

(3s.) **v. 2025 (43)** : 1–14. ISSN-0037-8712 doi:10.5269/bspm.77963

Intutionistic Fuzzy &G-Metric Space

Pooja Dhawan¹*, Aaina Singla² and Izhar Uddin³

ABSTRACT: In order to extend the concept of an Intutionistic Fuzzy metric space (\widehat{IFMS}) , the prospect of an Intutionistic fuzzy \mathfrak{FG} - metric space is presented in this article. Some new concepts in an Intutionistic fuzzy \mathfrak{FG} - metric space are discussed along with some characteristics and various features. A few related results are proved in the proposed framework.

Key Words: t-norm, fuzzy metric, intutionistic fuzzy &G-metric space.

Contents

1 Introduction and Elementary Interpretations

1

2 Results and Discussion

3

1. Introduction and Elementary Interpretations

After Zadeh [19] presented the idea of fuzzy sets, numerous authors explored fuzzy set notions in various fields, including Kramosil and Michalek's [13] fuzzy metric space.

Definition 1.1 [19] Let $\bigotimes \neq \emptyset$. A function $\varphi : \bigotimes \times \bigotimes \to \mathbb{R}$ is said to be metric if it satisfies the following axioms $\forall \rho, \varrho, \zeta \in \bigotimes$:

- 1. Non-negativity: $\varphi(\rho, \rho) \geq 0$;
- 2. Symmetry: $\varphi(\rho, \varrho) = \varphi(\varrho, \rho)$;
- 3. Triangle Inequality: $\varphi(\rho,\rho) \leq \varphi(\rho,\zeta) + \varphi(\zeta,\rho)$;
- 4. Identity of Indiscernibles: $\varphi(\rho, \varrho) = 0$ if and only if $\rho = \varrho$.

Definition 1.2 [16] A binary operation \circledast : $[0,1] \times [0,1] \to [0,1]$ is a continuous t- norms (CTN) if it meets the requirements listed below:

- 1. \circledast is associative and commutative;
- 2. \circledast is continuous;
- 3. $\rho \circledast 1 = \rho \ \forall \ \rho \in [0, 1];$
- 4. $\rho \circledast \varrho \leq \zeta \circledast \ddot{d}$ whenever $\rho \leq \zeta$ and $\varrho \leq \ddot{d} \forall \rho, \varrho, \zeta, \ddot{d} \in [0, 1]$.

The concept of Fuzzy Metric Space (\widehat{FMS}) was examined by Kramosil and Michalek [13] in 1975 and was defined as follows:

Definition 1.3 [13] Let $\bigotimes \neq \emptyset$. A triplet $(\bigotimes, \xi, \circledast)$ is a \widehat{FMS} if \circledast is a \widehat{CTN} and ξ is a fuzzy set $\widehat{(FS)}$ on $\bigotimes \times \bigotimes \times [0, \infty) \to [0, 1]$ that satisfying the following conditions:

- 1. $\xi(\rho, \varrho, \check{t}) = 0, \forall \rho, \varrho \in \bigotimes \text{ and } \check{t} > 0;$
- 2. $\xi(\rho, \rho, \check{t}) = 1 \ \forall \ \check{t} > 0 \ iff \ \rho = \rho$;

2010 Mathematics Subject Classification: 47H10, 54H25. Submitted July 21, 2025. Published December 05, 2025

^{*} Corresponding author.

- 3. $\xi(\rho, \varrho, \check{t}) = \xi(\varrho, \rho, \check{t}) \ \forall \ \rho, \varrho \in \bigotimes \ and \ \check{t} > 0;$
- 4. $\xi(\rho,\zeta,\check{t}+\check{s}) \geq \xi(\rho,\varrho,\check{t}) \circledast \xi(\varrho,\zeta,\check{s}) \ \forall \ \rho,\varrho,\zeta \in \bigotimes \& \check{t},\check{s} > 0;$
- 5. $\xi(\rho,\varrho,\cdot):(0,\infty)\to[0,1]$ is left-continuous $\forall \rho,\varrho\in \bigotimes$.

The \widehat{FMS} concept of Kramosil and Michalek [13] was altered by George and Veeramani [7] in 1994. They acquired a Hausdorff and first countable topology on the modified \widehat{FMS} .

Definition 1.4 [7] A \widehat{FMS} is an ordered triplet $(\bigotimes, \xi, \circledast)$ such that: $\bigotimes \neq \emptyset$, \circledast is a \widehat{CTN} , and ξ is a \widehat{FS} on $\bigotimes \times \bigotimes \times (0, \infty) \to [0, 1]$ satisfying the following conditions:

- 1. $\xi(\rho, \varrho, \check{t}) > 0;$
- 2. $\xi(\rho, \varrho, \check{t}) = 1$ iff $\rho = \varrho$;
- 3. $\xi(\rho, \varrho, \check{t}) = \xi(\varrho, \rho, t);$
- 4. $\xi(\rho, \zeta, \check{t} + \check{s}) \ge \xi(\rho, \varrho, \check{t}) \circledast \xi(\varrho, \zeta, \check{s});$
- 5. $\xi(\rho,\varrho,\cdot):(0,\infty)\to[0,1]$ is continuous for all $\rho,\varrho,\zeta\in\bigotimes$ and $\check{s},\check{t}>0$.

Then ξ is called a fuzzy metric $\widehat{(FM)}$ on \bigotimes .

Remark 1.1 [7] In \widehat{FMS} (\bigotimes , ξ , \circledast), George and Veeramani considered the following:

- 1. If $\xi(\rho,\varrho,\check{t}) > 1 \bar{q} \ \forall \ \rho,\varrho \in \bigotimes$, $\check{t} > 0$, $0 < \bar{q} < 1$, We can locate a \check{t}_0 , $0 < \check{t}_0 < \check{t}$, such that $\xi(\rho,\varrho,\check{t}_0) > 1 \bar{q}$.
- 2. For any $\bar{q}_1 > \bar{q}_2$ in (0,1), we can locate $\bar{q}_3 \in (0,1)$, such that $\bar{q}_1 \circledast \bar{q}_3 \geq \bar{q}_2$, and for any $\bar{q}_4 \in (0,1)$, we can locate $\bar{q}_5 \in (0,1)$, such that $\bar{q}_5 \circledast \bar{q}_5 \geq \bar{q}_4$.

The outcomes in this field have been examined by numerous researchers ([8], [9], [18]). Using this notion, Atanassov [1] recommended the notion of an intuitionistic fuzzy sets (\widehat{IFS}) in 2004 as follows:

Definition 1.5 [1] Let \circ be a universe. An \widehat{IFS} \wp on \circ can be defined as follows:

$$\wp = \{ \langle \mu_{\wp}(\rho), \gamma_{\wp}(\rho) \rangle : \rho \in \mathcal{S} \}$$

where

$$\mu_{\wp}: \overset{,}{\mho} \rightarrow [0,1] \quad and \quad \gamma_{\wp}: \overset{,}{\mho} \rightarrow [0,1]$$

such that

$$0 \le \mu_{\wp}(\rho) + \gamma_{\wp}(\rho) \le 1 \quad \text{for any } \rho \in \mho.$$

Here, $\mu_{\wp}(\rho)$ and $\gamma_{\wp}(\rho)$ represent the degree of membership and degree of non-membership of the element ρ , respectively.

Next, Park [14] expanded the notion of \widehat{FMS} to \widehat{IFMS} . Park used \widehat{CTN} [16] and continuous t-conorms $\widehat{(CTCN)}$ [16] to describe this idea.

Definition 1.6 [16] A binary operation \blacktriangle : $[0,1] \times [0,1] \rightarrow [0,1]$ is called a \widetilde{CTCN} if \blacktriangle meets the requirements listed below:

1.
$$\rho \blacktriangle 0 = \rho, \forall \rho \in [0, 1];$$

- 2. $\rho \blacktriangle \varrho = \varrho \blacktriangle \rho \text{ and } \rho \blacktriangle (\varrho \blacktriangle \zeta) = (\rho \blacktriangle \varrho) \blacktriangle \zeta, \forall \rho, \varrho, \zeta \in [0, 1];$
- 3. If $\rho \leq \zeta$ and $\varrho \leq \ddot{d}$, then $\rho \blacktriangle \varrho \leq \zeta \blacktriangle \ddot{d}$, $\forall \rho, \varrho, \zeta, \ddot{d} \in [0, 1]$;
- 4. \blacktriangle is continuous.

Remark 1.2 /14/

- 1. For any $\bar{q}_1, \bar{q}_2 \in (0,1)$ with $\bar{q}_1 > \bar{q}_2, \exists \bar{q}_3, \bar{q}_4 \in (0,1)$ such that $\bar{q}_1 \circledast \bar{q}_3 \geq \bar{q}_2 \& \bar{q}_1 \geq \bar{q}_4 \blacktriangle \bar{q}_2$.
- 2. For any $\bar{q}_5 \in (0,1)$, $\exists \bar{q}_6, \bar{q}_7 \in (0,1)$ such that $\bar{q}_6 \circledast \bar{q}_6 \geq \bar{q}_5 \& \bar{q}_7 \blacktriangle \bar{q}_7 \leq \bar{q}_5$.

Definition 1.7 [14] Let ξ and N be fuzzy sets on $\bigotimes^2 \times (0, \infty)$, and let \circledast be a \widehat{CTN} and \blacktriangle be a \widehat{CTCN} . If ξ and N satisfy the following conditions for all $\rho, \varrho, \zeta \in \bigotimes$, $\check{s}, \check{t} > 0$, we say that (ξ, N) is an intuitionistic

```
fuzzy metric (IFM) on \bigotimes:

(IFM1) \ \xi(\rho, \varrho, \check{t}) + N(\rho, \varrho, \check{t}) \le 1;

(IFM2) \ \xi(\rho, \varrho, \check{t}) > 0;

(IFM3) \ \xi(\rho, \varrho, \check{t}) = 1 \ if \ and \ only \ if \ \rho = \varrho \ ;

(IFM4) \ \xi(\rho, \varrho, \check{t}) = \xi(\varrho, \rho, \check{t});

(IFM5) \ \xi(\rho, \varrho, \check{t}) \circledast \xi(\varrho, \zeta, \check{s}) \le \xi(\rho, \zeta, \check{t} + \check{s});

(IFM6) \ \xi(\rho, \varrho, \cdot) : (0, \infty) \to (0, 1] \ is \ continuous;

(IFM7) \ N(\rho, \varrho, \check{t}) < 1;

(IFM8) \ N(\rho, \varrho, \check{t}) = 0 \ if \ and \ only \ if \ \rho = \varrho \ ;

(IFM9) \ N(\rho, \varrho, \check{t}) = N(\varrho, \rho, \check{t});

(IFM10) \ N(\rho, \varrho, \check{t}) \blacktriangle N(\varrho, \zeta, \check{s}) \ge N(\rho, \zeta, \check{t} + \check{s});

(IFM11) \ N(\rho, \varrho, \cdot) : (0, \infty) \to (0, 1] \ is \ continuous.
```

The five- tuple $(\bigotimes, \xi, N, \circledast, \blacktriangle)$ is called \widehat{IFMS} . The functions $\xi(\rho, \varrho, \check{t})$ and $N(\rho, \varrho, \check{t})$ express the degree of nearness and the degree of nonnearness between ρ and ϱ with respect to \check{t} , respectively.

Over the past few decades, numerous intriguing extensions of metric spaces including fuzzy metric spaces have been created and researched. (e.g. b-metric by Czerwik [2], S-metric by Sedghi et al. [17], \mathfrak{F} -metric by Jleli and Samet [11], Modified intuitionistic fuzzy metric spaces by Saadati et al. [15], Neutrosophic metric spaces by M.Kirišci and N. Šimšek [12]). Many other authors have investigated numerous results in various extended fuzzy metric space (eg. [4], [6], [5], [10]). The authors employed a family \mathfrak{F} of real-valued functions in \mathfrak{F} -metric space (Jleli and Samet [11]) that had the following properties:

Given $g:(0,\infty)\to\mathbb{R}$ that satisfies the following conditions:

- ($\mathfrak{F}1$) g is non-decreasing on $(0,\infty)$;
- (§2) for every sequence $\{\rho_n\} \subset (0,\infty)$, $\lim_{n\to\infty} \rho_n = 0 \iff \lim_{n\to\infty} g(\rho_n) = -\infty$.

Using the above family, Das *et al.* introduced fuzzy \mathfrak{F} -metric space [3], as a generalization of the George and Veeramani-type fuzzy metric space [7] by involving some special kind of functions.

Let \mathfrak{F} denote the set of all functions $f:[0,1]\to[0,1]$ that satisfy the following conditions:

- $(\mathfrak{F}1)$ f is strictly increasing on [0,1);
- (§2) for every sequence $\{\mathsf{t}_n\} \subset [0,1]$, $\lim_{n \to \infty} \mathsf{t}_n = 1 \iff \lim_{n \to \infty} f(\mathsf{t}_n) = 1$.

In this work, a new generalization known as Intutionistic fuzzy \mathfrak{FG} - metric space is introduced.

2. Results and Discussion

Definition 2.1 Let \mathfrak{G} denote the set of all functions $g:[0,1]\to[0,1]$ that satisfy the following conditions:

- $(\mathfrak{G}1)$ g is strictly decreasing on (0,1];
- $(\mathfrak{G}2) \quad \textit{For every sequence } \{\, \boldsymbol{t}_n \} \ \textit{in } [0,1], \lim_{n \to \infty} \boldsymbol{t}_n = 1 \implies \lim_{n \to \infty} g(\boldsymbol{t}_n) = 0.$

Example 2.1 Some examples of \mathfrak{G} are:

(i)
$$g(\rho) = \rho^{-n}, \ \rho \in (0,1], \ n \in \mathbb{N}$$

(ii) $g(\rho) = 1 - \sqrt{\rho}, \ \rho \in [0,1].$

Now, using the functions $f \in \mathfrak{F}$ and $g \in \mathfrak{G}$, we define Intutionistic fuzzy \mathfrak{FG} - metric space by relaxing the axiom (IFM5) and (IFM10) of \widehat{IFMS} .

Definition 2.2 Let $\bigotimes \neq \emptyset$, $\xi : \bigotimes \times \bigotimes \times (0, \infty) \to [0, 1]$ and $N : \bigotimes \times \bigotimes \times (0, \infty) \to [0, 1]$ be two mappings, \circledast and \blacktriangle be \widehat{CTN} and \widehat{CTCN} respectively. If there exist $(f, \alpha) \in \mathfrak{F} \times (0, 1]$ and $(g, \beta) \in \mathfrak{G} \times (0, 1]$ such that ξ and N satisfying the following conditions:

- $(\mathfrak{FG}_{\varepsilon N}1) \ \xi(\rho,\varrho,\check{t}) + N(\rho,\varrho,\check{t}) \le 1$, for all $\rho,\varrho \in \bigotimes$ and $\check{t} > 0$;
- $(\mathfrak{FG}_{\varepsilon N}2) \ \xi(\rho,\varrho,\check{t}) > 0$, for all $\rho,\varrho \in \bigotimes$ and $\check{t} > 0$;
- ($\mathfrak{FG}_{\xi N}3$) $\xi(\rho, \varrho, \check{t}) = 1$, for all $\check{t} > 0$ if and only if $\rho = \varrho$;
- $(\mathfrak{FG}_{\xi N}4) \ \xi(\rho, \varrho, \check{t}) = \xi(\varrho, \rho, \check{t}), \text{ for all } \rho, \varrho \in \bigotimes \text{ and } \check{t} > 0;$
- ($\mathfrak{FG}_{\xi N}$ 5) For every $(\rho, \varrho) \in \bigotimes \times \bigotimes$, for every $N \in \mathbb{N}$, $N \geq 2$, and for every $u_i \in \bigotimes$ with $u_1 = \rho$ & $u_N = \rho$, we have

$$\xi(\rho,\varrho,\check{t})<1 \implies (f(\xi(\rho,\varrho,\check{t}))^{\alpha} \geq f(\xi(u_1,u_2,\check{t}_1) \otimes \xi(u_2,u_3,\check{t}_2) \otimes \cdots \otimes \xi(u_{N-1},u_N,\check{t}_{N-1}));$$

- ($\mathfrak{FG}_{\xi N}$ 6) $N(\rho, \varrho, \check{t}) < 1, \forall \rho, \varrho \in \bigotimes \& \check{t} > 0;$
- ($\mathfrak{FG}_{\xi N}$ 7) $N(\rho, \varrho, \check{t}) = 0, \forall \check{t} > 0 \text{ iff } \rho = \varrho;$
- ($\mathfrak{FG}_{\varepsilon N}$ 8) $N(\rho, \varrho, \check{t}) = N(\varrho, \rho, \check{t}), \forall \rho, \varrho \in \bigotimes \text{ and } \check{t} > 0;$
- ($\mathfrak{FG}_{\xi N}$ 9) For every $(\rho, \varrho) \in \bigotimes \times \bigotimes$, for every $N \in \mathbb{N}$, $N \geq 2$, & for every $u_i \in \bigotimes$ with $u_1 = \rho$ & $u_N = \rho$, we have

$$N(\rho, \varrho, \check{t}) > 0 \implies (g(N(\rho, \varrho, \check{t}))^{\beta} \ge g(N(u_1, u_2, \check{t}_1) \blacktriangle N(u_2, u_3, \check{t}_2) \blacktriangle \cdots \blacktriangle N(u_{N-1}, u_N, \check{t}_{N-1})),$$

where $\check{t} = \check{t}_1 + \check{t}_2 + \cdots + \check{t}_{N-1}$; $\check{t}_i > 0$ for $i = 1, 2, \dots, N-1$.

Then, (ξ, N) is called an Intutionistic fuzzy \mathfrak{FG} -metric on \otimes , and the 9-tuple $(\otimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ is called an Intutionistic fuzzy \mathfrak{FG} -metric space.

Remark 2.1 It has been observed that every \widehat{IFMS} is an Intutionistic fuzzy \mathfrak{FG} -metric space, since if $(\bigotimes, \xi, N, \circledast, \blacktriangle)$ is an \widehat{IFMS} , then clearly ξ and N satisfy $(\mathfrak{FG}_{\xi N}1)$ - $(\mathfrak{FG}_{\xi N}4)$ and $(\mathfrak{FG}_{\xi N}6)$ - $(\mathfrak{FG}_{\xi N}8)$. We need to verify the condition $(\mathfrak{FG}_{\xi N}5)$ and $(\mathfrak{FG}_{\xi N}9)$. For $\rho, \varrho, \zeta \in \bigotimes$ with $\rho \neq \varrho$ and $\check{s}, \check{t} > 0$, we have, from (IFM5),

$$\xi(\rho, \varrho, \check{s} + \check{t}) \ge \xi(\rho, \zeta, \check{s}) \circledast \xi(\zeta, \varrho, \check{t})$$

implies

$$\begin{split} f(\xi(\rho,\varrho,\check{s}+\check{t})) &\geq f(\xi(\rho,\zeta,\check{s}) \ \circledast \ \xi(\zeta,\varrho,\check{t})) \quad using(\mathfrak{F}1) \\ \Rightarrow f(\xi(\rho,\varrho,\check{s}+\check{t}))^{\alpha} &\geq f(\xi(\rho,\zeta,\check{s}) \ \circledast \ \xi(\zeta,\varrho,\check{t})) \quad since \ \alpha \in (0,1]. \end{split}$$

If we write $\check{s} + \check{t} = T$ and $f(\check{t}) = \check{t} \ \forall \ \check{t} \in [0,1]$ and $\alpha = 1$, we get

$$f(\xi(\rho,\varrho,T))^{\alpha} \geq f(\xi(\rho,\zeta,\check{s}) \otimes \xi(\zeta,\varrho,\check{t})).$$

and from (IFM10),

$$N(\rho, \varrho, \check{s} + \check{t}) \leq N(\rho, \zeta, \check{s}) \blacktriangle N(\zeta, \varrho, \check{t})$$

implies

$$g(N(\rho, \rho, \check{s} + \check{t})) \ge g(N(\rho, \zeta, \check{s}) \land N(\zeta, \rho, \check{t})) \quad using(\mathfrak{G}1)$$

$$\Rightarrow q(N(\rho, \rho, \check{s} + \check{t}))^{\beta} > q(N(\rho, \zeta, \check{s}) \land N(\zeta, \rho, \check{t})) \quad since \beta \in (0, 1].$$

If $\check{s} + \check{t} = T \& g(\check{t}) = -\check{t}$ for all $\check{t} \in [0,1]$ and $\beta = 1$, then

$$g(N(\rho, \varrho, T))^{\beta} \ge g(N(\rho, \zeta, \check{s}) \blacktriangle N(\zeta, \varrho, \check{t})).$$

Thus, (ξ, N) is an Intutionistic fuzzy \mathfrak{FG} -metric on \bigotimes with $f(\check{t}) = \check{t}$ and $g(\check{t}) = -\check{t}$, $\forall \ \check{t} \in [0, 1]$ and $\alpha = 1 \ \& \ \beta = 1$.

The Intutionistic fuzzy \mathfrak{FG} -metric is the broader version of the \widehat{IFM} . The following claim demonstrates that, in specific circumstances, an Intutionistic fuzzy \mathfrak{FG} -metric induces an \widehat{IFM} .

Proposition 2.1 Let $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ be an Intutionistic fuzzy \mathfrak{FG} -metric space. Define a function $m : \bigotimes \times \bigotimes \times (0, \infty) \to [0, 1]$ and $n : \bigotimes \times \bigotimes \times (0, \infty) \to [0, 1]$ by

$$m(\rho, \varrho, \check{t}) = \sup \left\{ \xi(u_1, u_2, \check{t}_1) \quad \circledast \quad \dots \quad \circledast \quad \xi(u_{N-1}, u_N, \check{t}_{N-1}) : N \in \mathbb{N}, N \ge 2 \right\} \tag{1}$$

$$n(\rho, \varrho, \check{t}) = \inf \{ N(u_1, u_2, \check{t}_1) \blacktriangle \dots \blacktriangle N(u_{N-1}, u_N, \check{t}_{N-1}) : N \in \mathbb{N}, N \ge 2 \}$$
 (2)

with $(u_1, u_N) = (\rho, \varrho) \ \forall \ \rho, \varrho \in \bigotimes \ and \ \check{t} > 0$, where $\check{t} = \check{t}_1 + \check{t}_2 + \cdots + \check{t}_{N-1}$.

If $\xi(\rho, \varrho, \cdot)$ is a continuous, non-decreasing function of $\check{t} \forall \rho, \varrho \in \bigotimes \& If N(\rho, \varrho, \cdot)$ is a continuous, non-increasing function of $\check{t} \forall \rho, \varrho \in \bigotimes$, then $(\bigotimes, m, n, \circledast, \blacktriangle)$ is an \widehat{IFMS} .

Proof: As $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ is an Intutionistic fuzzy \mathfrak{FG} -metric space, \exists a pair $(f, \alpha) \in \mathfrak{F} \times (0, 1]$ and $(g, \beta) \in \mathfrak{G} \times (0, 1]$ with respect to which ξ and N satisfying the condition $(\mathfrak{FG}_{\xi N}5)$ and $(\mathfrak{FG}_{\xi N}9)$ respectively.

As m satisfies (IFM1), (IFM2), (IFM4), (IFM6) trivially and n satisfies (IFM1), (IFM7), (IFM9), (IFM11) trivially and we need to verify (IFM3), (IFM5), (IFM8) and (IFM10). Now,

(i) If $\rho = \varrho$, then $\xi(\rho, \varrho, \check{t}) = 1 \ \forall \ \check{t} > 0$ and, hence, $m(\rho, \varrho, \check{t}) = 1 \ \forall \ \check{t} > 0$.

Conversely, if possible, suppose that $\exists \rho, \varrho \ (\rho \neq \varrho) \in \bigotimes$, such that $m(\rho, \varrho, \check{t}) = 1 \ \forall \check{t} > 0$. Then, $\exists \check{t}_0 > 0$ such that

$$\xi(\rho, \rho, \check{t}_0) < 1. \tag{3}$$

Let $0 < \epsilon < 1$. Then, definition of m implies, $\exists N \in \mathbb{N}, N \geq 2 \& \{u_i\}_i^N \subset X$ with $(u_1, u_N) = (\rho, \varrho)$, such that

$$1 - \epsilon < \xi(u_1, u_2, \check{t}_1) \otimes \ldots \otimes \xi(u_{N-1}, u_N, \check{t}_{N-1}),$$

where $\check{t}_0 = \check{t}_1 + \check{t}_2 + \cdots + \check{t}_{N-1}$, implying

$$f(1-\epsilon) < f(\xi(u_1, u_2, \check{t}_1) \circledast \ldots \circledast \xi(u_{N-1}, u_N, \check{t}_{N-1}))$$

$$\leq (f(\xi(\rho, \varrho, \check{t}_0)))^{\alpha} \quad (by \quad (\mathfrak{F}1) \ and \quad (\mathfrak{FG}_{\xi N}5)).$$

Since $0 < \epsilon < 1$ is chosen arbitrarily, we have

$$f(\xi(\rho, \varrho, \check{t}_0))^{\alpha} > f(1) = 1.$$

Thus, we get

$$f(\xi(\rho, \varrho, \check{t}_0)) = 1$$
 implying $\xi(\rho, \varrho, \check{t}_0) = 1$,

which contradicts the relation (3). Hence, $m(\rho, \rho, \check{t}) = 1 \ \forall \ \check{t} > 0$ implies $\rho = \rho$.

(ii) Let $\rho, \varrho, \zeta \in \bigotimes$ and $0 < \epsilon < 1$. Then, according to the definition of $m, \exists 2$ chains of points $\rho = u_1, u_2, \ldots, u_n = \varrho$ and $\varrho = u_n, u_{n+1}, \ldots, u_N = \zeta$, such that

$$m(\rho, \rho, \check{s}) - \epsilon < \xi(u_1, u_2, \check{t}_1) \circledast \ldots \circledast \xi(u_{n-1}, u_n, \check{t}_{n-1})$$

and

$$m(\varrho, \zeta, \check{t}) - \epsilon < \xi(u_n, u_{n+1}, \check{t}_n) \circledast \ldots \circledast \xi(u_{N-1}, u_N, \check{t}_{N-1}),$$

where $s = \check{t}_1 + \cdots + \check{t}_{n-1}$ and $\check{t} = \check{t}_n + \check{t}_{n+1} + \cdots + \check{t}_{N-1}$, with $t_i > 0, i = 1, 2, \ldots, N-1$.

Therefore,

$$m(\rho,\zeta,T) \geq \xi(u_1,u_2,\check{t}_1) \circledast \cdots \circledast \xi(u_{n-1},u_n,\check{t}_{n-1}) \circledast \xi(u_n,u_{n+1},\check{t}_n) \circledast \cdots \circledast \xi(u_{N-1},u_N,\check{t}_{N-1})$$
$$> (m(\rho,\varrho,\check{s})-\epsilon) \circledast (m(\varrho,\zeta,\check{t})-\epsilon),$$

where $T = \check{s} + \check{t}$. Since $0 < \epsilon < 1$ is arbitrary, we obtain as $\epsilon \to 0^+$:

$$m(\rho, \zeta, T) \ge m(\rho, \varrho, \check{s}) \circledast m(\varrho, \zeta, \check{t}).$$

Thus, m meets the inequality (IFM5). Furthermore, because ξ is a non-decreasing function of \check{t} , the definition of m implies that $m(\rho, \varrho, \check{t})$ is likewise non-decreasing with respect to \check{t} , for any $\rho, \varrho \in \bigotimes$.

(iii) If $\rho = \varrho$, then $N(\rho, \varrho, \check{t}) = 0$ for all $\check{t} > 0$ and, hence, $n(\rho, \varrho, \check{t}) = 0 \,\forall \, \check{t} > 0$. Conversely, if possible, suppose that there exist $\rho, \varrho \ (\rho \neq \varrho) \in \bigotimes$, such that $n(\rho, \varrho, \check{t}) = 0 \,\forall \, \check{t} > 0$. Then, $\exists \ a \ \check{t}_0 > 0$ such that

$$N(\rho, \varrho, \check{t}_0) > 0. \tag{4}$$

Let $0 < \epsilon < 1$. Then, definition of n implies, $\exists N \in \mathbb{N}, N \geq 2 \& \{u_i\}_i^N \in X$ with $(u_1, u_N) = (\rho, \varrho)$, such that

$$0 + \epsilon > N(u_1, u_2, \check{t}_1) \blacktriangle \ldots \blacktriangle N(u_{N-1}, u_N, \check{t}_{N-1}),$$

where $\check{t}_0 = \check{t}_1 + \check{t}_2 + \cdots + \check{t}_{N-1}$, implying

$$g(\epsilon) < g(N(u_1, u_2, \check{t}_1) \blacktriangle \dots \blacktriangle N(u_{N-1}, u_N, \check{t}_{N-1})) \le (g(N(\rho, \varrho, \check{t}_0)))^{\beta}$$
 (by (£1) and (£2).

Since $0 < \epsilon < 1$ is chosen arbitrarily, we have

$$g(N(\rho, \varrho, \check{t}_0))^{\beta} \ge g(0) = 1.$$

Thus, we get

$$g(N(\rho, \varrho, \check{t}_0)) = 1$$
 implying $N(\rho, \varrho, \check{t}_0) = 0$,

which contradicts the relation (4). Hence, $n(\rho, \varrho, \check{t}) = 0$ for all $\check{t} > 0$ implies $\rho = \varrho$.

(iv) Let $\rho, \varrho, \zeta \in \bigotimes$ and $0 < \epsilon < 1$. Then, by the definition of n, there exist two chains of points $\rho = u_1, u_2, \ldots, u_n = \varrho$ and $\varrho = u_n, u_{n+1}, \ldots, u_N = \zeta$, such that

$$n(\rho, \varrho, \check{s}) + \epsilon > N(u_1, u_2, \check{t}_1) \blacktriangle \ldots \blacktriangle N(u_{n-1}, u_n, \check{t}_{n-1})$$

and

$$n(\rho,\zeta,\check{t})+\epsilon>N(u_n,u_{n+1},\check{t}_n) \land \ldots \land N(u_{N-1},u_N,\check{t}_{N-1}),$$

where $\check{s} = \check{t}_1 + \cdots + \check{t}_{n-1}$ and $\check{t} = \check{t}_n + \check{t}_{n+1} + \cdots + \check{t}_{N-1}$, with $\check{t}_i > 0$, $i = 1, 2, \dots, N-1$. Therefore,

$$n(\rho,\zeta,T) \leq N(u_1,u_2,t_1) \blacktriangle \dots \blacktriangle N(u_{n-1},u_n,\check{t}_{n-1}) \blacktriangle N(u_n,u_{n+1},\check{t}_n) \blacktriangle \dots \blacktriangle N(u_{N-1},u_N,\check{t}_{N-1})$$
$$< (n(\rho,\varrho,\check{s}) + \epsilon) \blacktriangle (n(\varrho,\zeta,\check{t}) + \epsilon),$$

where $T = \check{s} + \check{t}$. Since $0 < \epsilon < 1$ is arbitrary, we obtain as $\epsilon \to 0^+$:

$$n(\rho, \zeta, T) < n(\rho, \rho, \check{s}) \land n(\rho, \zeta, \check{t}).$$

Thus, n meets the inequality (IFM10). Furthermore, because N is a non-increasing function of \check{t} , the definition of n implies that $n(\rho, \varrho, \check{t})$ is similarly non-increasing with respect to \check{t} , for any $\rho, \varrho \in \bigotimes$. Thus, $(\bigotimes, m, n, \circledast, \blacktriangle)$ is a \widehat{IFMS} .

Theorem 2.1 Let $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ be an Intutionistic fuzzy \mathfrak{FG} -metric space, such that f & g are continuous from the left and right respectively, & suppose that $\xi(\rho, \varrho, \check{t})$ is a continuous and non-decreasing function of t, $N(\rho, \varrho, \check{t})$ is a continuous and non-increasing function of $\check{t} \lor \rho, \varrho \in \bigotimes$. If $(\bigotimes, m, n, \circledast, \blacktriangle)$ represents the induced \widehat{IFMS} on \bigotimes , then the following holds:

$$\rho, \varrho \in \bigotimes \quad with \ \xi(\rho, \varrho, \check{t}) < 1 \,\forall \ \check{t} > 0, \quad \Rightarrow \quad f(\xi(\rho, \varrho, \check{t})) \le f(m(\rho, \varrho, \check{t})) \le f(\xi(\rho, \varrho, \check{t}))^{\alpha}, \tag{5}$$

and

$$\rho, \varrho \in \bigotimes \text{ with } N(\rho, \varrho, \check{t}) > 0 \,\forall \, \check{t} > 0, \ \Rightarrow \ g(N(\rho, \varrho, \check{t})) \leq g(n(\rho, \varrho, \check{t})) \leq g(N(\rho, \varrho, \check{t}))^{\beta}. \tag{6}$$

Proof: (i) Let $(\rho, \varrho) \in \bigotimes \times \bigotimes$ be such that $\xi(\rho, \varrho, \check{t}) < 1 \ \forall \ \check{t} > 0$. Then definition of m states that $m(\rho, \varrho, \check{t}) \geq \xi(\rho, \varrho, \check{t})$ which implies

$$f(m(\rho, \varrho, \check{t})) \ge f(\xi(\rho, \varrho, \check{t})) \quad \text{(by (\mathfrak{F}1))}.$$

Let $0 < \epsilon < 1$ be arbitrary. Definition of m implies that $\exists N \in \mathbb{N}, N \geq 2$, and a sequence of points $u_1, u_2, \ldots, u_N \in \bigotimes$ with $u_1 = \rho$, $u_N = \varrho$, such that for $\check{t} = \check{t}_1 + \check{t}_2 + \cdots + \check{t}_{N-1}$, we have

$$m(\rho, \varrho, \check{t}) - \epsilon < \xi(u_1, u_2, \check{t}_1) \circledast \cdots \circledast \xi(u_{N-1}, u_N, \check{t}_{N-1}),$$

$$\Rightarrow f(m(\rho, \varrho, \check{t}) - \epsilon) < f(\xi(u_1, u_2, \check{t}_1) \circledast \cdots \circledast \xi(u_{N-1}, u_N, \check{t}_{N-1})),$$

$$\Rightarrow (f(\xi(\rho, \varrho, \check{t})))^{\alpha} > f(m(\rho, \varrho, \check{t}) - \epsilon) \qquad (by (\mathfrak{FG}_{\xi N}5)).$$

Since $0 < \epsilon < 1$ is arbitrary, Allowing $\epsilon \to 0^+$ yields

$$f(\xi(\rho,\varrho,\check{t}))^{\alpha} \ge f(m(\rho,\varrho,\check{t})).$$
 (8)

The relations (7) and (8) together give

$$f(\xi(\rho, \rho, \check{t})) < f(m(\rho, \rho, \check{t})) < f(\xi(\rho, \rho, \check{t}))^{\alpha}$$
.

(ii) Let $(\rho, \varrho) \in \bigotimes \times \bigotimes$ be such that $N(\rho, \varrho, \check{t}) > 0$ for every $\check{t} > 0$. The definition of n indicates that $n(\rho, \varrho, \check{t}) \leq N(\rho, \varrho, \check{t})$, implying

$$g(n(\rho, \rho, \check{t})) \ge g(N(\rho, \rho, \check{t}))$$
 (by ($\mathfrak{G}1$)). (9)

Let $0 < \epsilon < 1$ be arbitrary. Then, the definition of n implies, $\exists N \in \mathbb{N}, N \geq 2$, a sequence of points $u_1, u_2, \ldots, u_N \in \bigotimes$ with $u_1 = \rho$, $u_N = \varrho$, such that for $\check{t} = \check{t}_1 + \check{t}_2 + \cdots + \check{t}_{N-1}$, we have

$$\begin{split} n(\rho,\varrho,\check{t}) + \epsilon &> N(u_1,u_2,\check{t}_1) \blacktriangle \cdots \blacktriangle N(u_{N-1},u_N,\check{t}_{N-1}), \\ \Rightarrow g(n(\rho,\varrho,\check{t}) + \epsilon) &< g(N(u_1,u_2,\check{t}_1) \blacktriangle \cdots \blacktriangle N(u_{N-1},u_N,\check{t}_{N-1}) \\ &\leq g(N(u_1,u_N,\check{t}_1 + \cdot + \check{t}_{N-1}))^\beta \quad (by \ (\mathfrak{F}\mathfrak{G}_{MN}9)), \\ \Rightarrow g(n(\rho,\varrho,\check{t}) + \epsilon) &< g(N(\rho,\varrho,\check{t}))^\beta. \end{split}$$

Since $0 < \epsilon < 1$ is arbitrary, by letting $\epsilon \to 0^+$, we acquire

$$(g(n(\rho, \varrho, \check{t}))) \le g(N(\rho, \varrho, \check{t}))^{\beta}. \tag{10}$$

The relations (9) and (10) together give

$$g(N(\rho, \varrho, \check{t})) \le g(n(\rho, \varrho, \check{t})) \le g(N(\rho, \varrho, \check{t}))^{\beta}.$$

Now we define characteristics of an Intutionistic fuzzy \mathfrak{FG} -metric space (eg. topology, convergence, cauchyness, completeness etc.)

Definition 2.3 Assume $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ is an intutionistic fuzzy \mathfrak{FG} -metric space. Define an open ball as follows: $\rho \in \bigotimes$ and $\bar{q} > 0$, $\check{t} > 0$,

$$B(\rho,\bar{q},\check{t}) = \left\{\varrho \in \bigotimes : \xi(\rho,\varrho,\check{t}) > 1 - \bar{q}, \ N(\rho,\varrho,\check{t}) < \bar{q}\right\}.$$

Proposition 2.2 Let $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ be an Intutionistic fuzzy \mathfrak{FG} -metric space. Then

$$\tau(\xi,N) = \left\{ \wp \subseteq \bigotimes : for \ each \ \rho \in \wp, \ \exists \ \bar{q} \in (0,1), \ \check{t} > 0 \ such \ that \ B(\rho,\bar{q},\check{t}) \subseteq \wp \right\}$$

is called topology on \otimes .

Definition 2.4 Assume $\{\rho_n\}$ is a sequence in an Intutionistic fuzzy \mathfrak{FG} -metric space $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$. Then

(i) $\{\rho_n\}$ is said to be **convergent** if $\exists \rho \in \bigotimes$, such that for any $0 < \bar{q} < 1$, $\exists a \text{ natural number } N \in \mathbb{N}$ such that $\forall \check{t} > 0$.

$$\xi(\rho_n, \rho, \check{t}) > 1 - \bar{q}$$
 and $N(\rho_n, \rho, \check{t}) < \bar{q} \quad \forall n \ge N.$

(ii) $\{\rho_n\}$ is said to be **Cauchy sequence** if for each $\check{t} > 0$ and $0 < \bar{q} < 1$, \exists a natural number $N \in \mathbb{N}$ such that

$$\xi(\rho_n, \rho_m, \check{t}) > 1 - \bar{q}$$
 and $N(\rho_n, \rho_m, \check{t}) < \bar{q} \quad \forall m, n \ge N$.

(iii) \otimes is considered to be **complete** if every Cauchy sequence in \otimes converges to some point in set \otimes .

The following results are simply proven.

Proposition 2.3 Consider $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ is an Intutionistic fuzzy \mathfrak{FG} -metric space, let $\{\rho_n\} \subset \bigotimes$ is a sequence, & $\rho \in \bigotimes$. Then

(i) $\{\rho_n\}$ is convergent to ρ iff

$$\lim_{n \to \infty} \xi(\rho_n, \rho, \check{t}) = 1 \quad \& \quad N(\rho_n, \rho, \check{t}) = 0 \quad \forall \quad \check{t} > 0.$$

(ii) $\{\rho_n\}$ is Cauchy iff

$$\lim_{m,n\to\infty} \xi(\rho_n,\rho_m,\check{t}) = 1 \quad \& \quad N(\rho_n,\rho_m,\check{t}) = 0 \quad \forall \quad \check{t} > 0.$$

Example 2.2 Assume $\bigotimes = \mathbb{R}$ and define

$$\xi(\rho,\varrho,\check{t}) = \frac{\check{t}}{\check{t} + |\rho - \varrho|} \quad \& \quad N(\rho,\varrho,\check{t}) = \frac{|\rho - \varrho|}{\check{t} + |\rho - \varrho|} \quad \forall \quad \rho,\varrho \in \mathbb{R}, \ \check{t} > 0.$$

Take the sequence $\rho_n = \frac{1}{n}$ in \mathbb{R} .

(i) For $\xi(\rho_n, \rho_m, \check{t})$, we have

$$\xi(\rho_n, \rho_m, \check{t}) = \frac{\check{t}}{\check{t} + \left|\frac{1}{n} - \frac{1}{m}\right|}$$

As $n, m \to \infty$, we have $|\rho_n - \rho_m| = \left|\frac{1}{n} - \frac{1}{m}\right| \to 0$, so

$$\xi(\rho_n, \rho_m, \check{t}) \to 1.$$

This demonstrates that sequence is Cauchy in terms of Nearness.

Similarly, take $N(\rho_n, \rho_m, \check{t})$:

$$N(\rho_n, \rho_m, \check{t}) = \frac{|\rho_n - \rho_m|}{\check{t} + |\rho_n - \rho_m|}.$$

As $n, m \to \infty$, we again have $|\rho_n - \rho_m| \to 0$, which implies

$$N(\rho_n, \rho_m, \check{t}) \to 0.$$

This demonstrates that the sequence is Cauchy in terms of Non- Nearness.

Proposition 2.4 Limit of a convergent sequence in $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ is unique.

Proof: Let $\rho, \varrho \in \bigotimes$ be such that a sequence $\{\rho_n\}$ converges to both $\rho \& \varrho$. Then

$$\lim_{n \to \infty} \xi(\rho_n, \rho, \check{t}) = \lim_{n \to \infty} \xi(\rho_n, \varrho, \check{t}) = 1 \quad \forall \quad \check{t} \to 0.$$

$$\lim_{n \to \infty} N(\rho_n, \rho, \check{t}) = \lim_{n \to \infty} N(\rho_n, \varrho, \check{t}) = 0 \quad \forall \quad \check{t} \to 0.$$

Since $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ is an Intutionistic fuzzy \mathfrak{FG} -metric space, $\exists (f, \alpha) \in \mathfrak{F} \times (0, 1]$ and $(g, \beta) \in \mathfrak{G} \times (0, 1]$ and satisfying $(\mathfrak{FG}_{\varepsilon N}5)$ and $(\mathfrak{FG}_{\varepsilon N}9)$.

Now suppose $\rho \neq \varrho$. Then $\exists \check{t}_0 > 0$ such that $\xi(\rho, \varrho, \check{t}_0) < 1$ and $N(\rho, \varrho, \check{t}_0) > 0$, and hence, by $(\mathfrak{FG}_{\varepsilon N}5)$ and $(\mathfrak{FG}_{\varepsilon N}9)$:

$$(f(\xi(\rho,\varrho,\check{t}_0)))^{\alpha} \ge f(\xi(\rho,\rho_n,\check{t}_1) \circledast \xi(\rho_n,\varrho,\check{t}_2)) \ \forall \ n \in \mathbb{N}, \ \check{t}_0 = \check{t}_1 + \check{t}_2,$$

$$\Rightarrow (f(\xi(\rho,\varrho,\check{t}_0)))^{\alpha} \ge \lim_{n \to \infty} f(\xi(\rho,\rho_n,\check{t}_1) * \xi(\rho_n,\varrho,\check{t}_2)).$$

On the other hand, by $(\mathfrak{F}2)$, we have

$$\lim_{n \to \infty} f(\xi(\rho, \rho_n, \check{t}_1) \circledast \xi(\rho_n, \varrho, \check{t}_2)) = 1,$$

$$\Rightarrow (f(\xi(\rho, \varrho, \check{t}_0)))^{\alpha} \ge 1 \text{ so } f(\xi(\rho, \varrho, \check{t}_0))^{\alpha} = 1,$$

$$\Rightarrow f(\xi(\rho, \rho, \check{t}_0)) = 1 \Rightarrow \xi(\rho, \rho, \check{t}_0) = 1 \text{ (by } (\mathfrak{F}^2)).$$

and

$$(g(N(\rho, \varrho, \check{t}_0)))^{\beta} \leq g(N(\rho, \rho_n, \check{t}_1)) \blacktriangle N(\rho_n, \varrho, \check{t}_2)) \ \forall \ n \in \mathbb{N}, \ \check{t}_0 = \check{t}_1 + \check{t}_2,$$

$$\Rightarrow (g(N(\rho, \varrho, \check{t}_0)))^{\beta} \leq \lim_{n \to \infty} g(N(\rho, \rho_n, \check{t}_1)) \blacktriangle N(\rho_n, \varrho, \check{t}_2)).$$

Now using $(\mathfrak{G}2)$, we have

$$\lim_{n \to \infty} g(N(\rho, \rho_n, \check{t}_1) \blacktriangle N(\varrho, \rho_n, \check{t}_2)) = 1,$$

$$\Rightarrow (g(N(\rho, \varrho, \check{t}_0)))^{\beta} \le 1 \quad \text{so} \quad (g(N(\rho, \varrho, \check{t}_0)))^{\beta} = 1,$$

$$\Rightarrow g(N(\rho, \rho, \check{t}_0)) = 1 \Rightarrow N(\rho, \rho, \check{t}_0) = 0 \quad (by \ (\mathfrak{G}2))$$

which contradicts our assumption that $\xi(\rho, \varrho, \check{t}_0) < 1$ and $N(\rho, \varrho, \check{t}) > 0$.

Proposition 2.5 In \widehat{IFMS} $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$, every convergent sequence is a Cauchy sequence.

Proof: Consider $\{\rho_n\}$ is a convergent sequence in $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ converging to $\rho \in \bigotimes$. Then

$$\lim_{n \to \infty} \xi(\rho_n, \rho, \check{t}) = 1 \quad and \quad N(\rho_n, \rho, \check{t}) = 0 \quad \forall \quad \check{t} > 0.$$
(11)

Let $(f, \alpha) \in \mathfrak{F} \times (0, 1]$ and $(g, \beta) \in \mathfrak{G} \times (0, 1]$ be such that $(\mathfrak{FG}_{\xi N}5)$ and $(\mathfrak{FG}_{\xi N}9)$ hold respectively. Let $0 < \epsilon < 1$. By $(\mathfrak{F}2)$, $\exists \ 0 < \delta < 1$ such that

$$1 - \delta < \check{t} < 1 \implies 1 - \epsilon < f(\check{t}) < 1. \tag{12}$$

and by ($\mathfrak{G}2$), $\exists 0 < \delta < 1$ such that

$$1 - \delta < \check{t} < 1 \implies g(\epsilon) > g(\check{t}) > 0. \tag{13}$$

By Remark (1.2), for $\delta \in (0,1)$, we can choose $\beta \in (0,1)$ such that

$$(1-\beta) \circledast (1-\beta) \ge 1-\delta. \tag{14}$$

$$\beta \land \beta \le 1 - \delta \tag{15}$$

Again, (11) implies that for $\check{t}_1 > 0$ and $\check{t}_2 > 0$, $\exists N_1(\check{t}_1)$ and $N_2(\check{t}_2) \in \mathbb{N}$, such that

$$\xi(\rho_n, \rho, \check{t}_1) > 1 - \beta$$
 for all $n \geq N_1(\check{t}_1)$,

$$\xi(\rho_m, \rho, \check{t}_2) > 1 - \beta$$
 for all $m \ge N_2(\check{t}_2)$.

and

$$N(\rho_n, \rho, \check{t}_1) < \beta$$
 for all $n \ge N_1(\check{t}_1)$,

$$N(\rho_m, \rho, \check{t}_2) < \beta$$
 for all $m \ge N_2(\check{t}_2)$.

Let $\check{t} = \check{t}_1 + \check{t}_2$ and $N(\check{t}) = \max\{N_1(\check{t}_1), N_2(\check{t}_2)\}$. Then, using (12), (14) and $(\mathfrak{FG}_{\xi N}5)$, we have

$$\xi(\rho_{n}, \rho, \check{t}_{1}) \circledast \xi(\rho_{m}, \rho, \check{t}_{2}) > (1 - \beta) \circledast (1 - \beta) \geq (1 - \delta) \forall m, n \geq N(\check{t}),$$

$$\Longrightarrow f(\xi(\rho_{n}, \rho_{m}, \check{t}))^{\alpha} > 1 - \epsilon \forall m, n \geq N(\check{t}), \ \forall \check{t} > 0,$$

$$\Longrightarrow \lim_{m, n \to \infty} f(\xi(\rho_{n}, \rho_{m}, \check{t})) = 1 \ \forall \ \check{t} > 0,$$

$$\Longrightarrow \lim_{m, n \to \infty} \xi(\rho_{n}, \rho_{m}, \check{t}) = 1 \ \forall \ \check{t} > 0.$$

using (13), (15) and ($\mathfrak{FG}_{\varepsilon N}$ 9), we have

$$\begin{split} &N(\rho_n,\rho,\check{t}_1) \triangleq N(\rho_m,\rho,\check{t}_2) < \beta \triangleq \beta \leq (1-\delta) \; \forall \; m,n \geq N(\check{t}), \\ &\Longrightarrow g(N(\rho_n,\rho,\check{t}_1) \triangleq N(\rho_m,\rho,\check{t}_2)) \geq g(\epsilon) \\ &\Longrightarrow g(N(\rho_n,\rho_m,\check{t}))^\beta \geq g(\epsilon) \\ &\Longrightarrow g(N(\rho_n,\rho_m,\check{t}) \geq g(\epsilon) \\ &\Longrightarrow N(\rho_n,\rho_m,\check{t}) \leq \epsilon \\ &\Longrightarrow \lim_{m,n \to \infty} N(\rho_n,\rho_m,\check{t}) = 0 \; \forall \; \check{t} > 0. \end{split}$$

This demonstrates that in $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$, $\{\rho_n\}$ is a Cauchy sequence.

The following finding demonstrates that the convergence characteristics of a sequence's cauchyness and convergent point remain invariant in an intuitionistic fuzzy \mathfrak{FG} -metric space $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ and an Intutionistic fuzzy metric space $(\bigotimes, \xi, N, \circledast, \blacktriangle)$, where ξ and N induces m and n respectively as in relation (1) and (2).

Theorem 2.2 Let $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ be an Intutionistic fuzzy \mathfrak{FG} -metric space, such that $\xi(\rho, \varrho, \cdot)$ is continuous and non-decreasing and $N(\rho, \varrho, \cdot)$ is continuous and non-increasing with respect to \check{t} for all $\rho, \varrho \in \bigotimes$ and $\check{t} > 0$, & m and n be the induced metric in the relation (1) and (2). Let $(f, \alpha) \in \mathfrak{F} \times (0, 1]$ and $(g, \beta) \in \mathfrak{G} \times (0, 1]$ with respect to which $(\mathfrak{FG}_{\xi N}5)$ and $(\mathfrak{FG}_{\xi N}9)$ hold. Then:

- (i) If $\{\rho_n\}$ is convergent to $\rho \in \bigotimes$ in $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$, then $\{\rho_n\}$ converges to ρ in $(\bigotimes, m, n, \circledast, \blacktriangle)$.
- (ii) If $\{\rho_n\}$ is a Cauchy sequence in $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$, then $\{\rho_n\}$ is a Cauchy sequence in $(\bigotimes, m, n, \circledast, \blacktriangle)$.
- (iii) \bigotimes is complete $\Leftrightarrow \bigotimes$ is complete with respect to the fuzzy metric m and n.

Proof: (i) First, suppose that $\{\rho_n\}$ converges to $\rho \in \bigotimes$ in $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$. This means that for every $\epsilon, 0 < \epsilon < 1$, for each $\check{t} > 0$, there exists an $N(\check{t}) \in \mathbb{N}$ such that

$$\xi(\rho_n, \rho, \check{t}) > 1 - \epsilon$$
 and $N(\rho_n, \rho, \check{t}) < \epsilon \quad \forall \ n \ge N(\check{t}).$

From the definition of m and n, we get

$$m(\rho_n, \rho, \check{t}) \ge \xi(\rho_n, \rho, \check{t}) \quad \forall n \quad \text{or} \quad m(\rho_n, \rho, \check{t}) > 1 - \epsilon \quad \forall n \ge N(\check{t}).$$

$$n(\rho_n, \rho, \check{t}) < N(\rho_n, \rho, \check{t}) \quad \forall n \quad \text{or} \quad n(\rho_n, \rho, \check{t}) < \epsilon \quad \forall n > N(\check{t}).$$

As a result, $\{\rho_n\}$ converges to $\rho \in \bigotimes$ using the fuzzy metric m and n.

Conversely, Assume $\{\rho_n\}$ converges to ρ in the intutionistic fuzzy metric space $(\bigotimes, m, n, \circledast, \blacktriangle)$ with $0 < \epsilon < 1$. Then, by condition $(\mathfrak{F}2)$ and $(\mathfrak{G}2)$, if $0 < f(1 - \epsilon) < 1$ and $0 < g(\epsilon) < 1$, then $\exists \ \delta > 0$ such that

$$\begin{aligned} 1 - \frac{\delta}{2} < \check{t} < 1 & \Rightarrow & f(1 - \epsilon) < f(\check{t}) < 1. \\ 0 < \check{t} < \frac{\delta}{2} & \Rightarrow & 0 > g(\check{t}) > g(\epsilon). \end{aligned}$$

Again, for any $\check{t} > 0$, $\exists N(\check{t}) \in \mathbb{N}$ such that

$$m(\rho_n, \rho, \check{t}) > 1 - \frac{\delta}{4}$$
 and $n(\rho_n, \rho, \check{t}) < \frac{\delta}{4} \quad \forall \ n \ge N(\check{t}).$

From m, we have

$$m(\rho_n,\rho,\check{t}) - \frac{\delta}{4} < \xi(\rho_n,\rho,\check{t}) \quad \Rightarrow \quad 1 - \frac{\delta}{2} < \xi(\rho_n,\rho,\check{t}) < 1 \quad \text{for } n \geq N(\check{t}).$$

and

$$n(\rho_n, \rho, \check{t}) + \frac{\delta}{4} > N(\rho_n, \rho, \check{t}) \quad \Rightarrow \quad \frac{\delta}{2} > N(\rho_n, \rho, \check{t}) > 0 \quad \forall \ n \ge N(\check{t}).$$

which implies

$$f(1 - \epsilon) < f(\xi(\rho_n, \rho, \check{t})) < 1 \quad \forall \ n \ge N(\check{t}),$$

or equivalently,

$$\xi(\rho_n, \rho, \check{t}) > 1 - \epsilon \quad \forall \ n > N(\check{t}).$$

and

$$g(\epsilon) < g(N(\rho_n, \rho, \check{t})) < 1,$$

or equivalently,

$$N(\rho_n, \rho, \check{t}) < \epsilon.$$

This proves that $\{\rho_n\}$ converges to ρ in $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ as well.

Similar steps can be taken to prove (ii), and (iii) is straightforward.

Next, boundedness is defined as:

Definition 2.5 Assume $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast)$ is an intutionistic fuzzy \mathfrak{FG} - metric space. A subset A of \bigotimes is called bounded iff $\exists \ \check{t} > 0 \ \& \ 0 < \bar{q} < 1$, such that $\xi(\rho, \varrho, \check{t}) > 1 - \bar{q} \quad \& \ N(\rho, \varrho, \check{t}) < \bar{q} \ \forall \ \rho, \varrho \in A$.

Theorem 2.3 In an Intutionistic fuzzy §6- metric space, every convergent sequence is bounded.

Proof: Assume $(\bigotimes, \xi, N, f, g, \alpha, \beta, \circledast, \blacktriangle)$ is an Intutionistic fuzzy \mathfrak{FG} -metric space and $\{\rho_n\}$ be a sequence in \bigotimes such that $\rho_n \to \rho$ as $n \to \infty$.

Let $0 < \epsilon < 1$. Then, by $(\mathfrak{F}2)$, $\exists \delta \in (0,1)$ implies

$$1 - \delta < \check{t} \le 1 \quad \Rightarrow \quad 1 - \epsilon < f(\check{t}) \le 1 \text{ and} \tag{16}$$

$$0 < \check{t} < \delta \quad \Rightarrow \quad 1 > g(\check{t}) > \epsilon.$$
 (17)

Since $\rho_n \to \rho$ as $n \to \infty$, for $\delta \in (0,1)$, $\exists N \in \mathbb{N}$ such that $\forall \check{t} > 0$,

$$\xi(\rho_n, \rho, \check{t}_0) > 1 - \delta \quad \forall \ n \geq N \ and$$

$$N(\rho_n, \rho, \check{t}_0) < \delta \quad \forall \ n \geq N.$$

Particularly, for given $\check{t}_0 > 0$, we have

$$\xi(\rho_N, \rho, \check{t}_0) > 1 - \delta$$
 and

$$N(\rho_N, \rho, \check{t}_0) < \delta$$
.

Now, by (1.2), $\exists \bar{q} \in (0,1)$ which implies

$$\xi(\rho_N, \rho, \check{t}_0) \circledast (1 - \bar{q}) \ge 1 - \delta \ and \tag{18}$$

$$\bar{\mathbf{q}} \triangleq N(\rho_N, \rho, \check{t}_0) \le \delta.$$
 (19)

Consider a sequence $\{\alpha_n\}$ in (0,1) such that $\alpha_n \to 1$ as $n \to \infty$ & $\{\beta_n\}$ in (0,1) such that $\beta_n \to 0$ as $n \to \infty$. Assume $\{\rho_n\}$ is not bounded. Then, for a given \check{t}_0 , for each α_k and β_k , $\exists \rho_{n_k} \in \{\rho_n\}$ such that

$$\xi(\rho_{n_k}, \rho_N, 2\check{t}_0) \le 1 - \alpha_k. \tag{20}$$

and

$$N(\rho_{n_k}, \rho_N, 2\check{t}_0) \ge \beta_k. \tag{21}$$

Since $\rho_n \to \rho$ as $n \to \infty$, we have $\rho_{n_k} \to x$ as $k \to \infty$. Thus, for $\check{t}_0, \exists m(t_0) \in \mathbb{N}$ which implies

$$\xi(\rho_{n_k}, \rho, \check{t}_0) > 1 - \bar{\mathsf{q}} \quad \forall \ k \geq m(\check{t}_0)$$

and

$$N(\rho_{n_k}, \rho, \check{t}_0) < \bar{q}$$
 for all $k \geq m(\check{t}_0)$.

Hence, we can write

$$\xi(\rho_N, \rho, \check{t}_0) \otimes \xi(\rho_{n_k}, \rho, \check{t}_0) > \xi(\rho_N, \rho, \check{t}_0) \otimes (1 - \bar{q}) \text{ for all } k \ge m(\check{t}_0)$$

$$\Rightarrow \xi(\rho_N, \rho, \check{t}_0) \otimes \xi(\rho_{n_k}, \rho, \check{t}_0) \ge (1 - \delta) \text{ for all } k \ge m(\check{t}_0) \text{ } (using(18))$$

which implies

$$f(\xi(\rho_N, \rho, \check{t}_0)) \otimes (\xi(\rho_{n_k}, \rho, \check{t}_0)) > 1 - \epsilon$$
 for all $k \geq m(\check{t}_0)$. (using (16))

Thus,

$$(f(\xi(\rho_N, \rho_{n_k}, 2\check{t}_0)))^{\alpha} > 1 - \epsilon \quad \forall \ k \ge m(\check{t}_0) \ (using \ (\mathfrak{F}\mathfrak{G}_{\varepsilon N}5)).$$

or equivalently

$$(f(1-\alpha_k))^{\alpha} > 1-\epsilon$$
 for all $k \ge m(\check{t}_0)$ (using (20)).

This leads to

$$\lim_{k \to \infty} (f(1 - \alpha_k))^{\alpha} \ge 1 - \epsilon.$$

Since $0 < \epsilon < 1$ is arbitrary, letting $\epsilon \to 0^+$ yields

$$\lim_{k \to \infty} (f(1 - \alpha_k))^{\alpha} = 1 \Rightarrow \lim_{k \to \infty} (f(1 - \alpha_k)) = 1$$

But from $(\mathfrak{F}2)$, we know that

$$\lim_{k \to \infty} (1 - \alpha_k) = 1,$$

implies

$$\lim_{k\to\infty}\alpha_k=0.$$

Similarly

$$N(\rho_{N}, \rho, \check{t}_{0}) \triangleq N(\rho_{n_{k}}, \rho, \check{t}_{0}) < N(\rho_{N}, \rho, \check{t}_{0}) \triangleq \bar{q} \leq \delta \quad \forall \ k \geq m(\check{t}_{0}) \ (using \ (19))$$

$$\implies g(N(\rho_{N}, \rho, \check{t}_{0}) \triangleq N(\rho_{n_{k}}, \rho, \check{t}_{0})) > \epsilon \quad \forall \ k \geq m(\check{t}_{0}) \ (using \ (17))$$

$$\implies (g(N(\rho_{N}, \rho_{n_{k}}, 2\check{t}_{0})))^{\beta} > \epsilon \quad \forall \ k \geq m(\check{t}_{0}) \ (using \ (\mathfrak{FG}_{\xi N}9))$$

$$\implies (g(\beta_{k}))^{\beta} > \epsilon \quad \forall \ k \geq m(\check{t}_{0}) \ (using \ (21))$$

$$\implies \lim_{k \to \infty} g(\beta_{k}) \geq \epsilon.$$

Since $0 < \epsilon < 1$ is arbitrary, letting $\epsilon \to 0^+$ yields

$$\lim_{k \to \infty} (g(\beta_k))^{\beta} = 0 \Rightarrow \lim_{k \to \infty} g(\beta_k) = 0.$$

But from $(\mathfrak{G}2)$, we know that

$$\lim_{k \to \infty} \beta_k = 1.$$

which contradicts the assumption that $\alpha_k \to 1$ and $\beta_k \to 0$. Therefore, the assumption that $\{\rho_n\}$ is unbounded leads to a contradiction. Hence the result.

Conclusion

A novel concept for a generalised \widehat{FMS} called an Intutionistic fuzzy \mathfrak{FG} -metric space by taking into account a family of functions. This leads to a further generalization of fuzzy metric spaces, extending its applicability and contributing to a deeper understanding of fuzzy metrics and their properties in mathematical analysis.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

We thank the reviewers for their valuable suggestions to improve the quality of the work.

References

- 1. Atanassov, K., Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87-96, (1986).
- 2. Czerwik, S., Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis 1(1), 5-11, (1993).
- 3. Das, A., Barman, D. and Bag, T., A new generalization of George and Veeramani-type fuzzy metric space. Problem of Analysis 13(3), 23-42, (2024).
- Dhawan, P. and Grewal, A., Fixed Point Results for expansions maps in partial-2-metric space. BIOGECKO 12(3), (2023).
- 5. Dhawan, P., Gupta, V. and Grewal, A., Fixed point theorems for $(\zeta, \alpha, \beta)s$ -contraction. Journal of Multidisciplinary Mathematics 27(8), 1923-1932, (2024).
- Dhawan, P. and Tripti, Fixed point result in SOFT b-Fuzzy Metric Spaces. Advances in Fixed Point Theory 14:50, (2024).
- 7. George, A. and Veeramani, P. V., On some results of fuzzy metric spaces. Fuzzy Sets and Systems 64, 395-399, (1994).
- 8. George, A., Veeramani, P. V., Some theorems in fuzzy metric spaces. Journal of Fuzzy Mathematics 3, 933-940, (1995).
- 9. Gregori, V., Morillas, S. and Sapena, A., Examples of fuzzy metrics and applications. Fuzzy Sets and Systems 170, 95-111, (2011).
- 10. Gupta, V., Dhawan, P. and Verma, M., Some novel fixed point results for (Ω, Δ) -weak contraction condition in complete fuzzy metric spaces. Pesquisa Operacional 43, 1-20, (2023).
- 11. Jleli, M. and Samet, B., On a new generalization of metric spaces. Journal of Fixed Point Theory and Applications 20(3), 128, (2018).
- 12. Kirišci, M. and šimšek, N., Neutrosophic metric spaces. Math Science 14, 241-248, (2020).
- 13. Kramosil, O. and Michalek, J., Fuzzy metric and statistical metric spaces. Kybernetika 11, 326-334, (1975).
- 14. Park, J. H., Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22, 1039-1046, (2004).
- 15. Saadati, R., Sedgi, S. and Shobe, N., Modified intuitionistic fuzzy metric spaces and some fixed point theorems. Chaos Solitons and Fractals 38, 36-47, (2008).
- 16. Schweizer, B. and Sklar, A., Statistical metric spaces. Pacific journal of Mathematics 10, 313-334, (1960).
- 17. Sedghi, S., Shobe, N.and Aliouche, A., A generalization of fixed point theorems in S-metric spaces. Matematiqki Vesnik 64(249), 258-266, (2012).
- 18. Shostak, A., George-Veeramani Fuzzy Metrics Revised. Axioms 7, 60, (2018).
- 19. Zadeh, L. A., Fuzzy sets. Information Control 8, 338-353, (1965).

^{1,2}Department of Mathematics,

Maharishi Markandeshwar Engineering College, MM (DU), Mullana-133207, Haryana(India), India.

E-mail address: pdhawan12@gmail.com, aainasingla29@gmail.com

and

³Department of Mathematics,

Jamia Millia Islamia, New Delhi 110025, (India),

India.

E-mail address: izharuddin1@jmi.ac.in