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Comparative numerical study of the second-order boundary value problems

A. Y. Hamza, Y. Massoun, C. Cesarano, P. Agrawal*

ABSTRACT: In this paper, we present a comprehensive analytical investigation of second-order boundary
value problems using the semi-analytical Homotopy Analysis Method (HAM). A key aspect of our approach
involves determining the optimal value of the convergence control parameter / by analyzing the residual error
associated with the approximate solution. This enables us to enhance both the accuracy and convergence
of the method. To illustrate the applicability and effectiveness of HAM, several representative examples are
provided, each demonstrating the method’s flexibility and precision. Furthermore, a comparative study is
conducted in which the results obtained via HAM are evaluated against those produced by other established
numerical techniques, such as the B-spline method and finite difference approaches. The comparison clearly
demonstrates the superior accuracy and robustness of HAM in solving second-order boundary value problems,
thereby affirming its potential as a reliable tool for a wide range of applications, including higher-order and
fractional differential equations.

Key Words: Homotopy Analysis Method (HAM), second-order boundary value problems, conver-
gence control parameter, residual error, semi-analytical solution.
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1. Introduction

In this paper, we study a class of second-order boundary value problems (BVPs) of the general form:

{ u<2>(x:) = f(z,u,v/), a<z<b, (1.1)

u(a) = a, u(b) = 3,

where f is a continuous function defined on the interval [a,b], and «, 8 are real constants representing
the prescribed boundary values.

Boundary value problems of this type play a critical role in modeling various physical, chemical,
electrical, and engineering phenomena. These problems, particularly two-point BVPs, naturally arise in
scenarios such as heat transfer, beam deflection, electrostatics, and fluid dynamics. Due to the prevalence
and importance of such problems, a wide range of analytical and numerical techniques have been developed
for their solution.

Among the classical and modern methods used to address second-order BVPs are the B-spline cubic
method [2,3,4], the hybrid cubic B-spline method [5], the variational iteration method [6], and the sinc-
collocation method [7]. Furthermore, the two-step method and the Runge-Kutta-Nystrém method have
been proposed and studied extensively by Athraa Abdulsalam [8]. While these techniques have proven
effective for many linear and weakly nonlinear problems, they often encounter limitations when applied
to strongly nonlinear systems, particularly with respect to convergence, stability, and accuracy.

Recent advances in polynomial-based approaches, such as truncated polynomial expansions [9], and
generalized polynomial families (such as Apostol-type Frobenius—Euler polynomials [10] and discrete
orthogonal U-Bernoulli Korobov-type polynomials [11]), have provided new tools to enhance accuracy
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and adaptability. Similarly, fractional calculus techniques, including those applied to epidemiological
models [12] and nonlinear field equations [13], demonstrate the potential for extending classical BVP
solvers to handle complex, memory-dependent, or singularly perturbed systems. However, a systematic
comparison of these methods in the context of second-order BVPs remains an open area of investigation.
We halso in numerical techniques for solving second-order boundary value problems have demonstrated
significant improvements in accuracy and efficiency. Liu and Xu [14] established L — 2 error estimates for
the unsymmetric RBF collocation method in elliptic problems, providing a solid theoretical foundation
for convergence analysis. Igbal et al. [15] proposed a modified cubic B-spline basis with a free parameter,
successfully applying it to various engineering problems. Similarly, Siraj-ul-Islam et al. [16] employed a
collocation approach based on Haar wavelets, showcasing its effectiveness for a wide range of second-order
boundary value problems.

The modeling of second-order boundary value problems is of central importance in scientific inquiry,
providing a robust mathematical framework for describing complex dynamic systems. These models are
typically governed by differential equations that encapsulate key relationships within a given system,
thereby enabling deeper insights into the underlying physical phenomena. The second-order nature of
these problems reflects the reality of many physical systems more accurately than first-order models,
particularly in situations involving acceleration, curvature, or gradients of physical quantities.

In the context of scientific modeling, second-order BVPs form a crucial bridge between theoretical
constructs and empirical data. Applications range from thermal conduction and elasticity to chemical
reaction modeling and atmospheric dynamics. Their elegance lies in their ability to express a system’s
evolution while adhering to specified constraints at the boundaries, thereby capturing the full spectrum
of system behavior within a defined domain. As such, the development of reliable and flexible solution
techniques for these problems is not merely of academic interest but is fundamental to technological
advancement and innovation.

In 1992, Shijun Liao introduced an innovative analytical approach known as the Homotopy Analysis
Method (HAM) [17]. This method has since been successfully applied to a wide variety of nonlinear
differential equations across numerous scientific and engineering fields. One of the key features of HAM
is its ability to provide a convergent series solution that is independent of small parameters, which often
limit the applicability of traditional perturbation methods. Furthermore, HAM introduces an auxiliary
parameter, denoted by £, that allows for the explicit control of the convergence rate and region of the
solution series.

Liao and others have demonstrated the effectiveness and flexibility of HAM through its application to
numerous nonlinear problems, including but not limited to ordinary differential equations (ODEs), partial
differential equations (PDEs), and integral equations [18,19]. However, a challenge arises when applying
HAM to BVPs, as the method typically requires initial conditions rather than boundary conditions.
Specifically, HAM necessitates knowledge of the function and its derivative at the initial point, whereas
boundary value problems impose constraints at two distinct points.

To address this discrepancy, we propose a modified approach for applying HAM to second-order BVPs.
Consider the classical boundary condition:

u(@)=a, ulb) =B,

To apply HAM, we require an additional condition «'(a) = o’ that is not initially given. Therefore, our
approach begins by introducing the transformation:

which converts the second-order differential equation (1.1) into a first-order system:

u () = uz(2),
{ / f( (1'2)

up(x) = f(@, w1 (x), us(2)),

with initial conditions given by:
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In this formulation, o' is treated as an unknown parameter. We apply the HAM with a fixed auxiliary
parameter i = —1, which yields a series solution depending on o’. Then, by enforcing the boundary
condition u(b) = 3, we iteratively determine the correct value of o’ that ensures the series solution
satisfies both boundary conditions. This effectively transforms the BVP into an initial value problem
(IVP) suitable for HAM, while preserving the original boundary constraints through a shooting-like
strategy.

This modification extends the applicability of HAM to a broader class of problems, including those
with strong nonlinearities that challenge conventional numerical solvers. The approach maintains the key
advantages of HAM—namely, analytical tractability and convergence control—while enabling its use in
scenarios previously inaccessible due to boundary condition incompatibilities.

The remainder of this paper is organized as follows. In Section 2, we provide a detailed description
of the modified HAM technique and the construction of the homotopy. Section 3 presents illustrative
examples to demonstrate the accuracy and efficiency of the proposed method. Finally, conclusions and
directions for future work are outlined in Section 4.

2. Description of method

In this section, we will describe HAM, using the transformation:
uD(2) = w1 (z), i=0,1 (2.1)

we rewrite the second-order initial value problem (1.1) as the system of ordinary differential equations:

up(z) = wuz(2)
{UIQ(I) = f(z,u1(z),u2(z)) (2.2)

with the initial conditions
ui(a) = uwVY(a) i=1,2 (2.3)

let consider the following equation
Ni[ui(2)] = gi(x),  i=1,2 (2.4)

where ; is the nonlinear operators, u;(z) are unknown functions and g;(x) is a known function.
The zeroth-order deformation equation of HAM constructed by Liao [17],[18], and [19] is:

(1= q)L[pi(z,q) — yio(x)] = hiqH;(x){N;[pi (7, q) — gs(z)]}, (2.5)

where £;,7 = 1,2 is the auxiliary linear operator, g € [0, 1], ii; # 0 is the convergence-control parameter,
and the auxiliary function H;(x).
Obviously, when ¢ = 0 and ¢ = 1 one has:

¢i(2,0) = u;o(x) and ¢i(x,1) = U;(x), i=1,2, (2.6)

thus as ¢ increases from 0 to 1, the solution ¢;(x,¢) varies from the initial guesses wu;o(z) to the exact
solutions u;(x).
We expand in Taylor series ¢;(z, ¢) with respect to g:

+oo
(bi(xa q) = ui,(](m) + Z ui,m(x)qmv (27)
m=1
where 1 0m iz )
m i\ 4
Ujm () = ml dgm lg=0, (2.8)

if £, u;0(z), and the auxiliary function are so properly chosen, the series solutions (2.7) converge at
q = 1, and we have

+oo
$i(2,1) = ui0(z) + Y thim(x),
i=1
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the optimal value of #; is determined using the residual error

A(h) = /N(un(x))stc

which must be of the solutions of (1.1).
The mth-order deformation equation is

S[Ui,m(fﬂ) - Xmui,m—l(x)] = hiHi(x)Ri,m(ﬁi,m—l);

where e 610z, )]
1 9™ \Nifei(z, g
Rim 7i m— = :
s ( , 1) (mfl)! 3qm—1
and
. 0, m<1
Xm =911 m>1

3. Numerical Simulations and Comparative Analysis

(2.10)

(2.11)

In this section, we implement the Homotopy Analysis Method (HAM) to solve a series of problems.
To evaluate its efficacy, we compare the numerical results obtained from HAM with those generated by
the B-spline method [1], analyzing key metrics such as convergence rate, computational efficiency, and

residual error.

Example 3.1 Let us consider the following two-order boundary value problem

"

u () —u(z) = -1 -1, 0<z<1
with:
u(0)=0, u(l)=0
The exact solution is
u(z) = 2(1 —e” 1)
Using (2.1) we reformulate (3.1) as the following system.:
up(z) = up(x)
uh(x) = ug(z) — e® (35 + 122 + 22?)

with the initial conditions

We choose the initial guesses as
U170(0) =0 UQVO(O) =«
and the linear operator

£[¢z(x>Q)] - T or i1=1,2

Furthermore, the operators N; corresponding to equations (3.3) are defined as:

Mg (2, q), b1 (x,q)] = Z2HED — gy (a),
‘ﬁz[%(w,q)?qﬁl(x,q)] = W _¢51($,q)—|—ew_1 +1.

The zeroth-order deformation equation is
(1 — @) L¢i(x,q) — uio(x)] = higH (x){Mi[¢i (2, q) — g:(2)]}, i1=1,2,
and the mth-order deformation equation is

Q[Ui,m(x) - Xmui,m—l(m)] = hiRi,m(ﬁi,m—l)

(3.1)

(3.2)

(3.4)

(3.5)
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with the initial conditions

ulvo(()) =0 ’LL270(0) =1 (38)
where
Ri(Wim—1) = v 1(2) = timo1(),
/ ] 2 (3'9)
Rg’m(7i7m,1) = uQ’mfl(x) — U1, m—1(x) + €*(35 + 12z + 22°)
Now, the solution of the mth-order deformation Eq. (3.7) for m > 1 becomes
1
Ui () = XmWim—1 () + B / Ri(Wimr)dz,  i=1,2 (3.10)
0

According to the homotopy analysis method with h = —1 and ¢ = 1, using the boundary condition 3.2 at
=1, we get:
o =~ 0.632120546609618...

HAM solution is written in the form
u(z) =Y 2gui(z) =uo(x) + u(x) + uz(z) + ...
= 3.48303 — 3.48303e” + 4.115152 + 1.3736422 + 0.3965652> + 0.083813z* + 0.013697z° + ...

To determine the valid range of the convergence control parameter h, we plot the values of uy(0) and
up(0) as functions of h. This graphical representation is commonly referred to as the h-curve, which is
tllustrated in Figure 1.

In Table 1, we present the numerical results obtained using the Homotopy Analysis Method (HAM),
along with the corresponding absolute errors. These results are compared with those derived from the
B-spline method as reported in [1]. It is evident from the comparison that the HAM solution exhibits
better agreement with the exact solution than the B-spline method.

Furthermore, Table 2 provides a comparative analysis of the absolute errors obtained by several numer-
ical techniques. Specifically, we compare the performance of HAM with the New Cubic B-Spline method
[1], the Finite Difference Method (FDM) [1], the Finite Element Method (FEM) [1], the Finite Volume
Method (FVM) [1], and the B-Spline Interpolation method (BSI) [1].

Table 1 HAM approximation with a comparison of the obtained error with B-spline method

x | Fzacte solution | HAM solution | Error(HAM) | Error(B-spline method) [1]
0 [0 —4.623 x 1071° [ 4623 x 107 | 0
0.1 | 0.059343034 0.059343032 1.285 x 1072 | 8.095 x 1078
0.2 | 0.110134207 0.110134204 2.705 x 10~? 1.699 x 1077
0.3 | 0.151024408 0.151024404 4.275 x 107° 2.447 x 1077
0.4 | 0.180475345 0.180475339 6.009 x 10~° 3.030 x 10~ 7
0.5 | 0.196734670 0.196734662 7.927 x 107° 3.398 x 1077
0.6 | 0.197807972 0.197807962 1.005 x 10~% | 3.495 x 107
0.7 | 0.181427245 0.422891026 1.239 x 1078 3.254 x 1077
0.8 | 0.145015397 0.356056460 1.497 x 10=% | 2.600 x 107
0.9 | 0.085646323 0.221281999 1.783 x 1078 1.392 x 107
1|1 —0.00014345 2.098 x 1078 | 0
Table 2 A comparison of maximum error for different value of N
N FDM FEM FVM B-spline HAM
10 824 x107° [ 6.35x107° | 3.18 x 107° | 3.50 x 10~ 7
100 | 831 x 1077 | 6.36 x 1077 | 3.18 x 1077 | 3.74 x 10711 | 1.98 x 10~2!
1000 | 8.31 x 1072 | 6.39 x 1072 | 3.18 x 1072 | 6.76 x 10~
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Example 3.2 Now we consider the following problem :

1"

u (x) —u(z) = 2e*1, 0<z<1, (3.11)
with the boundary conditions:
w0)=0 wu(l)=1, (3.12)
the exact solution :
u(z) = xze® !
Using (2.1), we obtain:
ui(z) = up(z)
{ uh(x) = wup(z)+2e*7L, (3.13)
with the initial conditions
u1(0) =1 wus(0) =« (3.14)

Applying HAM with h = —1, and using the boundary conditions at x = 1, we get:
a ~ 0.36787945048713....

Table3 show that the HAM solution coincide with the exact solution more than B-spline method with
h =1/10. In table 4 a comparison wth the maximum error obtained by HAM and B-spline, LSM, FDM,
BSI methods.

Table 3 Comparison between HAM and B-Spline Solutions.

z | Ezacte solution | HAM solution Absolute error HAM | B-spline [1]
010 L13173 x 1071 [ 1.13173 x 1013 0

0.1 | 0.040656966 0.040656966 9.329 x 10710 2.281 x 1078
0.2 | 0.089865849 0.089865794 1.874 x 1079 5.619 x 1078
0.3 | 0.148975671 0.148975593 2.836 x 1079 8.063 x 1078
0.4 | 0.219524751 0.219524658 3.826 x 1079 9.735 x 1078
0.5 | 0.303265435 0.303265334 4.857 x 107° 1.052 x 1077
0.6 | 0.402192130 0.402192033 5.947 x 1077 1.032 x 1077
0.7 | 0.518572844 0.518572761 7.122 x 1079 8.983 x 1078
0.8 | 0.654984666 0.654984610 8.379 x 1079 6.398 x 1078
0.9 | 0.814353695 0.814353685 9.540 x 1079 1.887 x 1078
1|1 1 0 0

Table 4 a comparison of mazimum error between HAM and LSM, FDM, BSI and B-spline method

N LSM FDM BSI B-spline HAM
10 | 366 x1077 [ 266 x 107% [ 266 x 1072 | 1.05 x 10~7 | 3.082 x 10~ 1®
100 | 4.01 x 1071 | 268 x 1076 | 2.68 x 1076 | 1.28 x 10~ | 3.082 x 10~15

3.1. Concluding remarks

In this paper, the Homotopy Analysis Method (HAM) has been successfully applied to solve a second-
order boundary value problem. The results demonstrate that HAM is not only efficient but also highly
applicable for this class of differential equations.

Our analysis includes a graphical investigation which highlights the significant role played by the
convergence control parameter i. The behavior of the solution is shown to depend sensitively on the
choice of this parameter.

We have also performed a comparative study between the results obtained using HAM and those
derived from the B-spline method. The comparison indicates that HAM provides more accurate approx-
imations to the exact solution.

Based on these findings, we conclude that HAM is an effective and reliable analytical technique.
Moreover, its flexibility suggests that it can be extended to solve boundary value problems of higher
order, as well as those involving fractional differential equations.
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Figure 1: The hi—curve of uj,(0), and uj (0) for (3.1)
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Figure 2: The HAM solution (left), and exact solution (right) for (3.1)
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