h— —+4+ — — —— :
§(h) =h 3 + 15 315 (5.66)
Table 3: Comparison of Results of the eq. 5.45
[ b ]| OHAM solution | ADM solution [7] || Exact solution || y* [ ‘
0.0 || 0.0 0.0 0.0 0.0 0.0
0.1 || 0.09967 0.099668 0.099668 2.02945x1076 || 2.17812x 10711
0.2 || 0.197389 0.197375 0.197375 0.0000133427 1.10186x 108
0.3 || 0.291344 0.291312 0.291313 0.0000313161 4.15309x10-7
0.4 || 0.379989 0.379944 0.379949 0.0000398796 5.38384 %106
0.5 || 0.462139 0.462078 0.462117 0.0000223145 0.0000387842
0.6 || 0.537032 0.536857 0.53705 0.0000179501 0.000192333
0.7 || 0.604322 0.603631 0.604368 0.0000454339 0.000736295
0.8 || 0.664023 0.661706 0.664037 0.0000141781 0.00233073
0.9 || 0.716347 0.709919 0.716298 0.0000492022 0.00637872
1.0 || 0.761468 0.746032 0.761594 0.000126506 0.0155624

From table 3. We can see that the error in the OHAM solution is very less as compared to ADM
solution for the eq.5.45. Thus from table 3. We can say that OHAM have best solution and very near
to exact solution. In the last row of table, we see that OHAM solution is very near approaching to exact
solution of the problem.
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Figure 7: Comparison of OHAM, ADM and the exact solution of eq. 5.45.
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Figure 9: Shows orders of solutions of equation. 5.45.
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6. Results and Discussion

In this paper, we used application of OHAM by resolving three models of nonlinear Volterra integral
equations of the second kind. This method was tested on three dissimilar examples with the comparison
of Adomian Decomposition method (ADM) and exact solution. This method (OHAM) proved to be
a precise and efficient technique for judgment estimated solutions for the nonlinear Volterra integral
equations of the second kind. Applying OHAM is not difficult at all. It was demonstrated that the
OHAM can provide adequate accuracy and convergence with just a few terms. OHAM has the potential
to be a useful tool for resolving intensely nonlinear models. OHAM converges quickly and flawlessly to
the precise solution. Mathematica 9 generates all graphs and computational work.

7. Conclusion

In this paper we calculated the solution of the nonlinear Volterra integral equations of the second kind
by OHAM and ADM. Form tablel, table 2 and table 3, we concluded that OHAM have less error and
quick approach to the exact solution of the problems as compared to ADM solution. We also concluded
from figure 1, figure 4 and figure 7 that OHAM have more convergence to the exact solution as compared
to ADM solution. Also figure 2, figure 5 and figure 8 shows the residual solutions of the given problems.
From figure 3, figure 6 and figure 9, we concluded that OHAM have very quick convergence and good
efficiency as compared to other analytical methods such as ADM. Thus OHAM is an efficient, quick and
beneficial method for nonlinear Volterra integral equations as compared to ADM.
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